Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Supplementary material for

Upcycling of waste polyethylene terephthalate to dimethyl terephthalate over

solid acid under mild conditions

Authors:

Boyong Ye^{*a*}, Ruru Zhou^{*a*}, Zixin Zhong^{*a*}, Songlin Wang^{*b*}, Han Wang^{*b*}, Zhaoyin Hou _{*a,b,**}

Address:

^a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of

Chemistry, Zhejiang University, Hangzhou 310028, China.

^b Zhejiang Hengyi Petrochemical Research Institute Co., Ltd., Hangzhou 311200, China.

* Corresponding author

Zhaoyin Hou

Tel/Fax: 86-571-88273283

Email: zyhou@zju.edu.cn

Synthesis of SiO₂ or TiO₂: 180 µL triethanolamine was added to 100 mL of deionized water, heated in an oil bath at 80 °C and stirred for 30 min. After that, 0.74 g of sodium salicylate and 1.52 g of CTAB were added, and the mixture was stirred for 30 min at a constant temperature. Then tetraethyl orthosilicate (TEOS, 4.16 g, 0.02 mol) was added, and stirring was continued at 80 °C for 9 h. After the reaction was stopped, the mixture was centrifuged (10000 rpm, 4 min), and the collected solids were dried in an 80 °C oven. The obtained solid powder was roasted for 4 h in a muffle furnace at 550 °C, and the resulting material was denoted as SiO₂. Titanium tetraisopropanolate (TTIP, 5.68 g, 0.02 mol) was instead of TEOS to obtain TiO₂. Synthesis of TiO₂/SiO₂-5/5: 180 µL triethanolamine was added to 100 mL of deionized water, heated in an oil bath at 80 °C and stirred for 30 min. After that, 0.74 g of sodium salicylate and 1.52 g of cetyltrimethylammonium bromide (CTAB) were added, and the mixture was stirred for 30 min at a constant temperature. Then 1.2 g of SiO₂ (0.02 mol, Sigma Aldrich Trading Co., Ltd, the average particle size is 50 nm) was added and stirred for 1 h. Thereafter, titanium tetraisopropanolate (TTIP, 5.68 g, 0.02 mol) was added dropwise, and stirring was continued at 80 °C for 9 h. After the reaction was stopped, the mixture was centrifuged (10000 rpm, 4 min), and the collected solids were dried in an 80 °C oven. The obtained solid powder was roasted for 4 h in a muffle furnace at 550 °C, and the resulting material was named $TiO_2/SiO_2-5/5$.

Synthesis of SiO₂/TiO₂-5/5: 180 μ L triethanolamine was added to 100 mL of deionized water, heated in an oil bath at 80 °C and stirred for 30 min. After that, 0.74

g of sodium salicylate and 1.52 g of CTAB were added, and the mixture was stirred for 30 min at a constant temperature. Then 1.6 g of TiO_2 (0.02 mol, Sigma Aldrich Trading Co., Ltd) was added and stirred for 1 h. Thereafter, tetraethyl orthosilicate (TEOS, 4.16 g, 0.02 mol) was added dropwise, and stirring was continued at 80 °C for 9 h. After the reaction was stopped, the mixture was centrifuged (10000 rpm, 4 min), and the collected solids were dried in an 80 °C oven. The obtained solid powder was roasted for 4 h in a muffle furnace at 550 °C, and the resulting material was named SiO₂/TiO₂-5/5.

NH₃-TPD: The sample was first heated at 700 °C for 1 h in N₂ and then the reactor was cooled to 50 °C. The sample was exposed to NH₃ for 30 min, and then purged by Ar for 3 h at 50 °C to eliminate the physically adsorbed NH₃. NH₃-TPD was conducted by heating to 700 °C with a ramp of 15 °C/min, and the effluent was measured on the online quadrupole mass spectrometer.

Pyridine-IR: Pyridine-IR spectra was obtained on Tensor 27 (Bruker, Germany) using self-supporting wafers of approximately 20 mg (1.3 cm diameter). Prior to the measurements, the wafers were pretreated under vacuum at 300 °C for 1 h inside a home-built IR cell with ZnSe windows, exposed to pyridine at 150 °C, and then evacuated at the same temperature to remove the physisorbed pyridine. IR spectra were collected at 150 °C (32 scans with a resolution of 2 cm⁻¹).

Gel permeation chromatography (GPC) analysis: The average molecular weight of remaining solids during the alcoholysis of PET was detected using GPC with a refractive index detector. PET solid was dissolved using hexafluoroisopropanol

(HFIP) and prepared into a solution of 2.23 mg/mL. The column temperature was 35 $^{\circ}$ C, the mobile phase was hexafluoroisopropanol (HFIP) at a flow rate of 0.5 mL/min and the injection volume was 100 μ L. The GPC was calibrated and the standard curve was established using standard polymethyl methacrylate (PMMA) samples.

Fig. S1. The photograph of the high-pressure reactor and electric heating apparatus.

Tuble 51. The physical and enominear properties of various materials.				
Materials	$S_{BET} (m^2/g)$	Pore diameter (nm)	Pore volume (cm^3/g)	
SiO ₂	526	1.4, 13.3	2.5	
SiO ₂ /TiO ₂ -	264	1.4, 4.8	1.1	
5/5				
TiO ₂ /SiO ₂ -	137	1.4, 4.7	0.8	
5/5				
TiO ₂	34	8.4	0.2	

Table S1. The physical and chemical properties of various materials.

