Supporting Information

Green and Effective Synthesis of Multisubstituted α-Pyrones *via* K₂CO₃ Catalyzed Formal Insertion of Ketenimines into C(CO)-C Bonds of 1,3-Diketones

Jian Luo,^{[b]†} Ai-Qing Zhong,^{[c]†} Jia-Hao Qiu,^{[b]†} Xiong-Wei Liu,^{*[a]} You-Ping Tian,^[a] Bao-Hua Zhang,^{*[b]} Guo-Shu Chen,^[b] Wei Shu,^[d] and Yun-Lin Liu^{*[b,e]}

Email: liuxiongwei058@gzy.edu.cn; ccbhzhang@gzhu.edu.cn; ylliu@gzhu.edu.cn

1) General Information	S2			
2) General Procedure and Spectral Data of Products 3-61				
3) General Procedure for the One-Pot Synthesis of Di- and Trisubstituted α -Pyrones	S25			
4) Spectral Data of 4,6-Disubstituted α-Pyrones	S25			
5) Scale-Up Reaction and Transformations of The Products	S27			
6) Mechanistic studies	S31			
7) Device Fabrication and Characterizations	S34			
8) Physical and Material Properties	S35			
9) X-Ray Crystallographic Data for Compounds 30, 47, 48, 72 and 74	S38			
10) Copies of ¹ H NMR and ¹³ C NMR Spectra of Products 3-77	S43			
11) Copies of HPLC Spectra of Products 54-61	S120			

1) General Information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. ¹H and ¹³C NMR spectra were obtained using a Bruker DPX-400 or Jeol 400 spectrometer. Chemical shifts are reported in ppm from CDCl₃ with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s=singlet, d=doublet, t = triplet, q=quartet, h=heptet, m=multiplet, br=broad.

Anhydrous solvents, palladium catalysts, Brønsted base catalysts, and 1,3diphenylpropane-1,3-dione were purchased from Energy Chemical. Unless otherwise stated, all purchased reagents were used without further purification. All reactions involving air- or moisture-sensitive compounds were carried out under nitrogen atmosphere in dried Schlenk tube. The isonitriles,^[1] diazo compounds,^[2] ketenimines,^[3] and 1,3-diones^[4] were prepared using the literature procedures.

Detailed photophysical studies were performed on compounds **49-51** in solution state (10^{-5} M) . As for absorption measurements, those solution samples were tested by Cary 60 (Agilent) equipment. PL studies were conducted by using Edinburgh FLS1000 fluorescent spectrometer, in which steady state PL spectra were excited at 365 nm by using Xe₂ xenon lamp, and PL transient decay curves were obtained by using a picosecond pulsed LED (EPLED-365) as light-exciting source. Absolute PL quantum efficiency (φ_{PL}) of those samples were further measured by using a built-in integration sphere accessory that was coupled to FLS1000 equipment. All those sample were measured in air. To minimize the influence of air on the resultant PL transient and φ_{PL} , all those solution sample were freshly prepared in nitrogen-filled glovebox and then transferred to outside for measuring as soon as possible. Moreover, transient PL photophysical fitting and studies shown in Table S2 were performed according to the standard PL photophysical theory in OLEDs.^[5]

- [1] a) X.-H. Zhao, X.-H. Liu, H.-J. Mei, J. Guo, L.-L. Lin, X.-M. Feng, *Angew. Chem. Int. Ed.* **2015**, *54*, 4032-4035; b) J. M. Saya, B. Oppelaar, R. C. Cioc, G. van der Heijden, C. M. L. Vande Velde, R. V. A. Orru, E. Ruijter, *Chem. Commun.* **2016**, *52*, 12482-12485; c) Z. He, M. Bae, J. Wu, T. F. Jamison, *Angew. Chem. Int. Ed.* **2014**, *53*, 14451-14455.
- [2] Y. Xia, D. Qiu, J. Wang, Chem. Rev. 2017, 117, 13810-13889.
- [3] a) J. Luo, G.-S. Chen, S.-J. Chen, Z.-D. Li, Y.-L. Zhao, Y.-L. Liu, *Adv. Synth. Catal.* 2020, 362, 3635-3643; b) Z. Liu, S. Cao, J. Wu, G. Zanoni, P. Sivaguru, X. Bi, *ACS Catal.* 2020, 10, 12881-12887.

- [4] a) Y. Ning, Q. Song, P. Sivaguru, L. Wu, E. A. Anderson, Xihe Bi, Org. Lett. 2022, 24, 631-636; b) K. Wu, T. Zhang, Z. Wang, L. Wang, L. Zhan, S. Gong, C. Zhong, Z.-H. Lu, S. Zhang, C. Yang, J. Am. Chem. Soc. 2018, 140, 8877-8886; c) Q. Zhang, H. Kuwabara, W. J. Potscavage Jr., S. Huang, Y. Hatae, T. Shibata, C. Adachi, J. Am. Chem. Soc. 2014, 136, 18070-18081.
- [5] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931-7958.

2) General Procedure and Spectral Data of Products 3-61

To a 10.0 mL Schlenk tube were successively added ketenimines 1 (0.12 mmol), 1,3diketones 2 (0.10 mmol), anhydrous EtOAc (1.0 mL), and K₂CO₃ (20 mol%). The reaction mixture was stirred vigorously at 80 °C under N2 atmosphere till full consumption of 1,3diketones 2 by TLC analysis. The reaction mixture was then concentrated by rotary vaporation, and the residue was subjected to column chromatography using petroleum ether/ethyl acetate (from 10:1-1:1) as eluent to afford the desired products 3-61.

The reaction was run at 80 °C for 5 h, affording product **3** as a pale yellow solid (49.4 mg, 93% yield, m.p. = 151-152 °C); ¹H NMR (500 MHz, CDCl₃): δ 3.00 (brm, 2H), 3.47 (brm, 1H), 3.77 (s, 3H), 3.85 (s, 3H), 4.35 (brm, 1H), 5.77 (s, 1H), 6.72 (s, 1H), 6.79 (d, J = 7.5 Hz, 1H), 6.88 (d, J = MeO 8.0 Hz, 1H), 6.97 (d, J = 4.5 Hz, 2H), 7.04 (d, J = 7.5 Hz, 2H), 7.18 (t, J = 7.5 Hz, 2H), 7.29-7.37 (m, 4H), 7.42-7.47 (m, 3H), 7.54-7.56 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): 8 169.69, 162.22, 158.57, 153.54, 149.22, 147.98, 134.51, 131.69, 131.23, 131.16, 130.03, 130.41, 128.81, 128.79, 128.40, 128.27, 127.99, 127.80, 125.40, 121.25, 120.72, 112.35, 102.39, 55.78, 55.73, 53.17, 33.04; IR (ATR): 1709, 1668, 1632, 1548, 1514, 1438, 1315, 1260, 1237, 1153, 1141, 1026, 904, 769, 691, 644, 572. HRMS (ESI): Exact mass calcd for C₃₄H₂₉NO₅Na [M+Na]⁺: 554.1938, Found: 554.1932.

The reaction was run at 80 °C for 5 h, affording product 4 as a pale yellow solid (46.2 mg, 98% yield, m.p. = 182-183 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.09 (brm, 2H), 3.81 (brm, 2H), 5.79 (s, 1H), 6.99-7.00 (m, 2H), 7.06-7.08 (m, 2H), 7.18-7.26 (m, 4H), 7.32-7.35 (m, 4H), 7.37-7.47 (m, 6H), 7.55 (d, J = 6.8 Hz, 2H); 13 C NMR (100 MHz, CDCl₃): δ 169.83, 162.30, 158.61, 153.50, 139.31, 134.60, 131.31, 131.16, 131.05, 130.46, 129.87, 129.48, 128.90, 128.73, 128.49, 128.36, 128.03, 127.89, 126.94, 125.60, 120.83, 102.49, 52.97, 33.70; IR (ATR): 1708, 1651, 1629, 1548, 1494, 1450, 1395, 1321, 796, 755, 695, 642, 574. HRMS (ESI): Exact mass calcd for C₃₂H₂₅NO₃Na [M+Na]⁺: 494.1727, Found: 494.1717.

The reaction was run at 80 °C for 5 h, affording product **5** as a pale yellow solid (45.1 mg, 93% yield, m.p. = 181-182 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.37 (s, 3H), 3.04 (brm, 2H), 3.49-4.29 (brm, 2H), 5.68 (s, 1H), 6.97-6.98 (m, 2H), 7.06 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 7.2 Hz, 2H), 7.18-7.23 (m, 4H), 7.31-7.39 (m, 4H), 7.41-7.47 (m, 3H), 7.54 (d, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.77, 162.31, 158.44, 153.70, 136.62, 136.34, 134.65, 131.32, 131.13, 130.97, 130.52, 129.90, 129.58, 129.45, 128.76, 128.46, 128.33, 128.06, 127.85, 125.51, 120.89, 102.49, 53.34, 33.16, 21.07; IR (ATR): 1706, 1653, 1627, 1544, 1497, 1442, 1391, 1317, 814, 786, 768, 717, 692, 643, 573. HRMS (ESI): Exact mass calcd for C₃₃H₂₇NO₃Na [M+Na]⁺: 508.1883, Found: 508.1877.

The reaction was run at 80 °C for 5 h, affording product **6** as a pale green solid (44.6 mg, 89% yield, m.p. = 163-164 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.02 (brm, 2H), 3.51-4.25 (brm, 2H), 3.79 (s, 3H), 5.74 (s, 1H), 6.91-6.94 (m, 2H), 6.99 (d, J = 4.8 Hz, 2H), 7.06 (d, J = 7.2 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 7.20 (t, J = 8.0 Hz, 2H), 7.30-7.38 (m, 4H), 7.41-7.49 (m, 3H), 7.54-7.56

(m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.77, 162.33, 158.68, 158.49, 153.68, 134.67, 131.34, 131.28, 131.13, 131.03, 130.49, 129.88, 128.79, 128.48, 128.35, 128.03, 127.88, 125.55, 120.86, 114.24, 102.59, 55.20, 53.36, 32.80; IR (ATR): 1707, 1661, 1631, 1547, 1512, 1396, 1241, 1174, 1032, 826, 787, 769, 721, 697, 641, 572. HRMS (ESI): Exact mass calcd for C₃₃H₂₇NO₄Na [M+Na]⁺: 524.1832, Found: 524.1824.

The reaction was run at 80 °C for 5 h, affording product 7 as a pale yellow solid (47.4 mg, 97% yield, m.p. = 175-176 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.05 (brm, 2H), 3.81 (brm, 2H), 5.81 (s, 1H), 7.00-7.01 (m, 2H), 7.05-7.10 (m, 4H), 7.18-7.23 (m, 4H), 7.30-7.40 (m, 4H), 7.43-7.48 (m, 3H), 7.55-7.57 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.80, 162.27, 161.91 (d, *J* = 245

Hz), 158.73, 153.36, 134.94, 134.51, 131.28, 131.26, 131.19, 130.88 (d, J = 8.0 Hz), 130.43, 129.82, 128.90, 128.57, 128.42, 128.00, 127.97, 125.49, 120.81, 115.72 (d, J = 21 Hz), 102.47, 52.83, 32.98; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.60; IR (ATR): 1711, 1658, 1622, 1534, 1503, 1402, 1211, 1152, 1045, 851, 781, 751, 682, 636, 557. HRMS (ESI): Exact mass calcd for C₃₂H₂₄FNO₃Na [M+Na]⁺: 512.1632, Found: 512.1627.

The reaction was run at 80 °C for 5 h, affording product 8 as a pale yellow solid (48.0 mg, 95% yield, m.p. = 184-185 °C); ¹H NMR (500 MHz, CDCl₃): δ 3.04 (brm, 2H), 3.75 (brm, 2H), 5.73 (s, 1H), 6.98 (d, J = 7.5 Hz, 2H), 7.08 (d, *J* = 9.0 Hz, 2H), 7.16-7.23 (m, 4H), 7.30-7.35 (m, 3H), 7.35-7.39 (m, 3H), 7.47-7.49 (m, 3H), 7.53-7.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.75, 162.22, 158.79, 153.38, 137.90, 134.43, 133.02, 131.29, 131.22, 131.17, 130.86, 130.35, 129.83, 129.03, 129.01, 128.56, 128.38, 128.01, 127.95, 125.46, 120.96, 102.25, 52.90, 33.06; IR (ATR): 1706, 1662, 1630, 1545, 1489, 1445, 1395, 1277, 1172, 1085, 1016, 932, 814, 769, 721, 697, 643, 574, 544. HRMS (ESI): Exact mass calcd for C₃₂H₂₄NO₃ClNa [M+Na]⁺: 528.1337, Found: 528.1326.

The reaction was run at 80 °C for 6 h, affording product 9 as a pale yellow solid (42.0 mg, 91% yield, m.p. = 108-109 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.10 (brm, 2H), 3.65-4.15 (brm, 2H), 6.01 (s, 1H), 6.14 (s, 1H), 6.37-6.39 (m, 1H), 7.03 (brs, 2H), 7.07 (d, J = 7.6 Hz, 2H), 7.20 (t, J = 7.2 Hz, 2H), 7.33-7.38 (m, 4H), 7.42 (s, 1H), 7.44-7.51 (m, 3H), 7.71-7.73 (m, 2H); ¹³C

NMR (100 MHz, CDCl₃): δ 169.83, 162.38, 158.64, 153.39, 152.76, 141.72, 134.53, 131.31, 131.16, 131.08, 130.61, 129.85, 128.83, 128.50, 128.39, 128.00, 127.90, 125.62, 120.59, 110.87, 107.83, 102.59, 49.86, 26.17; IR (ATR): 1703, 1653, 1628, 1538, 1494, 1443, 1392, 1324, 1181, 1076, 919, 163, 746, 682, 641, 604, 570. HRMS (ESI): Exact mass calcd for C₃₀H₂₃NO₄Na [M+Na]⁺: 484.1519, Found: 484.1510.

The reaction was run at 80 °C for 12 h, affording product 10 as a pale-green solid (22.4 mg, 53% yield, m.p. = 109-110 °C); ¹H NMR (400 MHz, CDCl₃): δ 1.53 (s, 9H), 6.66 (s, 1H), 7.09-7.12 (m, 2H), 7.19-7.23 (m, 4H), 7.28-7.33 (m, 1H), 7.36-7.38 (m, 3H), 7.49-7.53 (m, 3H), 7.82-7.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.30, 162.62, 157.08, 151.61, 137.71, 131.42, 131.26, 130.57, 130.13, 129.77, 129.11, 128.78, 127.98, 127.68, 127.48, 125.70, 125.58, 106.49, 60.55, 29.23; IR (ATR): 1696, 1652, 1622, 1548, 1451, 1370, 1331, 1179, 769, 689, 661, 630, 571. HRMS (ESI): Exact mass calcd for C₂₈H₂₅NO₃Na [M+Na]⁺: 446.1727, Found: 446.1718.

The reaction was run at 80 °C for 8 h, affording product 11 as a pale green solid (37.7 mg, 84% yield, m.p. = 92-93 °C); ¹H NMR (400 MHz, CDCl₃): δ 1.09-1.23 (m, 3H), 1.62-1.67 (m, 3H), 1.76-1.84 (m, 4H), 4.05 (s, 1H), 6.71 (s, 1H), 7.10 (d, J = 7.2 Hz, 2H), 7.16 (brs, 2H), 7.22 (t, J = 7.6 Hz, 2H), 7.33-

7.37 (m, 4H), 7.50-7.51 (m, 3H), 7.85-7.87 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.18,

162.50, 157.78, 151.03, 135.72, 131.70, 131.12, 130.75, 130.52, 129.87, 129.01, 128.46, 128.15, 127.95, 127.45, 125.60, 104.68, 60.47, 31.81, 26.09, 25.35; IR (ATR): 1701, 1651, 1629, 1540, 1495, 1450, 1301, 903, 765, 687, 646, 567. HRMS (ESI): Exact mass calcd for C₃₀H₂₇NO₃Na [M+Na]⁺: 472.1883, Found: 472.1875.

The reaction was run at 80 °C for 8 h, affording product **12** as a pale green solid (39.8 mg, 87% yield, m.p. = 141-142 °C); ¹H NMR (400 MHz, CDCl₃): δ 4.79 (brs, 2H), 6.54 (s, 1H), 6.94 (d, J = 6.0 Hz, 2H), 7.20-7.26 (m, 4H), 7.30-7.39 (m, 9H), 7.43-7.49 (m, 3H), 7.64-7.67 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.78, 162.40, 158.54, 152.58, 136.44, 134.36, 131.22, 131.14, 130.59, 129.68, 128.93, 128.89, 128.50, 128.40, 128.36, 128.11, 128.02, 125.54, 120.71, 102.74, 52.19; IR (ATR): 1723, 1661, 1629, 1551, 1492, 1448, 1400, 1327, 1270, 1027, 906, 796, 761, 699, 645, 628, 604, 571. HRMS (ESI): Exact mass calcd for C₃₁H₂₃NO₃Na [M+Na]⁺: 480.1570, Found: 480.1560.

The reaction was run at 80 °C for 5 h, affording product **13** as a pale green solid (42.4 mg, 92% yield, m.p. = 186-187 °C); ¹H NMR (400 MHz, CDCl₃): δ 6.67 (s, 1H), 6.84 (d, *J* = 6.0 Hz, 4H), 7.17-7.21 (m, 4H), 7.23-7.26 (m, 5H), 7.35 (tt, *J* = 7.2, 1.2 Hz, 1H), 7.42-7.49 (m, 3H), 7.80-7.82 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.92, 162.64, 160.78 (d, *J* = 247 Hz), 159.11, 153.07,

137.43 (d, J = 2.8 Hz), 133.91, 131.74, 131.43, 131.10, 130.73, 129.42, 128.92, 128.87, 128.47, 128.31, 128.26, 128.18, 128.02, 125.64, 122.07, 116.03 (d, J = 23 Hz), 103.04; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.91; IR (ATR): 1721, 1658, 1613, 1551, 1456, 1431, 1322, 1245, 1072, 1002, 889, 789, 667, 653, 627, 569. HRMS (ESI): Exact mass calcd for C₃₀H₂₀NFO₃Na [M+Na]⁺: 484.1319, Found: 484.1319.

The reaction was run at 80 °C for 5 h, affording product **14** as a pale yellow solid (44.8 mg, 94% yield, m.p. = 193-194 °C); ¹H NMR (400 MHz, CDCl₃): δ 6.68 (t, J = 4.0 Hz, 1H), 6.86 (s, 2H), 7.14-7.27 (m, 11H), 7.38 (t, J = 5.2 Hz, 1H), 7.46-7.49 (m, 3H), 7.82-7.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.78, 162.54, 159.15, 152.79, 139.88, 133.70, 132.33, 131.56, 131.13,

130.58, 129.35, 129.19, 128.89, 128.85, 128.50, 128.29, 128.02, 127.56, 125.60, 122.23, 102.92; IR (ATR): 1718, 1649, 1607, 1548, 1486, 1447, 1316, 1288, 1091, 1011, 936, 829, 785, 685, 653, 626, 599, 572. HRMS (ESI): Exact mass calcd for C₃₀H₂₀ClNO₃Na [M+Na]⁺: 500.1024, Found: 500.1025.

The reaction was run at 80 °C for 5 h, affording product **15** as a pale green solid (41.6 mg, 91% yield, m.p. = 165-166 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.28 (s, 3H), 6.62 (s, 1H), 6.84 (d, J = 7.6 Hz, 2H), 6.99 (d, J = 8.0 Hz, 2H), 7.14-7.18 (m, 2H), 7.21-7.26 (m, 7H), 7.32 (tt, J = 7.2, 1.2 Hz, 1H), 7.41-7.45 (m, 3H), 7.79-7.81 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.86, 162.74,

158.95, 153.00, 138.78, 136.86, 134.30, 131.88, 131.17, 130.94, 130.87, 129.82, 129.47, 128.89, 128.85, 128.31, 128.22, 127.83, 126.40, 125.62, 122.06, 103.07, 20.95; IR (ATR): 1711, 1657, 1619, 1551, 1511, 1448, 1289, 1177, 1070, 1026, 791, 766, 689, 636, 609, 566, 513. HRMS (ESI): Exact mass calcd for C₃₁H₂₃NO₃Na [M+Na]⁺: 480.1570, Found: 480.1568.

The reaction was run at 80 °C for 5 h, affording product **16** as a pale green solid (44.0 mg, 93% yield, m.p. = 168-169 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.75 (s, 3H), 6.66 (s, 1H), 6.70 (d, *J* = 8.4 Hz, 2H), 6.85 (d, *J* = 8.0 Hz, 2H), 7.17 (t, *J* = 7.6 Hz, 2H), 7.23-7.27 (m, 6H), 7.32 (t, *J* = 8.0 Hz, 2H), 7.42-7.46 (m, 3H), 7.80-7.82 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.85, 162.79,

158.89, 158.08, 153.06, 134.17, 134.07, 131.89, 131.10, 130.94, 130.77, 129.38, 128.83, 128.31, 128.24, 127.84, 125.57, 121.73, 114.37, 103.00, 55.37; IR (ATR): 1712, 1653, 1607, 1549, 1507, 1447, 1245, 1172, 1026, 831, 792, 766, 689, 639, 609, 562, 519. HRMS (ESI): Exact mass calcd for C₃₁H₂₃NO₄Na [M+Na]⁺: 496.1519, Found: 496.1520.

The reaction was run at 80 °C for 10 h, affording product 17 as a pale yellow solid (44.8 mg, 94% yield, m.p. = 193-194 °C); ¹H NMR (500 MHz, CDCl₃): δ 6.65 (s, 1H), 6.77 (s, 1H), 6.92 (s, 1H), 7.06-7.12 (m, 2H), 7.15-7.16 (m, 2H), 7.20-7.23 (m, 2H), 7.23-7.27 (m, 5H), 7.37 (t, J = 7.5 Hz, 1H), 7.44-7.49 (m, 3H), 7.82 (dd, J = 7.5, 2.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 169.83, 162.55, 159.25, 152.75, 142.52, 134.70, 133.72, 131.71, 131.46, 131.18, 130.68, 129.90, 129.44, 128.94, 128.91, 128.59, 128.33, 128.08, 126.89, 126.59, 125.70, 124.69, 122.40, 102.97; IR (ATR): 1719, 1662, 1631, 1552, 1474, 1324, 1076, 917, 763, 686, 596. HRMS (ESI): Exact mass calcd for C₃₀H₂₀CINO₃Na [M+Na]⁺: 500.1024, Found: 500.1020.

The reaction was run at 80 °C for 10 h, affording product **18** as a pale green solid (42.5 mg, 93% yield, m.p. = 189-190 °C); ¹H NMR (500 MHz, CDCl₃): δ 2.11 (s, 3H), 6.47 (s, 1H), 7.03-7.11 (m, 4H), 7.16-7.24 (m, 7H), 7.28 (brm, 2H), 7.36 (t, *J* = 7.5 Hz, 1H), 7.41-7.47 (m, 3H), 7.73-7.74 (m, 2H); ¹³C NMR

(125 MHz, CDCl₃): δ 169.73, 162.90, 158.52, 152.98, 140.21, 135.16, 134.17, 131.94, 131.63, 131.50, 130.99, 130.83, 129.50, 128.89, 128.69, 128.28, 128.12, 127.98, 127.94, 127.16, 125.62, 119.95, 102.57, 18.71; IR (ATR): 1721, 1675, 1623, 1547, 1462, 1401, 1375, 1062, 932, 757, 682, 574. HRMS (ESI): Exact mass calcd for C₃₁H₂₃NO₃Na [M+Na]⁺: 480.1570, Found: 480.1566.

The reaction was run at 80 °C for 12 h, affording product **19** as a pale yellow solid (37.1 mg, 62% yield, m.p. = 167-168 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.79-2.86 (m, 1H), 2.91-2.98 (m, 1H), 3.54 (brm, 1H), 3.74 (s, 3H), 3.86 (s, 3H), 3.89 (brm, 1H), 5.94 (s, 1H), 6.62 (s, 1H), 6.70 (dd, J = 8.0, 1.2 Hz, 1H), 6.78-6.91 (m, 2H), 7.24 (d, J = 7.2 Hz, 2H),

7.32 (t, J = 8.0 Hz, 2H), 7.43-7.49 (m, 5H), 7.52 (t, J = 7.6 Hz, 1H),

7.60-7.62 (m, 2H), 7.70 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 169.73, 161.91, 159.24, 153.82, 149.28, 148.06, 134.75, 132.29, 131.83, 131.56, 131.28, 131.17, 130.41, 129.70, 129.42, 129.40, 129.20, 128.91, 128.42, 128.24, 127.49 (q, J = 3.3 Hz), 123.87 (q, J = 273 Hz), 121.19, 112.30, 111.32, 102.66, 55.87, 55.72, 52.98, 33.42; ¹⁹F NMR (376 MHz, CDCl₃) δ -59.09; IR (ATR): 1717, 1672, 1610, 1544, 1450, 1398, 1366, 1055, 913, 742, 657, 565. HRMS (ESI): Exact mass calcd for C₃₅H₂₈NO₅F₃Na [M+Na]⁺: 622.1812, Found: 622.1812.

The reaction was run at 80 °C for 12 h, affording product **20** as a pale yellow solid (39.2 mg, 72% yield, m.p. = 155-156 °C); ¹H NMR (400 MHz, CDCl₃): δ 1.39 (brm, 3H), 2.85-2.91 (m, 1H), 3.09 (brs, 1H), 3.54 (brs, 1H), 3.75 (s, 3H), 3.91 (s, 3H), 4.24 (brm, 1H), 5.79 (s, 1H), 6.70 (s, 1H), 6.78-6.80 (m, 1H), 6.91 (d, J = 7.6 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H), 7.11 (brm, 3H), 7.20-7.30 (m, 4H), 7.39 (t, J = 7.6 Hz, 1H), 7.43-7.48 (m,

3H), 7.58-7.60 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.72, 161.21, 159.10, 154.91, 149.31, 148.07, 134.87, 131.43, 131.14, 130.78, 130.59, 130.52, 129.89, 128.98, 128.89, 128.45, 128.10, 125.70, 125.52, 121.29, 112.52, 111.34, 55.90, 55.79, 33.15, 18.99; IR (ATR): 1714, 1654, 1630, 1550, 1517, 1447, 1390, 1319, 1261, 1243, 1160, 1136, 1080, 1028, 911, 864, 805, 762, 716, 689, 640, 580, 544. HRMS (ESI): Exact mass calcd for C₃₅H₃₁NO₅Na [M+Na]⁺: 568.2094, Found: 568.2101.

The reaction was run at 80 °C for 12 h, affording product **21** as a pale yellow solid (32.0 mg, 57% yield, m.p. = 143-144 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.92 (brm, 2H), 3.64 (brm, 4H), 3.77 (s, 3H), 3.85 (s, 3H), 4.12 (brm, 1H), 5.75 (s, 1H), 6.69 (s, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 6.85-6.89 (m, 3H), 7.18-7.25 (m, 4H), 7.31-7.45 (m, 6H), 7.52-7.54 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.60, 158.31, 149.20, 147.94,

134.79, 131.88, 131.17, 130.87, 130.73, 130.25, 129.45, 128.78, 128.38, 127.91, 125.45, 121.27, 120.62, 120.16, 115.29, 112.45, 111.24, 110.70, 102.53, 55.82, 55.78, 55.18, 52.28, 33.20; IR (ATR): 1702, 1668, 1637, 1549, 1514, 1452, 1398, 1320, 1286, 1239, 1154, 1139, 1024, 911, 858, 804, 774, 757, 722, 696, 665, 647, 626, 569, 523. HRMS (ESI): Exact mass calcd for C₃₅H₃₁NO₆Na [M+Na]⁺: 584.2044, Found: 584.2047.

The reaction was run at 80 °C for 10 h, affording product **22** as a pale yellow solid (48.8 mg, 87% yield, m.p. = 92-93 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.03 (brm, 2H), 3.51 (brm, 1H), 3.70 (s, 3H), 3.77 (s, 3H), 3.86 (s, 3H), 4.26 (brm, 1H), 5.77 (s, 1H), 6.40 (s, 1H), 6.60 (d, J = 7.2 Hz, 1H), 6.72 (s, 1H), 6.80 (d, J = 8.4 Hz, 1H), 6.87-6.89 (m, 2H), 7.07 (d, J = 7.2 Hz, 2H), 7.20 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 8.0 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.42-7.46 (m, 3H), 7.54-7.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.67, 162.17, 159.29, 158.68, 153.73, 149.32, 148.07, 134.62, 132.43, 131.81, 131.17, 131.10, 130.47, 129.33, 128.86, 128.07, 127.83, 125.47, 121.93, 121.31, 120.52, 115.11, 114.69, 112.44, 111.33, 102.38, 55.84, 55.79, 55.07, 53.27, 33.12; IR (ATR): 1704, 1654, 1630, 1514, 1492, 1452, 1390, 1317, 1266, 1240, 1157, 1025, 837, 805, 775, 715, 691, 642, 628. HRMS (ESI): Exact mass calcd for C₃₅H₃₁NO₆Na [M+Na]⁺: 584.2044, Found: 584.2054.