Fig. S2. N_2 adsorption-desorption isotherms (a) and pore size distributions (b) of various materials.

Fig. S3. Particle size distributions of (a) $Ti_{0.1}Si_{0.9}O_2$ and (b) $Ti_{0.5}Si_{0.5}O_2$.

Fig. S4. XRD patterns of $Ti_xSi_{1-x}O_2$ catalysts.

Fig. S5. Raman spectra of $Ti_xSi_{1-x}O_2$ catalysts.

Catalyst	Structural type	- δ (ppm)	FWHH (ppm)	Q ⁿ (%)	
	Q4	-110.0	8.5	43.9	
$Ti_{0.5}Si_{0.5}O_2$	Q_3	-101.3	10.0	53.4	
	Q_2	-92.2	4.4	2.7	

Table S2. Values for the chemical shift, the full individual line width at half height and the percentage of O^n obtained from the analysis of ²⁹Si MAS NMR.

Fig. S6. Schematic diagram of Qⁿ structural unit.

	0 0 4	1.1.2		
Catalysts	Ti 2p _{3/2} (eV)	Ti 2p _{1/2} (eV)	Si 2p (eV)	O <i>ls</i> (eV)
Ti _{0.1} Si _{0.9} O ₂	459.2	464.8	103.7	530.7, 533.0
$Ti_{0.3}Si_{0.7}O_2$	459.0	464.7	103.5	530.6, 532.8
$Ti_{0.5}Si_{0.5}O_2$	459.0	464.7	103.2	530.6, 532.7
$Ti_{0.7}Si_{0.3}O_2$	458.9	464.6	102.7	530.3, 532.2
$Ti_{0.9}Si_{0.1}O_2$	458.8	464.5	102.4	530.1, 532.0

Table S3. Binding energies of $Ti_xSi_{1-x}O_2$.

Fig. S7. NH₃-TPD profiles of $Ti_xSi_{1-x}O_2$ catalysts.

Catalysts	PET conversion (%)	DMT yield (%)	MHET yield (%)
Ti _{0.4} Si _{0.6} O ₂	87.0	77.5	4.1
$Ti_{0.5}Si_{0.5}O_2$	87.3	79.0	3.8
$Ti_{0.6}Si_{0.4}O_2$	80.5	71.9	5.6
H_2SO_4	8.3	4.2	1.3
AlCl ₃	4.6	1.5	0.8
$TiO_2/SiO_2-5/5$	36.4	8.8	5.1
$SiO_2/TiO_2-5/5$	8.8	1.7	1.1
TiO ₂	<1.0	0.1	< 0.1
SiO ₂	<1.0	0.1	< 0.1

Table S4. Catalytic performance of catalysts for the PET alcoholysis to DMT^a.

^a Reaction conditions: 1 g PET, 0.025 g catalyst, 10 mL MeOH, 150 °C, 2 h.

Fig. S8. Performance of $Ti_{0.5}Si_{0.5}O_2$ under different reaction times. Reaction conditions: 1 g PET, 0.025 g $Ti_{0.5}Si_{0.5}O_2$, 10 mL methanol, 160 °C.

Table S5. The comparison of fresh and spent $Ti_{0.5}Si_{0.5}O_2$.

Catalyst	W_{Ti} (%) ^a	$W_{Si}(\%)^{a}$	n(Ti/Si) ^b	Acidity (mmol/g) ^c
Fresh Ti _{0.5} Si _{0.5} O ₂	38.70	21.13	1.07	0.36
Spent Ti _{0.5} Si _{0.5} O ₂	38.29	21.12	1.06	0.35

^a Measured by ICP-OES.

^b Calculated according to ICP-OES results.

^c Measured via acid-base titration.

Table S6. The physical properties of fresh $Ti_{0.5}Si_{0.5}O_2$ and spent $Ti_{0.5}Si_{0.5}O_2$.

Catalysts	$S_{BET} (m^2/g)$	Pore diameter (nm)	Pore volume (cm ³ /g)
Fresh Ti _{0.5} Si _{0.5} O ₂	407	1.5, 5.1	1.06
Spent Ti _{0.5} Si _{0.5} O ₂	334	1.7, 4.9	0.79

Fig. S9. N_2 adsorption-desorption isotherms (a) and pore size distributions (b) of fresh $Ti_{0.5}Si_{0.5}O_2$ and spent $Ti_{0.5}Si_{0.5}O_2$.

Fig. S10. Alcoholysis of PET bottle and Polyester yarn over $Ti_{0.5}Si_{0.5}O_2$. Reaction conditions: 1 g PET-based product, 0.025 g $Ti_{0.5}Si_{0.5}O_2$, 10 mL MeOH, 160 °C, 3 h.

Fig. S11. (a) SEM image and (b) line-eds of PET and $Ti_{0.5}Si_{0.5}O_2$.

Fig. S12. Molecular weight of (a) raw PET and the remaining solid after different reaction times (b) 0.5 h, (c) 2 h and (d) 4 h.

Fig. S13. MALDI-TOF-MS spectra of the reaction solution. Reaction conditions: 1 g PET, 0.025 g $Ti_{0.5}Si_{0.5}O_2$, 10 mL methanol, 150 °C.