The reaction was run at 80 °C for 5 h, affording product **23** as a pale yellow solid (52.7 mg, 96% yield, m.p. = 197-198 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.05 (brm, 2H), 3.72 (brm, 2H), 3.77 (s, 3H), 3.87 (s, 3H), 5.79 (s, 1H), 6.73 (s, 1H), 6.80 (d, J = 9.2 Hz, 1H), 6.89-6.93 (m, 3H), 6.98-7.02 (m, 2H), 7.05-7.07 (m, 2H), 7.20 (t, J = 8.0 Hz, 2H), 7.37 (t, J =

7.6 Hz, 1H), 7.42-7.49 (m, 3H), 7.55-7.57 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.63, 162.51 (d, J = 248 Hz), 162.19, 158.90, 153.78, 149.37, 148.13, 134.41, 131.84 (d, J = 8.0 Hz), 131.72, 131.39, 131.21, 130.39, 128.89, 128.03, 127.92, 127.23 (d, J = 3.2 Hz), 125.49, 121.31, 119.84, 115.54, 115.33, 112.46, 111.37, 102.13, 55.86, 55.80, 53.35, 33.10. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.16; IR (ATR): 1710, 1668, 1627, 1544, 1515, 1436, 1387, 1259,

1238, 1140, 1085, 1024, 910, 844, 807, 772, 715, 694, 644, 592, 518. HRMS (ESI): Exact mass calcd for C₃₄H₂₈FNO₅Na [M+Na]⁺: 572.1844, Found: 572.1840.

The reaction was run at 80 °C for 5 h, affording product 24 as a pale yellow solid (53.7 mg, 95% yield, m.p. = 173-174 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.05 (brm, 2H), 3.63 (brm, 1H), 3.77 (s, 3H), 3.88 (s, 3H), 4.12 (brm, 1H), 5.78 (s, 1H), 6.73 (s, 1H), 6.80-6.91 (m, 4H), 7.04-7.06 (m, 2H), 7.20 (t, J = 8.0 Hz, 2H), 7.26-7.29 (m, 2H), 7.37 (tt, J = 7.6, 1.2 Hz, 1H),

7.43-7.48 (m, 3H), 7.55-7.57 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.60, 161.99, 159.08, 153.92, 149.38, 148.14, 134.46, 134.37, 131.68, 131.42, 131.27, 130.34, 129.76, 128.91, 128.57, 128.06, 127.97, 125.52, 121.31, 119.60, 112.44, 111.38, 102.11, 55.86, 55.81, 53.38, 33.09; IR (ATR): 1703, 1654, 1612, 1533, 1501, 1424, 1390, 1267, 1244, 1136, 1095, 1033, 931, 861, 767, 721, 652, 574. HRMS (ESI): Exact mass calcd for C₃₄H₂₈NO₅ClNa [M+Na]⁺: 588.1548, Found: 588.1543.

MeO

26

The reaction was run at 80 °C for 5 h, affording product 25 as a pale yellow solid (57.2 mg, 94% yield, m.p. = 168-169 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.06 (brm, 2H), 3.62 (brm, 1H), 3.77 (s, 3H), 3.87 (s, 3H), 4.14 (brm, 1H), 5.78 (s, 1H), 6.73 (s, 1H), 6.78-6.82 (m, 3H), 6.90 (d, J =8.0 Hz, 1H), 7.05 (d, J = 7.6 Hz, 2H), 7.20 (t, J = 7.6 Hz, 2H), 7.35-7.39 (m, 1H), 7.41-7.48 (m, 5H), 7.54-7.57 (m, 2H); ¹³C NMR (100 MHz,

CDCl₃): δ 169.60, 161.92, 159.10, 153.89, 149.39, 148.15, 134.37, 131.68, 131.53, 131.43, 131.29, 130.35, 130.25, 128.91, 128.07, 127.98, 125.53, 122.73, 121.32, 119.61, 112.45, 111.39, 102.12, 55.87, 55.81, 53.39, 33.10. IR (ATR): 1720, 1657, 1631, 1550, 1511, 1412, 1355, 1243, 1255, 1124, 1045, 1032, 925, 832, 673, 567. HRMS (ESI): Exact mass calcd for C₃₄H₂₈BrNO₅Na [M+Na]⁺: 632.1043, Found: 632.1041.

> The reaction was run at 80 °C for 5 h, affording product 26 as a pale yellow solid (55.1 mg, 92% yield, m.p. = 190-191 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.09 (brm, 2H), 3.65 (brm, 1H), 3.77 (s, 3H), 3.88 (s, 3H), 4.08 (brm, 1H), 5.81 (s, 1H), 6.74 (s, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.97 (d, *J* = 7.6 Hz, 2H), 7.01 (d, *J* = 8.0 Hz, 2H), 7.18 (t,

J = 8.0 Hz, 2H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.44-7.49 (m, 3H), 7.53-7.58 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 169.40, 161.80, 159.67, 154.51, 149.46, 148.22, 135.15 (q, J = 1.2 Hz), 134.14, 131.68, 131.55, 131.47, 130.35, 130.26, 130.04, 128.96, 128.02,128.00, 125.61, 125.20 (q, J = 3.7 Hz), 123.89 (q, J = 272 Hz), 121.35, 119.16, 112.47, 111.44, 101.85, 55.88, 55.82, 53.65, 33.06; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.82; IR (ATR): 1713, 1671, 1628, 1543, 1521, 1402, 1378, 1225, 1154, 1033, 934, 815, 663, 587. HRMS (ESI): Exact mass calcd for C₃₅H₂₈F₃NO₅Na [M+Na]⁺: 622.1812, Found: 622.1804.

The reaction was run at 80 °C for 5 h, affording product **27** as a pale yellow solid (51.7 mg, 93% yield, m.p. = 172-173 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.08 (brm, 2H), 3.72 (brm, 1H), 3.76 (s, 3H), 3.88 (s, 3H), 4.10 (brm, 1H), 5.80 (s, 1H), 6.74 (d, J = 1.2 Hz, 1H), 6.82 (dd, J = 8.0, 1.2 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 6.95-6.98 (m, 4H), 7.18 (t, J = 8.0 Hz, 2H), 7.38 (tt, J = 7.6, 1.6 Hz, 1H), 7.44-7.50 (m, 3H), 7.54-7.58 (m,

4H); ¹³C NMR (100 MHz, CDCl₃): δ 169.28, 161.42, 160.10, 154.84, 149.48, 148.24, 136.33, 133.96, 131.86, 131.72, 131.62, 130.79, 130.11, 128.98, 128.06, 128.05, 125.65, 121.33, 118.60, 118.45, 112.47, 111.75, 111.46, 101.59, 55.89, 55.81, 53.72, 33.00. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.82; IR (ATR): 2247, 1715, 1662, 1633, 1534, 1501, 1397, 1345, 1218, 1133, 1044, 985, 857, 678, 596. HRMS (ESI): Exact mass calcd for C₃₅H₂₈N₂O₅Na [M+Na]⁺: 579.1890, Found: 579.1882.

The reaction was run at 80 °C for 5 h, affording product **28** as a pale yellow solid (46.9 mg, 86% yield, m.p. = 121-122 °C); ¹H NMR (500 MHz, CDCl₃): δ 2.38 (s, 3H), 3.00 (brm, 2H), 3.42 (brm, 1H), 3.78 (s, 3H), 3.86 (s, 3H), 4.33 (brm, 1H), 5.76 (s, 1H), 6.71 (s, 1H), 6.79 (d, J = 7.5 Hz, 1H), 6.86-6.90 (m, 3H), 7.08 (d, J = 7.5 Hz, 2H), 7.14 (d, J = 7.5 Hz, 2H), 7.20 (t, J = 7.5 Hz, 2H), 7.36 (t, J = 7.5 Hz, 1H), 7.42-7.47 (m, 3H), 7.54-

7.55 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 169.89, 162.47, 158.30, 153.26, 149.29, 148.05, 138.51, 134.73, 131.75, 131.17, 131.01, 130.57, 129.70, 129.10, 128.85, 128.32, 128.09, 127.89, 125.45, 121.31, 120.93, 112.43, 111.31, 102.70, 55.85, 55.82, 53.02, 33.21, 21.36. IR (ATR): 1717, 1663, 1631, 1538, 1498, 1432, 1378, 1294, 1165, 1136, 1047, 834, 734, 675, 568. HRMS (ESI): Exact mass calcd for C₃₅H₃₁NO₅Na [M+Na]⁺: 568.2094, Found: 568.2096.

The reaction was run at 80 °C for 5 h, affording product **29** as a pale yellow solid (47.1 mg, 84% yield, m.p. = 151-152 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.00 (brm, 2H), 3.46 (brm, 1H), 3.78 (s, 3H), 3.84 (s, 3H), 3.86 (s, 3H), 4.35 (brm, 1H), 5.76 (s, 1H), 6.72 (s, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.84-6.89 (m, 3H), 6.93 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 7.2 Hz, 2H), 7.20 (t, *J* = 8.0 Hz, 2H), 7.36 (tt, *J* = 7.2, 1.6 Hz, 1H), 7.42-7.46 (m, 3H), 7.53-

7.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.90, 162.56, 159.64, 158.11, 152.97, 149.29,

148.05, 134.69, 131.73, 131.17, 130.96, 130.56, 129.44, 128.84, 128.00, 127.87, 125.41, 123.47, 121.30, 120.60, 113.87, 112.43, 111.31, 102.61, 55.84, 55.80, 55.27, 52.97, 33.17; IR (ATR): 1709, 1670, 1626, 1542, 1507, 1449, 1394, 1253, 1174, 1141, 1084, 1028, 905, 829, 772, 721, 693, 640, 562. HRMS (ESI): Exact mass calcd for $C_{35}H_{31}NO_6Na$ [M+Na]⁺: 584.2044, Found: 584.2036.

The reaction was run at 80 °C for 5 h, affording product **30** as a pale yellow solid (55.2 mg, 91% yield, m.p. = 166-167 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.06 (brm, 2H), 3.56 (brm, 1H), 3.78 (s, 3H), 3.87 (s, 3H), 4.40 (brm, 1H), 5.80 (s, 1H), 6.74 (s, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 7.04-7.08 (m, 4H), 7.19 (t, *J* = 8.0 Hz, 2H), 7.34-7.41 (m, 2H), 7.43-7.50 (m, 5H), 7.54-7.58 (m, 4H), 7.63-7.65 (m, 2H); ¹³C NMR

(100 MHz, CDCl₃): δ 169.79, 162.36, 158.67, 153.63, 149.33, 148.08,

141.12, 140.35, 134.55, 131.75, 131.27, 131.14, 130.48, 130.28, 128.89, 128.82, 128.05, 127.92, 127.59, 127.06, 126.99, 125.50, 121.33, 120.38, 112.43, 111.33, 102.44, 102.44, 55.85, 55.81, 53.30, 33.15; IR (ATR): 1716, 1657, 1627, 1546, 1515, 1447, 1390, 1319, 1246, 1158, 1026, 910, 837, 810, 764, 721, 689, 645, 625, 574. HRMS (ESI): Exact mass calcd for C₄₀H₃₃NO₅Na [M+Na]⁺: 630.2251, Found: 630.2256.

The reaction was run at 80 °C for 10 h, affording product **31** as a pale yellow solid (47.1 mg, 81% yield, m.p. = 180-181 °C); ¹H NMR (500 MHz, CDCl₃): δ 2.83-2.85 (brm, 2H), 3.57 (brm, 1H), 3.72 (s, 3H), 3.87 (s, 4H), 5.96 (s, 1H), 6.56 (s, 1H), 6.64 (s, 1H), 6.84-7.04 (m, 6H), 7.16-7.25 (m, 3H), 7.39-7.43 (m, 1H), 7.46-7.50 (m, 4H), 7.64-7.65 (m, 2H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (125 MHz,

CDCl₃): δ 169.76, 162.02, 159.27, 155.82, 149.22, 148.00, 134.77, 133.58, 131.48, 131.30, 131.20, 130.60, 129.64, 129.22, 128.92, 128.43, 128.12, 127.89, 126.45, 125.79, 125.61, 125.20, 124.61, 121.20, 112.40, 111.29, 102.77, 55.88, 55.80, 33.22. IR (ATR): 1719, 1664, 1629, 1547, 1535, 1441, 1378, 1310, 1268, 1048, 975, 878, 805, 747, 587. HRMS (ESI): Exact mass calcd for C₃₈H₃₁NO₅Na [M+Na]⁺: 604.2094, Found: 604.2092.

The reaction was run at 80 °C for 8 h, affording product **32** as a pale yellow solid (41.1 mg, 85% yield, m.p. = 117-118 °C); ¹H NMR (500 MHz, CDCl₃): δ 6.57 (s, 1H), 7.02 (d, J = 5.0 Hz, 1H), 7.11 (brm, 2H), 7.20-7.24 (m, 5H), 7.30 (d, J = 7.5 Hz, 2H), 7.35-7.38 (m, 2H), 7.44-7.49 (m, 3H), 7.78-7.79 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 169.81, 161.90, 158.79,

139.50, 133.92, 132.69, 131.58, 131.23, 130.79, 130.52, 129.59, 128.99, 128.30, 128.15, 128.01, 127.37, 126.81, 125.60, 125.26, 117.94, 102.69; IR (ATR): 1726, 1673, 1628, 1556, 1488, 1447, 1287, 1089, 1012, 851, 791, 764, 689, 675, 652, 635, 605, 575, 515. HRMS (ESI): Exact mass calcd for C₂₈H₁₈ClNO₃SNa [M+Na]⁺: 506.0588, Found: 506.0581.

The reaction was run at 80 °C for 5 h, affording product **33** as a pale yellow solid (53.9 mg, 95% yield, m.p. = 221-222 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.04 (brm, 2H), 3.55 (brm, 1H), 3.78 (s, 3H), 3.89 (s, 3H), 4.34 (brm, 1H), 5.62 (s, 1H), 6.74 (s, 1H), 6.80 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.84-6.92 (m, 5H), 6.96-7.01 (m, 2H), 7.12-7.17 (m, 2H), 7.28-7.35 (m, 3H), 7.52-7.57 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 168.55, 164.41 (d, *J* = 252 Hz), 164.28 (d, *J* = 252 Hz), 161.95, 158.02 (d, *J* =

1.3 Hz), 153.52, 149.46, 148.20, 131.97, 131.11, 130.70 (d, J = 3.4 Hz), 130.38 (d, J = 9.2 Hz), 129.84, 128.56, 128.39, 127.74, 127.66, 126.69 (d, J = 3.2 Hz), 121.43, 120.70, 116.15 (d, J = 22.2 Hz), 114.99 (d, J = 21.9 Hz), 112.50, 111.40, 101.59, 55.93, 55.86, 53.65, 33.05; ¹⁹F NMR (376 MHz, CDCl₃) δ -107.22, -107.65. IR (ATR): 1714, 1662, 1617, 1543, 1476, 1434, 1276, 1077, 1021, 869, 758, 676, 664, 648, 582. HRMS (ESI): Exact mass calcd for C₃₄H₂₇F₂NO₅Na [M+Na]⁺: 590.1750, Found: 590.1751.

The reaction was run at 80 °C for 5 h, affording product **34** as a pale yellow solid (55.1 mg, 92% yield, m.p. = 215-216 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.98 (brm, 2H), 3.43 (brm, 1H), 3.79 (s, 3H), 3.89 (s, 3H), 4.41 (brm, 1H), 5.65 (s, 1H), 6.74 (s, 1H), 6.78 (d, J = 8.0 Hz, 1H), 6.89-6.93 (m, 5H), 7.15 (d, J = 8.4 Hz, 2H), 7.29-7.36 (m, 3H), 7.43 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 168.58, 161.80, 157.83, 153.21, 149.47, 148.22, 137.48, 137.42,

132.89, 131.86, 130.96, 129.87, 129.37, 129.22, 128.82, 128.65, 128.42, 128.12, 126.70, 121.44, 121.22, 112.43, 111.40, 102.02, 55.95, 55.88, 53.64, 33.02; IR (ATR): 1717, 1665, 1627, 1545, 1511, 1490, 1440, 1391, 1264, 1153, 1086, 1011, 904, 819, 787, 753, 698, 637, 575. HRMS (ESI): Exact mass calcd for $C_{34}H_{27}Cl_2NO_5Na$ [M+Na]⁺: 622.1158, Found: 622.1169.

The reaction was run at 80 °C for 5 h, affording product 35 as a pale yellow solid (63.9 mg, 93% yield, m.p. = 205-206 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.94 (brm, 2H), 3.41 (brm, 1H), 3.79 (s, 3H), 3.89 (s, 3H), 4.42 (brm, 1H), 5.65 (s, 1H), 6.74-6.78 (m, 2H), 6.82 (d, J = 8.4Hz, 2H), 6.88-6.92 (m, 3H), 7.29-7.34 (m, 5H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.59 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 168.68, 161.77, 157.89, 153.16, 149.47, 148.22, 133.33, 132.19, 131.83, 131.09, 130.94, 129.86, 129.51, 129.25, 128.67, 128.42, 126.84, 125.91, 125.85,

The reaction was run at 80 °C for 5 h, affording product 36 as a pale

121.44, 121.33, 112.40, 111.39, 102.03, 55.94, 55.88, 53.62, 33.01; IR (ATR): 1713, 1663, 1627, 1586, 1544, 1510, 1486, 1441, 1389, 1270, 1151, 1068, 1008, 903, 817, 786, 750, 699, 636, 573. HRMS (ESI): Exact mass calcd for C₃₄H₂₇Br₂NO₅Na [M+Na]⁺: 710.0148, Found: 710.0152.

yellow solid (50.8 mg, 91% yield, m.p. = 190-191 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.25 (s, 3H), 2.35 (s, 3H), 2.94 (brm, 2H), 3.45 (brm, 1H), 3.73 (s, 3H), 3.81 (s, 3H), 4.12 (brm, 1H), 5.67 (s, 1H), 6.67 (s, 1H), 6.72 (d, J = 8.0 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.89-6.94 (m, 6H), 7.19 (d, J = 8.0 Hz, 2H), 7.23-7.27 (m, 3H), 7.39 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.80, 162.50, 158.83, 154.02, 149.26, 148.00, 141.66, 131.85, 131.46, 129.91, 129.56, 128.48, 128.33, 128.26, 128.20, 127.79, 125.41, 121.33, 120.24, 112.40, 111.29, 101.90, 55.85, 55.79, 53.13, 33.15, 21.44, 21.42. IR (ATR): 1716, 1658, 1612, 1538, 1524, 1487, 1455, 1378, 1257, 1158, 1052, 948, 779, 567. HRMS (ESI): Exact mass calcd for C₃₆H₃₃NO₅Na [M+Na]⁺: 582.2251, Found: 582.2240.

The reaction was run at 80 °C for 8 h, affording product 37 as a pale yellow solid (54.4 mg, 92% yield, m.p. = 136-137 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.01 (brm, 2H), 3.60 (brm, 2H), 3.77 (s, 3H), 3.78 (s, 3H), 3.87 (s, 3H), 3.88 (s, 3H), 5.64 (s, 1H), 6.65-6.69 (m, 2H), 6.72-6.73 (m, 1H), 6.80 (dd, J = 8.0, 1.6 Hz, 1H), 6.87-6.90 (m, 1H), 6.92-6.95 (m, 4H), 7.00-7.04 (m, 2H), 7.28-7.30 (m, 3H), 7.49-7.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.27, 162.57, 161.96, 161.89,

158.86, 154.45, 149.25, 147.98, 132.06, 131.59, 130.17, 129.88, 128.97, 128.23, 128.19, 127.24, 126.96, 123.08, 121.31, 119.33, 114.24, 113.06, 112.52, 111.30, 100.84, 55.86, 55.81, 55.47, 55.29, 53.27, 33.13; IR (ATR): 1700, 1656, 1605, 1539, 1509, 1442, 1390, 1321, 1241, 1184, 1023, 853, 824, 782, 744, 698, 639, 612, 563. HRMS (ESI): Exact mass calcd for C₃₆H₃₃NO₇Na [M+Na]⁺: 614.2149, Found: 614.2155.

The reaction was run at 80 °C for 5 h, affording product **38** as a pale green solid (44.6 mg, 92% yield, m.p. = 196-197 °C); ¹H NMR (500 MHz, CDCl₃): δ 2.21 (s, 3H), 2.29 (s, 3H), 2.40 (s, 3H), 6.60 (s, 1H), 6.86 (s, 2H), 6.96-7.03 (m, 5H), 7.12 (d, J = 7.5 Hz, 1H), 7.21-7.25 (m, 5H), 7.27 (brs, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.64 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 170.14, 162.89, 159.13, 153.17, 138.84, 138.74, 137.85, 136.75, 134.28, 131.94, 131.88, 131.77, 130.82, 129.79, 129.52, 128.73, 128.24, 128.16, 127.42, 126.35, 126.23, 125.66, 122.78, 121.87, 103.09, 21.36, 21.17, 20.97; IR (ATR): 1708, 1662, 1627, 1548, 1509, 1432, 1345, 1297, 909, 782, 726, 693, 566. HRMS (ESI): Exact mass calcd for C₃₃H₂₇NO₃Na [M+Na]⁺: 508.1883, Found: 508.1889.

0 39 Ме The reaction was run at 80 °C for 5 h, affording product **39** as a pale green solid (41.2 mg, 85% yield, m.p. = 181-182 °C); ¹H NMR (500 MHz, CDCl₃): δ 2.19 (s, 3H), 2.25 (s, 3H), 2.51 (s, 3H), 6.45 (s, 1H), 6.59 (s, 2H), 6.82-6.83 (m, 2H), 6.91-6.94 (m, 2H), 7.05 (d, J = 7.5 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.27-7.32 (m, 7H), 7.36 (tt, J = 7.5, 1.0 Hz, 1H), 7.54 (d, J = 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 170.32, 163.22, 160.56,

152.64, 138.17, 136.78, 136.73, 134.35, 132.11, 131.65, 131.32, 130.72, 130.42, 129.83, 129.56, 129.37, 129.11, 128.48, 128.25, 127.85, 126.33, 126.08, 124.97, 122.37, 107.77, 20.90, 19.65. IR (ATR): 1714, 1657, 1632, 1541, 1498, 1447, 1355, 1278, 935, 774, 712, 678, 558. HRMS (ESI): Exact mass calcd for C₃₃H₂₇NO₃Na [M+Na]⁺: 508.1883, Found: 508.1879.

The reaction was run at 80 °C for 8 h, affording product 40 as a pale yellow solid (47.9 mg, 86% yield, m.p. = 171-172 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.28 (s, 3H), 6.84 (s, 1H), 6.93-7.02 (m, 4H), 7.24-7.28 (m, 6H), 7.45-7.61 (m, 5H), 7.71-7.78 (m, 3H), 7.85-7.89 (m, 3H), 7.93-7.95 (m, 1H), 8.46 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 169.93, 162.89, 158.94, 153.22, 138.75, 136.88, 134.23, 132.92, 132.13, 131.93, 131.65, 130.37, 129.91, 129.47, 128.98, 128.88, 128.66, 128.36, 128.24,

127.84, 127.73, 127.68, 127.58, 127.36, 126.97, 126.53, 126.40, 126.20, 124.83, 122.17, 121.90, 103.46, 20.95; IR (ATR): 1697, 1655, 1624, 1509, 1432, 1350, 1270, 1193, 1125, 947, 905, 867, 817, 735, 700, 563. HRMS (ESI): Exact mass calcd for C₃₉H₂₇NO₃Na [M+Na]⁺: 580.1883, Found: 580.1895.

The reaction was run at 80 °C for 8 h, affording product **41** as a pale yellow solid (33.0 mg, 62% yield, m.p. = 151-152 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.96 (brm, 2H), 3.39 (brm, 1H), 3.76 (s, 3H), 3.83 (s, 3H), 4.11 (brm, 1H), 6.66-6.75 (m, 3H), 6.93 (s, 1H), 7.28-7.34 (m, 5H), 7.37-7.42 (m, 2H), 7.59-7.61 (m, 1H), 7.70 (td, J = 7.6, 1.6 Hz, 1H), 7.77-7.81 (m, 1H), 7.96 (d, J = 8.0 Hz, 1H), 8.39 (d, J = 4.0 Hz, 1H), 8.57-8.59 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 167.66, 162.65, 156.01, 149.69,

148.93, 148.39, 147.69, 147.55, 136.99, 136.83, 132.06, 130.79, 129.61, 129.00, 128.54, 128.50, 128.26, 128.21, 125.71, 124.81, 124.70, 120.94, 120.32, 111.99, 111.16, 105.87, 55.74, 51.53, 33.79; IR (ATR): 1737, 1655, 1622, 1560, 1515, 1441, 1236, 1156, 1025, 810, 746, 696, 618. HRMS (ESI): Exact mass calcd for C₃₂H₂₇N₃O₅Na [M+Na]⁺: 556.1843, Found: 556.1846.

The reaction was run at 80 °C for 8 h, affording product **42** as a pale yellow solid (44.4 mg, 87% yield, m.p. = 142-143 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.83 (brm, 2H), 3.64 (brm, 1H), 3.78 (s, 3H), 3.80 (s, 3H), 3.88 (brm, 1H), 5.88 (s, 1H), 6.43 (dd, J = 3.6, 1.6 Hz, 1H), 6.53 (dd, J = 3.6, 1.6 Hz, 1H), 6.64-6.67 (m, 2H), 6.74 (d, J = 8.0 Hz, 1H), 6.94 (d, J = 3.6 Hz, 1H), 6.99 (d, J = 3.6 Hz, 1H), 7.24-7.25 (m, 1H), 7.26-7.27 (m,

1H), 7.32-7.37 (m, 3H), 7.41-7.42 (m, 1H), 7.49-7.50 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 161.94, 158.86, 153.35, 150.17, 149.01, 147.85, 147.17, 145.82, 144.99, 144.96, 131.56, 130.75, 129.32, 128.70, 128.54, 120.97, 119.74, 117.66, 112.52, 112.20, 112.03, 111.91, 111.14, 101.72, 55.74, 55.72, 51.33, 33.56; IR (ATR): 1711, 1672, 1636, 1515, 1466, 1388, 1261, 1155, 1016, 884, 749, 698, 592. HRMS (ESI): Exact mass calcd for C₃₀H₂₅NO₇Na [M+Na]⁺: 534.1523, Found: 534.1522.

The reaction was run at 80 °C for 8 h, affording product **43** as a pale yellow solid (48.9 mg, 90% yield, m.p. = 165-166 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.92 (brm, 2H), 3.70 (brm, 2H), 3.78 (s, 3H), 3.81 (s, 3H), 5.64 (s, 1H), 6.67 (d, J = 1.6 Hz, 1H), 6.72 (dd, J = 8.0, 1.6 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.94 (dd, J = 4.8, 3.6 Hz, 1H), 7.09 (dd, J = 4.8, 3.6 Hz, 1H), 7.13-7.17 (m, 2H), 7.25-7.26 (m, 1H), 7.32-7.35 (m, 3H), 7.42

 $(dd, J = 4.0, 1.2 Hz, 1H), 7.43 (dd, J = 4.8, 1.2 Hz, 1H), 7.46 (dd, J = 4.8, 1.2 Hz, 1H); {}^{13}C$

NMR (100 MHz, CDCl₃): δ 162.46, 161.76, 154.39, 153.51, 149.03, 147.78, 137.43, 134.30, 131.34, 131.33, 131.30, 131.22, 129.51, 129.39, 128.62, 128.54, 128.34, 127.76, 127.13, 121.13, 120.60, 112.25, 111.25, 102.15, 55.75, 55.72, 52.66, 33.16; IR (ATR): 1707, 1647, 1614, 1535, 1440, 1419, 1392, 1301, 1262, 1234, 1158, 1026, 856, 809, 786, 731, 695, 636, 569. HRMS (ESI): Exact mass calcd for C₃₀H₂₅NO₅S₂Na [M+Na]⁺: 566.1066, Found: 566.1068.

The reaction was run at 80 °C for 8 h, affording product 44 as a pale yellow solid (20.4 mg, 50% yield, m.p. = 132-133 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.03 (s, 3H), 2.21 (s, 3H), 2.65 (brm, 1H), 2.79 (brm, 2H), 3.83 (s, 3H), 3.84 (s, 3H), 3.91 (brm, 1H), 5.41 (s, 1H), 6.61 (d, J = 8.8 Hz, 2H), 6.76 (d, J = 8.0 Hz, 1H), 7.26-7.29 (m, 2H), 7.33-7.42 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): 8 168.94, 163.26, 160.76, 152.74, 148.95, 147.79, 131.38, 130.87,

129.06, 128.82, 128.72, 120.82, 111.97, 111.12, 106.26, 55.85, 50.07, 33.59, 22.95, 19.74; IR (ATR): 1713, 1665, 1634, 1561, 1515, 1440, 1345, 1237, 1140, 1027, 944, 853, 792, 750, 699, 657, 569. HRMS (ESI): Exact mass calcd for C₂₄H₂₅NO₅Na [M+Na]⁺: 430.1625, Found: 430.1633.

The reaction was run at 80 °C for 8 h, affording product 45 as a pale yellow solid (34.8 mg, 80% yield, m.p. = 108-109 °C); ¹H NMR (400 MHz, CDCl₃): δ 1.11 (t, J = 7.2 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H), 2.26 (q, J = 8.4 Hz, 2H), 2.48 (q, J = 7.6 Hz, 2H), 2.63-2.80 (brm, 3H), 3.74-3.90 (brm, 1H), 3.82 (s, 3H), 3.83 (s, 3H), 5.39 (s, 1H), 6.59-6.62 (m, 2H), 6.75 (d, J = 8.0 Hz, 1H), 7.26-7.27 (m, 2H), 7.31-7.36 (m, 1H), 7.37-7.41 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 172.63, 165.47, 163.32, 152.85, 148.89, 147.71, 131.51, 130.87, 129.07, 128.72, 128.65, 120.95, 120.79, 111.92, 111.08, 104.74, 55.80, 50.20, 33.68, 28.04, 26.67, 10.65, 9.35. IR (ATR): 1718, 1657, 1623, 1547, 1502, 1477, 1332, 1245, 1135, 1011, 924, 878, 765, 744, 686, 645. HRMS (ESI): Exact mass calcd for C₂₆H₂₉NO₅Na [M+Na]⁺: 458.1938, Found: 458.1939.

The reaction was run at 80 °C for 10 h, affording product 46 as a pale-green solid (38.4 mg, 83% yield, m.p. = 92-93 °C); ¹H NMR (400 MHz, CDCl₃): δ 0.95 (brs, 3H), 1.09 (brs, 3H), 1.19 (d, J = 6.8 Hz, 6H), 2.58-2.72 (m, 3H), 2.89 (brm, 2H), 3.83 (s, 3H), 3.84 (s, 3H), 3.91 (brm, 1H), 5.33 (s, 1H), 6.62 (d, J = 7.2 Hz, 2H), 6.76 (d, J = 8.0 Hz, 1H), 7.26-7.28 (m, 2H), 7.31-7.35 (m, 1H), 7.37-7.41 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 176.69, 169.12,

163.34, 153.18, 148.94, 147.75, 131.54, 129.32, 128.64, 120.91, 111.98, 111.10, 102.92,

55.80, 50.94, 33.50, 32.67, 32.42, 20.54, 20.00, 19.90, 19.75, 19.01. IR (ATR): 1714, 1664, 1617, 1532, 1499, 1466, 1387, 1236, 1175, 1023, 952, 886, 748, 741, 687. HRMS (ESI): Exact mass calcd for C₂₈H₃₃NO₅Na [M+Na]⁺: 486.2251, Found: 486.2258.

The reaction was run at 80 °C for 6 h, affording the product as a separable mixture of two regioisomers (1.6:1.0 ratio) (pale yellow solid, 29.8 mg, 50% yield of the major regioisomer 47, m.p. = 152-153 °C); NMR data of the major regioisomer 47 was listed below: ¹H NMR (400 MHz, CDCl₃): δ 3.02 (brm, 2H), 3.78 (s, 3H), 3.79 (s, 3H), 3.87 (brm, 5H), 5.67 (s, 1H), 6.67-6.70 (m, 2H), 6.72-6.73 (m, 1H), 6.79 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.95-6.97 (m, 2H), 7.00-7.04

(m, 2H), 7.28-7.35 (m, 3H), 7.41-7.43 (m, 2H), 7.46-7.48 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.27, 162.16, 162.01, 157.44, 153.98, 149.37, 148.09, 137.25, 132.09, 131.30, 130.17, 129.84, 129.18, 129.02, 128.49, 128.34, 126.83, 126.70, 121.42, 120.73, 113.16, 112.55, 111.35, 102.60, 55.94, 55.87, 55.35, 53.32, 33.15; IR (ATR): 1718, 1662, 1603, 1546, 1510, 1440, 1389, 1256, 1168, 1087, 1031, 904, 824, 774, 750, 698, 628,609, 572. HRMS (ESI): Exact mass calcd for C₃₅H₃₀NO₆ClNa [M+Na]⁺: 618.1654, Found: 618.1648.

The reaction was run at 80 °C for 8 h, affording the product as a separable mixture of two regioisomers (1.3:1 ratio) (pale yellow solid, 16.9 mg, 36% yield of the major regioisomer **48**, m.p. = 45-46 °C); NMR data of the major regioisomer **48** was listed below: ¹H NMR (400 MHz, CDCl₃): δ 2.13 (s, 3H), 2.93 (brm, 2H), 3.79 (brm, 5H), 3.89 (s, 3H), 5.27 (s, 1H), 6.63 (s, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.96-6.97 (m, 2H), 7.04 (d, *J* =

7.6 Hz, 2H), 7.20 (d, J = 7.6 Hz, 2H), 7.28-7.31 (m, 3H), 7.37 (t, J = 7.2, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 169.78, 163.12, 160.53, 153.17, 149.12, 147.96, 134.60, 131.35, 131.27, 131.13, 129.74, 128.38, 127.94, 127.90, 121.04, 119.80, 112.40, 111.28, 104.96, 55.99, 55.83, 52.55, 33.50, 19.88; IR (ATR): 1717, 1639, 1612, 1559, 1514, 1440, 1261, 1142, 1026, 935, 789, 696, 568. HRMS (ESI): Exact mass calcd for C₂₉H₂₇NO₅Na [M+Na]⁺: 492.1781, Found: 492.1784.

The reaction was run at 80 °C for 12 h, affording product **49** as a yellow solid (63.7 mg, 81% yield, m.p. = 215-216 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.37 (s, 3H), 6.77 (s, 1H), 7.02 (brm, 2H), 7.13-7.15 (m, 2H), 7.29-7.37 (m, 11H), 7.40-7.49 (m, 10H), 7.70 (d, *J* = 8.0 Hz, 2H), 8.07 (d, *J* = 8.0 Hz, 2H), 8.14 (t, *J* = 8.0 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 169.02, 162.55, 158.25, 152.75, 140.40, 140.23, 140.19, 140.10, 138.63, 137.38, 132.68, 131.78, 130.55, 130.14, 129.47, 129.30, 128.61, 128.45, 127.25,

126.97, 126.51, 126.16, 126.11, 125.95, 123.70, 123.66, 120.49, 120.44, 120.42, 109.65, 109.53, 103.13, 21.07; IR (ATR): 1718, 1670, 1599, 1509, 1448, 1336, 1225, 1170, 746, 722, 564. HRMS (ESI): Exact mass calcd for $C_{55}H_{37}N_3O_3Na$ [M+Na]⁺: 810.2727, Found: 810.2741.

The reaction was run at 80 °C for 12 h, affording product **50** as a yellow solid (61.7 mg, 61% yield, m.p. = 234-235 °C); ¹H NMR (400 MHz, CDCl₃): δ 1.50-1.51 (m, 36H), 2.40 (s, 3H), 6.81 (s, 1H), 7.06 (brm, 2H), 7.16-7.18 (m, 2H), 7.34-7.38 (m, 7H), 7.44-7.53 (m, 10H), 7.73 (d, *J* = 8.4 Hz, 2H), 8.09 (d, *J* = 8.0 Hz, 2H), 8.18 (d, *J* = 8.8 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 169.11, 162.58, 158.35, 152.85, 143.49, 143.47, 140.93, 140.74, 138.68, 138.48, 138.42, 137.25, 132.09, 131.80, 130.47, 130.10,

129.47, 128.69, 128.52, 128.41, 127.18, 126.47, 126.38, 125.40, 123.79, 123.74, 123.68, 116.36, 116.31, 109.14, 109.05, 102.98, 34.72, 34.70, 31.92, 31.91, 21.05; IR (ATR): 1723, 1681, 1602, 1511, 1471, 1363, 1293, 1177, 809, 696, 610, 566. HRMS (ESI): Exact mass calcd for C₇₁H₆₉N₃O₃Na [M+Na]⁺: 1034.5231, Found: 1034.5233.

The reaction was run at 80 °C for 12 h, affording product **51** as a yellow solid (49.6 mg, 57% yield, m.p. = 131-132 °C); ¹H NMR (400 MHz, CDCl₃): δ 1.66 (s, 6H), 1.70 (s, 6H), 2.35 (s, 3H), 6.15 (d, *J* = 7.6 Hz, 2H), 6.27 (d, *J* = 7.2 Hz, 2H), 6.78 (s, 1H), 6.96-7.01 (m, 10H), 7.10-7.12 (m, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.33-7.36 (m, 5H), 7.45-7.49 (m, 8H), 8.09 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.29, 158.26, 143.96, 140.41, 140.27, 138.55, 137.46, 134.02, 131.80, 131.29, 130.76, 130.45,

130.33, 130.31, 130.02, 129.52, 128.67, 128.49, 128.22, 126.57, 126.40, 126.27, 125.37,

125.31, 120.97, 114.01, 113.96, 103.42, 35.98, 35.95, 31.18, 31.04, 21.07; IR (ATR): 1717, 1674, 1591, 1509, 1447, 1268, 1046, 743, 695, 623. HRMS (ESI): Exact mass calcd for C₆₁H₄₉N₃O₃Na [M+Na]⁺: 894.3666, Found: 894.3664.

The reaction was run at 80 °C for 12 h, affording product **52** as a yellow solid (56.8 mg, 53% yield, m.p. = 115-116 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.10-2.26 (m, 4H), 2.31 (s, 3H), 2.91 (s, 3H), 2.99 (s, 3H), 3.49-3.57 (m, 2H), 3.62 (t, *J* = 7.2 Hz, 2H), 5.17 (ddd, *J* = 16.4, 8.0, 4.4 Hz, 2H), 6.35 (d, *J* = 9.2 Hz, 2H), 6.39 (s, 1H), 6.64 (d, *J* = 8.8 Hz, 2H), 6.88-6.92 (m, 6H), 7.03 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.8 Hz, 2H), 7.16-7.20 (m, 5H), 7.26-7.37 (m, 10H), 7.42-7.46 (m, 4H), 7.63 (d, *J* = 9.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.88,

163.52, 160.18, 159.73, 154.72, 150.89, 150.59, 140.35, 140.31, 139.92, 135.92, 132.49, 131.25, 129.69, 129.62, 128.89, 128.88, 128.04, 128.01, 127.93, 127.63, 127.19, 126.84, 126.82, 126.80, 126.78, 126.75, 126.26, 125.56, 125.54, 124.28 (q, J = 270 Hz), 123.02 (q, J = 33 Hz), 123.00 (q, J = 33 Hz), 118.72, 118.33, 115.65, 111.44, 110.18, 100.30, 77.87, 77.80, 48.67, 38.54, 35.84, 35.81, 20.96; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.60, -61.61; IR (ATR): 1706, 1656, 1599, 1516, 1321, 1178, 1107, 1066, 820, 754, 698, 636, 564. HRMS (ESI): Exact mass calcd for C₆₅H₅₅F₆N₃O₅Na [M+Na]⁺: 1094.3938, Found: 1094.3932.

The reaction was run at 80 °C for 12 h, affording product 53 as a yellow solid (75.1 mg, 72% yield, m.p. = 219-220 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.29 (s, 3H), 3.23-3.43 (m, 9H), 3.66 (brm, 7H), 6.45 (s, 1H), 6.62 (d, J = 8.8 Hz, 2H), 6.86-6.94 (m, 6H), 7.01 (d, J = 8.4 Hz, 2H), 7.09-7.12 (m, 2H), 7.17-7.23 (m, 9H), 7.29-7.42 (m, 8H), 7.52-7.55 (m, 2H), 7.70 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.56, 166.87, 163.26, 160.68, 160.66, 159.26, 154.20, 152.83, 152.60, 148.59, 148.56, 140.03, 140.00, 139.57, 136.23, 133.91, 132.32,

132.21, 130.99, 129.73, 129.60, 129.14, 128.93, 128.36, 128.04, 127.93, 127.91, 127.87, 127.02, 126.29, 125.26, 124.20, 123.13, 121.31, 119.79, 114.75, 113.46, 101.13, 47.57, 47.40, 46.34, 20.97; IR (ATR): 1707, 1657, 1596, 1510, 1478, 1365, 1225, 1008, 932, 760, 695, 561. HRMS (ESI): Exact mass calcd for $C_{65}H_{53}N_7O_3S_2Na$ [M+Na]⁺: 1066.3651, Found: 1066.3658.

The reaction was run at 80 °C for 12 h, affording product **54** as a pale yellow solid (40.0 mg, 85% yield, m.p. = 145-146 °C); HPLC analysis (Chiralcel OD, ^{*i*}PrOH/hexane = 20/80, 1.0 mL/min, 230 nm; t_r (major) = 13.91 min, t_r (minor) = 17.38 min) gave the isomeric composition of the product: 99% ee,

 $[\alpha]^{25}_{D} = -120.1$ (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 1.69 (brs, 3H), 6.39 (brm, 3H), 6.90-7.23 (brm, 5H), 7.31-7.47 (brm, 12H), 7.58 (brm, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 168.98, 162.57, 157.72, 136.89, 135.18, 130.95, 130.60, 129.90, 128.87, 128.36, 128.17, 128.06, 127.79, 127.03, 125.44, 17.38; IR (ATR): 1712, 1654, 1626, 1542, 1495, 1450, 1401, 1291, 905, 690, 562. HRMS (ESI): Exact mass calcd for C₃₂H₂₅NO₃Na [M+Na]⁺: 494.1727, Found: 494.1723.

The reaction was run at 80 °C for 12 h, affording product **55** as a pale yellow solid (45.2 mg, 84% yield, m.p. = 166-167 °C); HPLC analysis (Chiralcel OD, 'PrOH/hexane = 20/80, 1.0 mL/min, 230 nm; t_r (major) = 24.78 min, t_r (minor) = 10.72 min) gave the isomeric composition of the product: 98% ee, $[\alpha]^{25}_{D}$ = -234.2 (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 1.69 (brs, 3H), 6.29 (brm, 3H), 7.02 (brm, 3H), 7.20

(brm, 2H), 7.31-7.41 (brm, 10H), 7.48-7.52 (brm, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 169.55, 162.13, 156.76, 150.36, 137.24, 133.47, 131.10, 129.84, 129.24, 129.13, 128.97, 128.56, 125.50, 128.29, 128.23, 126.97, 126.67, 17.30; IR (ATR): 1718, 1662, 1627, 1544, 1489, 1394, 1296, 1090, 1012, 822, 755, 696, 572. HRMS (ESI): Exact mass calcd for C₃₂H₂₃NO₃Cl₂Na [M+Na]⁺: 562.0947, Found: 562.0943.

The reaction was run at 80 °C for 12 h, affording product **56** as a pale yellow solid (40.4 mg, 81% yield, m.p. = 151-152 °C); HPLC analysis (Chiralcel OD, ^{*i*}PrOH/hexane = 20/80, 1.0 mL/min, 230 nm; t_r (major) = 9.06 min, t_r (minor) = 7.62 min) gave the isomeric composition of the product: 95% ee, $[\alpha]^{25}_{D}$ = -135.1 (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 1.68 (brs, 3H), 2.34 (s, 3H), 2.40 (s, 3H), 6.31 (brm,

3H), 7.03 (brm, 6H), 7.22 (d, J = 8.0 Hz, 2H), 7.29-7.38 (brm, 7H), 7.47-7.48 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 162.78, 157.95, 151.20, 141.56, 141.39, 132.40, 131.48, 129.96, 129.57, 128.78, 128.20, 128.09, 127.90, 127.02, 125.39, 21.43, 17.36; IR (ATR): 1711, 1652, 1598, 1556, 1502, 1298, 1232, 1165, 1009, 843, 759, 684, 635, 605, 574. HRMS (ESI): Exact mass calcd for C₃₄H₂₉NO₃Na [M+Na]⁺: 522.2040, Found: 522.2047.

The reaction was run at 80 °C for 12 h, affording product **57** as a pale yellow solid (39.8 mg, 75% yield, m.p. = 160-161 °C); HPLC analysis (Chiralcel OD, 'PrOH/hexane = 20/80, 1.0 mL/min, 230 nm; t_r (major) = 16.30 min, t_r (minor) = 12.73 min) gave the isomeric composition of the product: 98% ee, $[\alpha]^{25}_{D}$ = -261.3 (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 1.72 (brs, 3H), 3.80 (s, 3H), 3.86 (s,

3H), 5.97-6.27 (brm, 2H), 6.70 (d, J = 6.8 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 6.99-7.08 (brm, 4H), 7.27-7.30 (brm, 3H), 7.32-7.41 (brm, 5H), 7.55 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.09, 162.82, 161.90, 161.76, 157.92, 151.71, 131.68, 129.98, 129.93, 128.79, 128.09, 127.84, 127.54, 127.18, 126.96, 123.17, 114.30, 113.23, 55.44, 55.32, 17.35; IR (ATR): 1714, 1646, 1601, 1539, 1506, 1302, 1248, 1176, 1018, 838, 764, 697, 650, 614, 568. HRMS (ESI): Exact mass calcd for C₃₄H₃₀NO₅ [M+H]⁺: 532.2118, Found: 532.2121.

The reaction was run at 80 °C for 12 h, affording product **58** as a pale yellow solid (39.5 mg, 72% yield, m.p. = 149-150 °C); HPLC analysis (Chiralcel AD-H, 'PrOH/hexane = 25/75, 1.0 mL/min, 230 nm; t_r (major) = 16.89 min, t_r (minor) = 18.22 min) gave the isomeric composition of the product: 97% ee, $[\alpha]^{25}_{D}$ = -75.1 (c = 1.0, CH₂Cl₂). ¹H NMR (500

MHz, CDCl₃): δ 1.69 (brs, 3H), 5.23-6.40 (brm, 2H), 6.97-7.39 (m, 12H), 7.44-7.49 (m, 5H), 7.62 (brm, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 170.44, 162.44, 157.98, 135.02, 131.89, 131.18, 131.12, 130.50, 129.83, 129.02, 128.81, 128.48, 128.23, 127.79, 125.49, 122.02, 17.51; IR (ATR): 1712, 1659, 1626, 1542, 1489, 1398, 1290, 1074, 1007, 905, 765, 688, 646, 565. HRMS (ESI): Exact mass calcd for C₃₂H₂₄BrNO₃Na [M+Na]⁺: 572.0832, Found: 572.0833.

The reaction was run at 80 °C for 12 h, affording product **59** as a pale yellow solid (30.6 mg, 63% yield, m.p. = 139-140 °C); HPLC analysis (Chiralcel OD, 'PrOH/hexane = 20/80, 1.0 mL/min, 230 nm; t_r (major) =

Me 59 9.06 min, t_r (minor) = 7.62 min) gave the isomeric composition of the product: 95% ee, $[\alpha]^{25}_{D}$ = -153.2 (c = 1.0, CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃): δ 1.77 (brs, 3H), 2.38 (s, 3H), 5.43-6.51 (m, 2H), 7.19-7.44 (m, 15H), 7.58-7.76 (brm, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 162.63, 157.58, 137.93, 137.33, 130.89, 130.71, 129.94, 129.47, 128.85, 128.36, 128.13, 127.86, 127.77, 127.10, 127.06, 125.48, 21.03, 17.36. IR (ATR): 1720, 1647, 1613, 1565, 1511, 1392, 1247, 1135, 1012, 863, 747, 689, 631, 621, 586. HRMS (ESI): Exact mass calcd for C₃₃H₂₈NO₃ [M+H]⁺: 486.2064, Found: 486.2070.

The reaction was run at 80 °C for 12 h, affording product **60** as a pale yellow solid (40.6 mg, 74% yield, m.p. = 163-164 °C); HPLC analysis (Chiralcel OD, 'PrOH/hexane = 20/80, 1.0 mL/min, 230 nm; t_r (major) = 10.51 min, t_r (minor) = 20.61 min) gave the isomeric composition of the product: 94% ee, $[\alpha]^{25}_{D}$ = -165.2 (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 1.71 (brs, 3H), 5.93-6.41 (brm, 3H), 6.83 (brm, 2H), 7.15 (brm,

2H), 7.36-7.49 (brm, 12H), 7.59-7.60 (brm, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.59, 162.21, 158.15, 150.94, 140.94, 134.98, 131.56, 131.32, 131.15, 130.46, 128.93, 128.21, 127.75, 127.10, 125.48, 122.63, 102.01, 56.21, 17.54; IR (ATR): 1715, 1647, 1625, 1540, 1494, 1449, 1388, 1290, 1071, 909, 826, 766, 696, 647, 515. HRMS (ESI): Exact mass calcd for C₃₂H₂₄BrNO₃Na [M+Na]⁺: 572.0832, Found: 572.0824.

The reaction was run at 80 °C for 10 h, affording product **61** as a pale yellow solid (42.7 mg, 88% yield, m.p. = 150-151 °C); HPLC analysis (Chiralcel OD, ^{*i*}PrOH/hexane = 20/80, 1.0 mL/min, 230 nm; t_r (major) = 10.34 min, t_r (minor) = 12.51 min) gave the isomeric composition of the product: 99% ee, $[\alpha]^{25}_{D}$ = -114.1 (c = 1.0, CH₂Cl₂). ¹H NMR (400 MHz,

CDCl₃): δ 1.72 (brs, 3H), 2.27 (s, 3H), 6.49-6.85 (brm, 3H), 7.13-7.24 (brm, 6H), 7.37-7.48 (brm, 10H), 7.60 (brm, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.54, 162.62, 157.63, 150.59, 137.63, 135.18, 130.97, 130.87, 130.73, 130.65, 129.15, 128.87, 128.84, 128.03, 127.83, 127.09, 126.62, 125.44, 21.49, 17.42. IR (ATR): 1718, 1654, 1612, 1561, 1488, 1438, 1377, 1286, 1082, 942, 875, 735, 664. HRMS (ESI): Exact mass calcd for C₃₃H₂₇NO₃Na [M+Na]⁺: 508.1883, Found: 508.1884.

3) General Procedure for the One-Pot Synthesis of Di- and Trisubstituted α-Pyrones

The preparation of 3,4,6-trisubstituted α -pyrones: To an oven-dried Schlenk tube (10 mL) were successively added [Pd(PPh₃)₄] (10 mol%), anhydrous CH₃CN (1.0 mL), α -diazoacetates 62 (0.12 mmol), and isonitriles 63 (0.10 mmol). The reaction mixture was stirred vigorously at 80 °C under N₂ atmosphere. After the full consumption of isonitriles 63 by TLC analysis, 1,3-diketones 2 (0.10 mmol) and K₂CO₃ (0.02 mmol) were added successively, and then the reaction mixture was stirred at 80 °C till completion. The reaction mixture was concentrated by rotary vaporation, and the residue was subjected to column chromatography using petroleum ether/ethyl acetate (from 5:1-1:1) as eluent to afford the desired 3,4,6-trisubstituted α -pyrones. The NMR data of these products were the same as described above.

The preparation of 4,6-disubstituted α -pyrones: To an oven-dried Schlenk tube (10 mL) were successively added CoBr₂ (20 mol%), anhydrous MeCN (1 mL), α -diazoacetates 62 (0.12 mmol), isocyanides 63 (0.10 mmol), 1,3-diketones 2 (0.10 mmol) and K₂CO₃ (0.02 mmol). The tube was backfilled with N₂. After stirring at 80 °C for 12 h, the reaction mixture was cooled and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 5:1-1:1) to give the desired 4,6-disubstituted α -pyrones.

4) Spectral Data of 4,6-Disubstituted α-Pyrones

The reaction was run at 80 °C for 12 h, affording product **64** as a pale yellow solid (16.8 mg, 37% yield, m.p. = 128-129 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.02 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 6H), 4.13 (t, *J* = 7.2 Hz, 2H), 5.75 (d, *J* = 2.0 Hz, 1H), 5.92 (d, *J* = 2.0 Hz, 1H), 6.74 (d, *J* = 2.0 Hz, 1H), 6.78-6.84 (m, 2H), 7.34-7.49 (m, 8H), 7.50-7.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.50, 162.47, 159.63, 157.77, 149.16, 148.02, 134.94, 131.84, 131.15,

130.77, 130.61, 128.84, 128.75, 128.51, 125.59, 121.13, 112.21, 111.38, 103.79, 101.47, 55.86, 51.62, 33.71; IR (ATR): 1701, 1654, 1625, 1515, 1449, 1409, 1260, 1139, 1026, 822, 794, 765, 726, 687, 632. HRMS (ESI): Exact mass calcd for C₂₈H₂₅NO₅Na [M+Na]⁺: 478.1625, Found: 478.1622.

The reaction was run at 80 °C for 12 h, affording product 65 as a pale yellow solid (16.4 mg, 40% yield, m.p. = 103-104 °C); ¹H NMR (400 MHz, CDCl₃): δ 2.31 (s, 3H), 3.04 (t, J = 7.2 Hz, 2H), 4.11 (t, J = 6.8 Hz, 2H), 5.69 (d, J = 2.0 Hz, 1H), 5.87 (d, J = 2.0 Hz, 1H), 7.15 (s, 4H), 7.35-7.49 (m, 8H), 7.50-7.53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.51, 162.46, 159.57, 157.88, 136.63, 135.19, 134.98, 131.79, 131.10, 130.80, 129.50, 129.09, 128.81, 128.76, 128.51, 125.61, 104.06, 101.42, 51.81,

33.72, 21.01; IR (ATR): 1708, 1660, 1624, 1540, 1496, 1406, 1302, 1160, 1080, 918, 817, 795, 762, 729, 697, 631, 558. HRMS (ESI): Exact mass calcd for C₂₇H₂₃NO₃Na [M+Na]⁺: 432.1570, Found: 432.1566.

The reaction was run at 80 °C for 12 h, affording product 66 as a pale yellow solid (19.8 mg, 52% yield, m.p. = 89-90 °C); ¹H NMR (400 MHz, CDCl₃): δ 5.19 (s, 2H), 5.88 (d, J = 1.6 Hz, 1H), 6.22 (d, J = 1.6 Hz, 1H), 7.29-7.37 (m, 7H), 7.39-7.45 (m, 5H), 7.48-7.53 (m, 1H), 7.64-7.66 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.87, 162.58, 159.30, 157.28, 136.18, 134.84, 132.05, 131.11, 130.82, 129.03, 128.87, 128.84, 128.59, 127.90, 127.03, 125.62, 102.67, 101.47, 52.36; IR (ATR): 1717, 1663, 1623, 1539, 1494, 1451, 1278, 1074, 966, 832, 765, 691, 594. HRMS (ESI): Exact mass calcd for C₂₅H₁₉NO₃Na [M+Na]⁺:

404.1257, Found: 404.1262.

The reaction was run at 80 °C for 12 h, affording product 67 as a pale yellow solid (22.6 mg, 57% yield, m.p. = 107-108 °C); ¹H NMR (400 MHz, CDCl₃): δ 3.76 (s, 3H), 5.56 (d, J = 1.6 Hz, 1H), 6.80-6.84 (m, 2H), 6.96 (d, J = 2.0 Hz, 1H), 7.03-7.07 (m, 2H), 7.26 (t, J = 8.0 Hz, 2H), 7.33-7.43 (m, 4H), 7.50-7.52 (m, 2H), 7.74-7.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.90, 163.19, 159.32, 159.20, 157.76, 134.71, 133.27, 131.45,

131.27, 130.85, 129.62, 129.18, 128.80, 128.23, 125.76, 115.15, 102.98, 100.36, 55.45; IR

(ATR): 1725, 1660, 1627, 1539, 1511, 1447, 1410, 1284, 1175, 1091, 1026, 901, 828, 792, 705, 602, 527. HRMS (ESI): Exact mass calcd for C₂₅H₁₉NO₄Na [M+Na]⁺: 420.1206, Found: 420.1211.

The scale-up synthesis of 3: To an oven-dried 10.0 mL Schlenk tube were successively added ketenimine 1a (1.2 mmol), 1,3-diketone 2a (1.0 mmol), anhydrous EtOAc (6 mL), and K₂CO₃ (20 mol%). The reaction mixture was stirred vigorously at 80 °C under N₂ atmosphere till full consumption of 1,3-diketone 2a by TLC analysis. The reaction mixture was then concentrated by rotary vaporation, and the residue was subjected to column chromatography using petroleum ether/ethyl acetate (from 5:1-1:1) as eluent to afford the desired product 3 in 87% yield (462 mg, pale yellow solid). The full characterization data of this compound have been described in page S4.

The synthesis of 68: To an oven-dried 10.0 mL Schlenk tube were successively added ketenimine 1b (0.12 mmol), 1,3-diketone 2b (0.10 mmol), anhydrous EtOAc (1 mL), and K₂CO₃ (20 mol%). The reaction mixture was stirred vigorously at 80 °C under N₂ atmosphere till full consumption of 1,3-diketone 2b by TLC analysis. The reaction mixture was then concentrated by rotary vaporation, and the residue was subjected to column chromatography using petroleum ether/ethyl acetate (from 5:1-1:1) as eluent to afford the desired product 68 in 83% yield (50.5 mg, pale yellow solid, m.p. = 182-183 °C).

¹H NMR (400 MHz, CDCl₃): δ 3.06 (s, 3H), 3.13 (brm, 2H), 3.80 (s, 3H), 3.90 (s, 3H), 3.98 (brm, 2H), 5.69 (s, 1H), 6.66-6.69 (m, 2H), 6.93-6.97 (m, 4H), 7.08 (d, *J* = 8.4 Hz, 2H), 7.25-7.28 (m, 2H), 7.36 (tt, *J* = 7.2, 1.2 Hz, 1H), 7.41-7.45 (m, 2H), 7.50-7.54 (m, 2H), 7.83 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 168.79, 162.32, 162.17, 161.90, 160.20, 155.64, 139.46, 139.39, 137.62, 130.91, 130.02, 129.54, 128.98, 127.59, 127.09, 127.00, 126.20, 122.54,

116.83, 114.21, 113.29, 99.96, 55.50, 55.36, 53.41, 44.46, 33.58; IR (ATR): 1691, 1646, 1604, 1508, 1313, 1250, 1147, 1020, 833, 761, 707, 648, 555. HRMS (ESI): Exact mass calcd for C₃₅H₃₁NO₇SNa [M+Na]⁺: 632.1713, Found: 632.1713.

The synthesis of 69: To an oven-dried Schlenk tube (10 mL) were successively added CoBr₂ (20 mol%), anhydrous MeCN (1 mL), ethyl diazoacetate 62a (0.12 mmol), 1-isocyano-4methylbenzene 63a (0.10 mmol), 1,3-dione 2a (0.10 mmol) and K₂CO₃ (0.02 mmol). The tube was backfilled with N₂. After stirring at 80 °C for 12 h, the reaction mixture was cooled and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 5:1-1:1) to give compound 69 in 56% yield (21.3 mg, pale yellow solid, m.p. = 93-94 °C).

¹H NMR (400 MHz, CDCl₃): δ 2.30 (s, 3H), 5.55 (d, J = 1.6 Hz, 1H), 6.94 (d, J = 1.6 Hz, 1H), 7.02 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 7.26 (t, J = 7.6 Hz, 2H), 7.33-7.43 (m, 4H), 7.51-7.53 (m, 2H), 7.74-7.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.88, 163.16, 159.34, 157.71, 138.49, 138.11, 134.66, 131.52, 131.27, 130.85, 130.59, 129.24, 128.80, 128.22, 125.76, 103.28, 100.49, 21.03. IR (ATR): 1711, 1654, 1612, 1501,

1412, 1233, 1124, 1050, 853, 747, 663, 576. HRMS (ESI): Exact mass calcd for $C_{25}H_{19}NO_3Na \ [M+Na]^+: 404.1257$, Found: 404.1251.

The synthesis of 72: To an oven-dried sealed tube (10 mL) were successively added compound 15 (0.10 mmol), anhydrous MeCN (1.0 mL), 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (0.30 mmol), and caesium fluoride (0.50 mmol). The tube was backfilled with N₂. After stirring at 100 °C for 10 h, the reaction mixture was cooled and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 6:1-3:1) to give compound 72 in 73% yield (35.7 mg, pale yellow solid, m.p. = 197-198 °C).

¹H NMR (400 MHz, CDCl₃): δ 2.18 (s, 3H), 6.58 (brs, 2H), 6.78 (d, J = 6.4Hz, 2H), 7.10-7.14 (m, 3H), 7.21-7.25 (m, 3H), 7.31-7.46 (m, 7H), 7.47-7.63 (m, 6H), 7.96 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 181.66, 141.38, 141.35, 141.27, 139.90, 138.37, 138.26, 138.11, 136.87, 136.83, 136.81, 136.76, 136.09, 135.06, 134.04, 131.06, 130.62, 130.16, 130.04, 129.93, 129.01, 128.89, 128.43, 128.27, 127.67, 127.51, 127.49, 127.07, 126.43, 126.19, 126.15, 126.11, 20.82; IR (ATR): 1656, 1611, 1509, 1487, 1397, 1272, 882, 756, 693, 583. HRMS (ESI): Exact mass calcd for C₃₆H₂₇NONa [M+Na]⁺: 512.1985, Found: 512.1987.

The synthesis of 73: To an oven-dried sealed tube (10 mL) were successively added compound 69 (0.10 mmol), anhydrous MeCN (1.0 mL), 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (0.30 mmol), and caesium fluoride (0.50 mmol). The tube was backfilled with N₂. After stirring at 100 °C for 10 h, the reaction mixture was cooled and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 6:1-3:1) to give compound 73 in 77% yield (31.8 mg, pale yellow solid, m.p. = 103-104 °C).

¹H NMR (400 MHz, CDCl₃): δ 2.32 (s, 3H), 7.10 (s, 4H), 7.20-7.24 (m, 2H), 7.28-7.32 (m, 2H), 7.36-7.46 (m, 7H), 7.51-7.53 (m, 2H), 7.56 (d, J = 2.4 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 170.85, 141.29, 141.22, 140.99, 139.75, 136.32, 136.21, 134.06, 130.15, 129.97, 129.83, 129.18, 128.23, 128.18, 127.91,

127.47, 127.45, 126.71, 126.33, 126.14, 125.90, 124.70, 21.01; IR (ATR): 1662, 1613, 1542, 1493, 1386, 1281, 1187, 1065, 809, 729, 687. HRMS (ESI): Exact mass calcd for C₃₀H₂₃NONa [M+Na]⁺: 436.1672, Found: 436.1668.

The synthesis of 74: To a 3.0 mL vial were successively added compound 15 (0.10 mmol), THF (0.40 mL), MeOH (0.40 mL), H₂O (0.20 mL), and LiOH (1.0 mmol). After stirring at rt for 1.5 h, the reaction mixture was extracted with EtOAc (3 mL× 3). The combined organic phase was dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 3:1-1:1) to give compound 74 in 81% yield (26.5 mg, pale yellow solid, m.p. = 73-74 °C).

¹H NMR (400 MHz, CDCl₃): δ 2.35 (s, 3H), 3.74 (s, 2H), 5.82 (s, 1H), 7.01 (d, J = 8.0 Hz, 2H), 7.11-7.14 (m, 4H), 7.20-7.30 (m, 3H), 7.38-7.46 (m, 3H), 7.84-7.87 (m, 2H), 13.05 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 188.81, 164.65, 140.04, 136.77, 136.10, 135.59, 130.85, 129.67, 128.82, 128.53, 128.22, 127.06, 126.74, 125.56, 94.33, 38.58, 20.96. IR (ATR): 3453, 1722, 1653, 1604, 1553, 1477, 1392,

1245, 1132, 1047, 846, 733, 659. HRMS (ESI): Exact mass calcd for C₂₃H₂₁NONa [M+Na]⁺: 350.1515, Found: 350.1512.

The synthesis of 75: To an oven-dried Schlenk tube (10 mL) were successively added compound **3** (0.10 mmol), anhydrous CH_2Cl_2 (2.0 mL), and BBr₃ (0.50 mmol). The tube was backfilled with N₂. After stirring at -30 °C for 8 h, the reaction mixture was quenched with H₂O (6.0 mL) and then extracted with CH_2Cl_2 (5 mL× 3). The combined organic phase was dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 1:1-1:2) to give compound **75** in 87% yield (43.8 mg, yellow oil).

¹H NMR (400 MHz, CDCl₃): δ 2.84 (brm, 2H), 3.50 (brm, 2H), 5.76 (s, 1H), 6.03 (s, 1H), 6.56 (d, J = 8.0 Hz, 1H), 6.62 (s, 1H), 6.81-6.83 (m, 2H), 6.89 (d, J = 6.8 Hz, 2H), 6.95 (d, J = 7.6 Hz, 2H), 7.12 (t, J = 8.0 Hz, 2H), 7.28-7.34 (m, 4H), 7.41-7.43 (m, 3H), 7.54-7.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.41, 162.61, 158.83, 153.70, 144.21, 143.23, 134.33, 131.51, 131.30, 131.18, 131.11, 130.32, 130.31, 129.89, 128.97, 128.59, 128.39, 128.03,

127.93, 125.58, 121.50, 116.24, 115.52, 102.49, 53.49, 49.54, 32.86; IR (ATR): 3325, 1657, 1619, 1529, 1444, 1286, 927, 772, 697, 626, 577. HRMS (ESI): Exact mass calcd for $C_{32}H_{25}NO_5Na [M+Na]^+$: 526.1625, Found: 526.1622.

6) Mechanistic Studies

We studied the reaction mechanism of K_2CO_3 catalyzed formal insertion of ketenimines into C(CO)-C bonds of 1,3-diketones by a series of control experiments. Finally, we found that when the reaction of 2-isopropylphenyl substituted ketenimine 1c and 1,3-di-*o*tolylpropane-1,3-dione 2c was stirred at 80 °C for 1 h, both the Mannich adduct 76 and α pyrone 77 could be detected through TLC and LC-MS analysis. However, despite the large steric hindrance, the Mannich adduct 76 was almost fully converted into α -pyrone 77 after the reaction mixture was stirred at 80 °C for 5 h. The structure of compound 77 was characterized by NMR, IR and HRMS.

Monitoring the reaction by TLC

After 5 h

The reaction was run at 80 °C for 5 h, affording product 77 as a pale green solid (35.9 mg, 70% yield, m.p. = 195-196 °C); ¹H NMR (500 MHz, CDCl₃): δ 1.16 (d, J = 5.0 Hz, 3H), 1.19 (d, J = 7.0 Hz, 3H), 2.31 (brs, 3H), 2.46 (brs, 3H), 3.18 (brm, 1H), 6.15-6.66 (m, 3H), 6.91-7.18 (m, 7H), 7.24-7.28 (m, 6H), 7.37 (t, J = 7.5 Hz, 1H), 7.47-7.53 (m, 1H); ¹³C NMR (125 MHz,

CDCl₃): δ 170.71, 163.40, 159.79, 138.29, 136.68, 132.41, 131.77, 131.28, 130.40, 130.34, 129.56, 129.06, 128.38, 128.33, 128.08, 127.64, 127.06, 126.14, 124.76, 107.82, 28.39, 23.85, 23.34, 20.71, 19.93. IR (ATR): 1702, 1676, 1603, 1534, 1423, 1396, 1283, 956, 782, 773, 652, 565. HRMS (ESI): Exact mass calcd for C₃₅H₃₁NO₃Na [M+Na]⁺: 536.2196, Found: 536.2191.

7) Device Fabrication and Characterizations

At first, we prepared single component **51** or SimCP2 solution (10 mg ml⁻¹, chlorobenzene as solvent) in N₂-filled glovebox and then thoroughly dissolved by successive heat stirring at 50 °C for 2 h. After that, the blended solutions at different blending ratios (SimCP2:51, (100x):x, $x = 1 \sim 7$ wt.%) were prepared by blending these solutions as required. For device fabrications, ITO-covered glass substrate (ITO thickness = 110 nm, sheet resistance = 15 Ω sq⁻¹) was cleaned and dried using routine method and then processed by UV-ozone treatment in air for 25 min (ref. J. Ye, Y. He, K. Li, L. Liu, C. Xi, Z. Liu, Y. Ma, B. Zhang, Y. Bao, W. Wang, Y. Cheng, L. Niu, ACS Appl. Mater. Interfaces 2022, 14, 17698-17708). After that, water dispersion of PEDOT:PSS (Clevious PVP AI4083, Heraeus) was spin-coated onto the ITO substrate and then dried in air drying oven at 120 °C (30 min.). The thickness of such PEDOT:PSS layer was about 50 nm. Subsequently, the device samples were transferred into N₂-filled glovebox. Those SimCP2:51 blended solutions were spin-coated onto the surface of ITO/PEDOT:PSS at 1800 rpm (1 min.), followed by thermal annealing at 100 °C (30 min.) to obtain the emissive layer with a thickness of ca. 30 nm. Finally, those device samples were loaded into thermal evaporating chamber (Angstrom Engineering Corp., Canada, EVOVAC) for the subsequent thermal evaporation of DPEPO (10 nm)/TmPyPB (50 nm)/LiF (1nm)/Al (100 nm) in sequence. The base pressure for thermal evaporation is generally less than 5×10^{-6} mbar and the deposition rate is 0.1 nm s⁻¹. The emissive area of each device is $3.5 \times 4 \text{ mm}^2$, as defined by the overlap zone byetewen the Al top electrode and ITO bottom electrode. All those preparing procedures, except for the ITO and PEDOT:PSS layer, were performed under the protection of N₂-filled glove box (mBraun- UNIlab, Shanghai, $[O_2] < 0.1$ ppm, $[H_2O] < 0.1$ ppm).

Those as-fabricated OLEDs were then measured by commercial OLED testing equipment (FS-2000TR, Fstar, Soochow, China), in which current-voltage source Keithley 2400 and high-resolution spectroradiometer CS2000A were inter-connected and computer-controlled by a home-made software. During the measurement, luminance and EL spectra were directly measured by CS2000A. All those OLEDs were not encapsulated and tested in air. For the calculations of EQE performance parameters, these OLEDs were routinely assumed as Lambert emitters.

8) Physical and Material Properties

Figure S1. Absorption and PL spectra of compounds 49 (a), 50 (b) and 51 (c), respectively, in different solvent $(10^{-5}M)$.

Compound	Solvent	$\lambda_{abs.}^{[a]}$	$\lambda_{PL}^{ [a]}$	E _g ^[a]	FWHM
		[nm]	[nm]	[nm]	[nm]
	Toluene	340	475	2.81	108
49	CB	340	482	2.82	97
	THF	341	484	2.85	106
	Toluene	347	485	2.77	93
50	CB	345	507	2.74	99
	THF	345	510	2.80	103
	Toluene	353	533	2.69	104
51	CB	352	590	2.86	134
	THF	320	615	2.92	156

^[a] Measured in solution with a concentration of 10⁻⁵ M.

Figure S2. PL transient decay of compounds **49** (a), **50** (b) and **51** (c), respectively, in solution (10⁻⁵M, CB as solvent).

Table S2. Fitting results of PL transient decays of 49-51 in solution.

Compound	τ ₁ [ns]	A_1	τ ₂ [ns]	A ₂	χ²	τ _{ave} [ns]
49	0.4455	1624.506	4.4219	76.6985	1.3865	1.7143
50	0.3385	1155.333	3.6333	48.0219	1.2854	1.3550
51	6.5389	1934.428	23.1639	102.3752	1.0211	9.1635

[a] The average lifetime calculated by $\tau_{ave} = \sum A_i \tau_i^2 / \sum A_i \tau_i$, where A_i is the pre-exponential for lifetime τ_i (i = 1, 2) shown in the Table.

PEDOT:PSS

Figure S3. Chemical structures of materials (except 51) using in solution-processed OLEDs.

Figure S4. Bias-dependent EL spectra of solution-processed OLEDs using **47** dopant at different doping concentrations, i.e. 1 wt.% (a), 3 wt.% (b), 5 wt.% (c) and 7 wt.% (d), respectively.

9) X-Ray Crystallographic Data for Compounds 30, 47, 48, 72 and 74

Data intensity of **30** was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at 292.99(10) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC deposition number 2245130 (**30**).

Crystal data.	
Empirical formula	C ₄₀ H ₃₃ NO ₅
Formula weight	607.67
Temperature/K	292.99(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	13.5520(14)
b/Å	10.2862(10)
c/Å	23.234(3)
$\alpha/^{\circ}$	90
β/°	95.963(10)
γ/°	90
Volume/Å ³	3221.2(6)
Z	4
$\rho_{calc}g/cm^3$	1.253
μ/mm^{-1}	0.082
F(000)	1280.0
Crystal size/mm ³	$0.12 \times 0.11 \times 0.09$
Radiation	Mo Ka ($\lambda = 0.71073$)
2@range for data collection/°	4.334 to 59.21
Index ranges	$\textbf{-18} \leq h \leq 14, \textbf{-13} \leq k \leq 10, \textbf{-32} \leq l \leq 22$
Reflections collected	16913
Independent reflections	7598 [$R_{int} = 0.0563, R_{sigma} = 0.1036$]
Data/restraints/parameters	7598/0/418
Goodness-of-fit on F ²	1.024
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0724, wR_2 = 0.1445$
Final R indexes [all data]	$R_1 = 0.1788, wR_2 = 0.1931$
Largest diff. peak/hole / e Å-3	0.36/-0.21

Data intensity of **47** was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at 150.00(10) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC deposition number 2245131 (**47**).

X-ray structure of product 47

Crystal data.		
Empirical formula	C35H30CINO6	
Formula weight	596.05	
Temperature/K	150.00(10)	
Crystal system	monoclinic	
Space group	$P2_1/c$	
a/Å	10.4332(5)	
b/Å	10.0121(4)	
c/Å	27.9684(13)	
$\alpha/^{\circ}$	90	
β/°	98.050(4)	
γ/°	90	
Volume/Å ³	2892.7(2)	
Z	4	
$\rho_{calc}g/cm^3$	1.369	
μ/mm ⁻¹	1.577	
F(000)	1248.0	
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$	
Radiation	Cu Ka ($\lambda = 1.54184$)	
2@range for data collection/c	° 6.384 to 147.464	
Index ranges	$-12 \le h \le 12, -8 \le k \le 12, -34 \le l \le 29$	
Reflections collected	10780	
Independent reflections	5666 [$R_{int} = 0.0409, R_{sigma} = 0.0602$]	
Data/restraints/parameters	5666/0/392	
Goodness-of-fit on F ²	1.046	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0530, wR_2 = 0.1325$	
Final R indexes [all data]	$R_1 = 0.0732, wR_2 = 0.1478$	
Largest diff. peak/hole / e Å ⁻³ 0.30/-0.39		

Data intensity of **48** was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at 150.00(10) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC deposition number 2245132 (**48**).

Crystal data.	
Empirical formula	C ₂₉ H ₂₇ NO ₅
Formula weight	469.51
Temperature/K	150.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	11.0361(5)
b/Å	14.2348(5)
c/Å	16.7656(6)
$\alpha/^{\circ}$	79.529(3)
β/°	88.302(3)
γ/°	75.050(4)
Volume/Å ³	2501.88(18)
Z	4
$ ho_{calc}g/cm^3$	1.246
µ/mm ⁻¹	0.085
F(000)	992.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$
Radiation	Mo Ka ($\lambda = 0.71073$)
2@range for data collection/°	4.214 to 59.222
Index ranges	$-13 \le h \le 15, -18 \le k \le 19, -22 \le l \le 22$
Reflections collected	21663
Independent reflections	11671 [$R_{int} = 0.0320, R_{sigma} = 0.0651$]
Data/restraints/parameters	11671/0/637
Goodness-of-fit on F ²	1.023
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0603, wR_2 = 0.1368$
Final R indexes [all data]	$R_1 = 0.0963, wR_2 = 0.1608$
Largest diff. peak/hole / e Å-3	1.12/-0.22

Data intensity of **72** was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at 170.00(10) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC deposition number 2245133 (**72**).

X-ray structure of product 72

Crystal data.	
Empirical formula	C ₃₆ H ₂₇ NO
Formula weight	489.58
Temperature/K	170.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	10.3653(9)
b/Å	11.5399(8)
c/Å	12.1483(9)
α/°	86.936(6)
β/°	75.711(7)
γ/°	69.063(7)
Volume/Å ³	1314.21(19)
Z	2
$\rho_{calc}g/cm^3$	1.237
µ/mm ⁻¹	0.568
F(000)	516.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.10$
Radiation	Cu Ka ($\lambda = 1.54184$)
2@range for data collection/c	7.514 to 146.72
Index ranges	$-12 \le h \le 12, -10 \le k \le 14, -14 \le l \le 14$
Reflections collected	8974
Independent reflections	$5121 [R_{14} = 0.0343 R_{15}] = 0.04711$
Data/restraints/parameters	5121 [Rint 0.0515, Risigma 0.0171]
G_{cod} and G_{cod} and G_{cod} and G_{cod} and F_{cod}^2	1 164
Einal P indexes $[1>-2\sigma(1)]$	$P_{\rm r} = 0.0485 \text{ m/}P_{\rm r} = 0.1260$
Final P indexes $[1/-20]$	$R_1 = 0.0403, WR_2 = 0.1209$ $P_4 = 0.0652, WP_5 = 0.1274$
I man K moexes [an data]	$K_1 = 0.0032, WK_2 = 0.1374$
Largest diff. peak/note / e A	0.10/-0.20

Data intensity of **74** was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at 170.00(10) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC deposition number 2245134 (**74**).

X-ray structure of product 74

Crystal data.		
Empirical formula	C ₂₃ H ₂₁ NO	
Formula weight	327.41	
Temperature/K	170.00(10)	
Crystal system	triclinic	
Space group	P-1	
a/Å	5.8318(4)	
b/Å	11.6046(8)	
c/Å	26.5835(15)	
α/°	86.525(5)	
β/°	87.942(5)	
γ/°	87.181(5)	
Volume/Å ³	1792.6(2)	
Z	4	
$\rho_{calc}g/cm^3$	1.213	
µ/mm ⁻¹	0.571	
F(000)	696.0	
Crystal size/mm ³	$0.14 \times 0.12 \times 0.09$	
Radiation	Cu Ka ($\lambda = 1.54184$)	
2@range for data collection/°	6.666 to 148.43	
Index ranges	$-7 \le h \le 5, -14 \le k \le 14, -32 \le l \le 32$	
Reflections collected	12192	
Independent reflections	7010 [$R_{int} = 0.0461$, $R_{sigma} = 0.0583$]	
Data/restraints/parameters	7010/0/453	
Goodness-of-fit on F ²	1.098	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0614, wR_2 = 0.1720$	
Final R indexes [all data]	$R_1 = 0.0868, wR_2 = 0.1892$	
Largest diff. peak/hole / e Å ⁻³ 0.40/-0.28		

10) Copies of ¹H NMR and ¹³C NMR Spectra of Products 3-76

f1 (ppm)

f1 (ppm)

110 100 f1 (ppm)

ò

11) Copies of HPLC Spectra of Products 54-61

njection Ty nstrument I nj. Date / T	ne: pe: Method: ïme:	LJ-20210129-80- Check Standard Ixt	20-OD-ASY Check Stand:	ard	Inj. Vol.: Dilution Factor: Operator: Run Time:	1.00 1.0000 Administrator 24.66
No.	Time	Peak Name	Peak Type	Area mAU*min	Height	Amount
4o.	Peak Nan	nRetention Time min	Area mAU*min	Height mAU	Relative Area %	Relative Height
1		13.907 17.377	1577.994 9.336	2197.025 13.210	99.41 0.59	99.40 0.60
otal:			1587.329	2210.235	100.00	100.00
141					65	
2,000 -	Ph ⁻	54 (asy)	Õ		55 1	
2,000 - Innuli autonomi 1,000 -	Ph ⁻⁴	54 (asy)	õ		1 - 12	
2,000 - 1,500 - 1,000 -	Ph ⁻⁴ Ph ⁻	54 (asy)	Õ			F

mir

28.0

No. Time minutary mail Peak Name (minutary)	Sample Nan Injection Typ Instrument I Inj. Date / Ti	ne: se: <i>Method</i> : me:	LJ-20210426-80 Check Standard ixt ###################################	20-OD-4-Me-k Check Standa	etone-Asy ard	Inj. Vol.: Dilution Factor: Operator: Run Time:	1.00 1.0000 Administrator 15.39
No. Peak NamRetention Time Area mAUTime Height mAU Relative mAUTime Relative mAU Relative	No.	Time	Peak Name	Peak Type	Area mAU*min	Height	Amount n.a.
1 2 9,063 150,250 7,066 1,55 92,4 150,250 278,459 96,45 97,7 Total: 152,608 228,523 100,00 100,1 152,608 285,523 100,00 100,1 152,608 285,523 100,00 100,1 152,608 285,523 100,00 100,1 152,608 285,523 100,00 100,1 100,00 100,00 100,1 100,00 100,00 100,00 100,0 100,000,0	No.	Peak Nan	Retention Time	Area mAU*min	Height	Relative Area %	Relative Height
Total: <u>152.608 285.523 100.00 100.</u> 470 400 400 300 50 50 50 100 100 100 100 100	1 2		7.622 9.063	2.358 150.250	7.066 278.458	1.55 98.45	2.47 97.53
4700 400 400 500 500 400 500 500 400 500 400 500 5	Total:			152.608	285.523	100.00	100.00
50	400 350 300 Invuij source operation 150 100	Me	Ph 56 (asy)				-2-9.063
	0				~	-1-76	

Peak Integration Report

Peak Integration Report

		Peak Integrat	tion Report			
Sample Na Injection Tj Instrument Inj. Date / 1	me: /pe: Method: Fime:	LJ-20210423-75- Check Standard Ixt	25-AD-H-4-Br-	NC-Asy Ird	Inj. Vol.: Dilution Factor: Operator: Run Time:	1.00 1.0000 Administrator 29.50
No.	Time	Peak Name	Peak Type	Area	Height	Amount
10.	Peak Nam	Retention Time	Area mAU*min	Height	Relative Area	Relative Height
		16.893 18.222	475.905 6.943	885.731 13.871	98.56 1.44	98.46 1.54
,125 .000 875 750 625	Ph Br	58 (asy)				C (2 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
500						
375						
250						
125						- 2 - 18 222
-50 -0.0	2.5	5.0	7.5	10.0	12.5 15	0 17.5 20.0 22

1.00 1.0000 Admini 15.39

Amount n.a. Relative Height % 2.47 97.53 100.00

Inj. Vol.: Dilution Factor: Operator: Run Time:

Height mAU Relative Area % 1.55 98.45 100.00

822

8.0

10.0

Peak Integration Report

Sample Nar Injection Ty Instrument I Inj. Date / T	ne: pe: Method: ime:	lj-20210406-4Br Check Standard Ixt Revenueseeeee	N2-Rac-80-20-	OD ard	Inj. Vol.: Dilution Factor: Operator: Run Time:	1.00 1.0000 Administrator 30.09
No.	Time	Peak Name	Peak Type	Area	Height	Amount
No.	Peak Nan	Retention Time	Area	Height	Relative Area	Relative Height
		min	mAU*min	mAU	%	%
1		10.577	125.154	223.864	50.65	65.25
2		20.472	121.930	119.197	49.35	34.75
Total:	3	2 2 2	247.084	343.061	100.00	100.00
400 350 250 150 50	^			-1-(1021)	60 (rac)	

No. Time min Peak Name (number) Peak Name (number) Peak Name (number) Peak Name (number) Peak Name (number) Peak Name (number) Area (number) Height (number) Amount (number) Amount (numbe	ample Na jection Tj istrument j. Date / `	ime: ype: Method: Time:	IJ-20210406-4Br Check Standard Ixt Novemensorem	N2-Asy-80-20-	OD ard	Inj. Vol.: Dilution Factor: Operator: Run Time:	1.00 1.0000 Administrator 30.18
Peak NameRetention Tim Area Height May Relative Area Relative Area min mal/min mal/min mal/min % % % 10.508 328.659 600.872 96.86 98.14 10.230 11.876 3.02 1.86 10 238.859 621.447 100.00 100.00 10 300 1.86 100.00 100.00 10 50 60 (asy) F 5 50 60 (asy) F 5 60 10 10 100.00 100.00 100.00	No.	Time	Peak Name	Peak Type	Area mAU*min	Height	Amount n.a.
10.508 328.659 600.872 96.98 98.14 20.600 10.230 11.875 3.02 1.86 338.89 621.447 100.00 100.00 1 Misequence20160623-20191212 #1277 [manually integrated] 0 0 00 F 60 (asy) 0 0 01 0 0 0 0 0	lo.	Peak Nam	Retention Time	Area mAU*min	Height mAU	Relative Area %	Relative Height %
tal: <u>338.859</u> <u>621.447</u> <u>100.00</u> <u>100.00</u> It tsequence20160623-2019/212 #12/7 [manually inlegrated] 60 (asy) 60 (asy) 60 (asy) 60 (asy)			10.508	328.659	609.872	96.98	98.14
27 28 29 20 20 20 20 20 20 20 20 20 20	otal:		20.000	338.889	621.447	100.00	100.00
	000 875 750 625 500 375 250	60 (r	asy) Br	Õ	1 - 10.508		
	125-				$ \rangle$		2 - 20.608

Peak Integration Report Peak Integration Report lj-20210409-3-Me-N2-Rac-80-20-OD Check Standard Ixt Inj: Vol.: 1.00 Dilution Factor: 1.0000 Operator: Administrator Run Time: 20.87 lj-20210409-3-Me-N2-Asy-80-20-OL Check Standard Ixt mple Name 1.00 1.0000 Adminis 19.67 jection Type: strument Method Inj. Vol.: Dilution Factor: Operator: ection Type: trument Metr Inj. Date / Tim Inj. Date / Time. Run Time Area mAU*min Height mAU 135.491 116.728 252.219 y integrated] Height mAU Relative Area % 50.49 49.51 100.00 Amount n.a. Relative Height % 53.72 46.28 100.00 No. Time Peak Name Peak Type Height mAU Relative Area % 99.30 0.70 100.00 Amount n.a. Relative Height % 99.33 0.67 100.00 Retention Time Area min mAU*min 10.513 73.086 12.543 71.672 144.758 80623-20191212#1222 (manually min Peak Na No. 2 Total 300-3,000 ဂူ 340 0 II Ph Ph 11 200 2,500 ò - 10.513 J 12.543 61 (rac) 150 [~]Me 2,000-61 (asy) `Me 100 1,500-50-1,000 500-0 12.613 -50 3 -50 JL 10.0 12.0 6.0 8.0 14.0 8.0 20 4.0 16.0 20 4.0 60 10.0 12.0 14.0

S123