Supporting Information

Green and Effective Synthesis of Multisubstituted α-Pyrones via $\mathbf{K}_{2} \mathrm{CO}_{3}$ Catalyzed Formal Insertion of Ketenimines into C(CO)-C Bonds of 1,3Diketones

Jian Luo, ${ }^{[b] \dagger}$ Ai-Qing Zhong, ${ }^{[\mathrm{c}] \dagger}$ Jia-Hao Qiu, ${ }^{[b] \dagger}$ Xiong-Wei Liu, ${ }^{*[a]}$ You-Ping Tian, ${ }^{[a]}$ Bao-Hua Zhang, ${ }^{[b]}$ Guo-Shu Chen, ${ }^{[b]}$ Wei Shu, ${ }^{[d]}$ and Yun-Lin Liu* ${ }^{[b, e]}$

Email: liuxiongwei058@gzy.edu.cn; ccbhzhang@gzhu.edu.cn; ylliu@gzhu.edu.cn

1) General Information S2
2) General Procedure and Spectral Data of Products 3-61 S4
3) General Procedure for the One-Pot Synthesis of Di- and Trisubstituted α-Pyrones S25
4) Spectral Data of 4,6-Disubstituted α-Pyrones S25
5) Scale-Up Reaction and Transformations of The Products S27
6) Mechanistic studies S31
7) Device Fabrication and Characterizations S34
8) Physical and Material Properties S35
9) X-Ray Crystallographic Data for Compounds 30, 47, 48, 72 and 74 S38
10) Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Products 3-77 S43
11) Copies of HPLC Spectra of Products 54-61 S120

1) General Information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained using a Bruker DPX-400 or Jeol 400 spectrometer. Chemical shifts are reported in ppm from CDCl_{3} with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{h}=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.

Anhydrous solvents, palladium catalysts, Brønsted base catalysts, and 1,3-diphenylpropane-1,3-dione were purchased from Energy Chemical. Unless otherwise stated, all purchased reagents were used without further purification. All reactions involving air- or moisture-sensitive compounds were carried out under nitrogen atmosphere in dried Schlenk tube. The isonitriles, ${ }^{[1]}$ diazo compounds, ${ }^{[2]}$ ketenimines, ${ }^{[3]}$ and 1,3 -diones ${ }^{[4]}$ were prepared using the literature procedures.

Detailed photophysical studies were performed on compounds 49-51 in solution state $\left(10^{-5} \mathrm{M}\right)$. As for absorption measurements, those solution samples were tested by Cary 60 (Agilent) equipment. PL studies were conducted by using Edinburgh FLS1000 fluorescent spectrometer, in which steady state PL spectra were excited at 365 nm by using Xe_{2} xenon lamp, and PL transient decay curves were obtained by using a picosecond pulsed LED (EPLED-365) as light-exciting source. Absolute PL quantum efficiency (φ_{PL}) of those samples were further measured by using a built-in integration sphere accessory that was coupled to FLS1000 equipment. All those sample were measured in air. To minimize the influence of air on the resultant PL transient and $\varphi_{\text {PL }}$, all those solution sample were freshly prepared in nitrogen-filled glovebox and then transferred to outside for measuring as soon as possible. Moreover, transient PL photophysical fitting and studies shown in Table S2 were performed according to the standard PL photophysical theory in OLEDs. ${ }^{[5]}$
[1] a) X.-H. Zhao, X.-H. Liu, H.-J. Mei, J. Guo, L.-L. Lin, X.-M. Feng, Angew. Chem. Int. Ed. 2015, 54, 4032-4035; b) J. M. Saya, B. Oppelaar, R. C. Cioc, G. van der Heijden, C. M. L. Vande Velde, R. V. A. Orru, E. Ruijter, Chem. Commun. 2016, 52, 12482-12485; c) Z. He, M. Bae, J. Wu, T. F. Jamison, Angew. Chem. Int. Ed. 2014, 53, 14451-14455.
[2] Y. Xia, D. Qiu, J. Wang, Chem. Rev. 2017, 117, 13810-13889.
[3] a) J. Luo, G.-S. Chen, S.-J. Chen, Z.-D. Li, Y.-L. Zhao, Y.-L. Liu, Adv. Synth. Catal. 2020, 362, 3635-3643; b) Z. Liu, S. Cao, J. Wu, G. Zanoni, P. Sivaguru, X. Bi, ACS Catal. 2020, 10, 12881-12887.
[4] a) Y. Ning, Q. Song, P. Sivaguru, L. Wu, E. A. Anderson, Xihe Bi, Org. Lett. 2022, 24, 631-636; b) K. Wu, T. Zhang, Z. Wang, L. Wang, L. Zhan, S. Gong, C. Zhong, Z.-H. Lu, S. Zhang, C. Yang, J. Am. Chem. Soc. 2018, 140, 8877-8886; c) Q. Zhang, H. Kuwabara, W. J. Potscavage Jr., S. Huang, Y. Hatae, T. Shibata, C. Adachi, J. Am. Chem. Soc. 2014, 136, 18070-18081.
[5] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931-7958.

2) General Procedure and Spectral Data of Products 3-61

To a 10.0 mL Schlenk tube were successively added ketenimines $\mathbf{1}(0.12 \mathrm{mmol}), 1,3-$ diketones 2 (0.10 mmol), anhydrous EtOAc (1.0 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($20 \mathrm{~mol} \%$). The reaction mixture was stirred vigorously at $80^{\circ} \mathrm{C}$ under N_{2} atmosphere till full consumption of 1,3diketones 2 by TLC analysis. The reaction mixture was then concentrated by rotary vaporation, and the residue was subjected to column chromatography using petroleum ether/ethyl acetate (from 10:1-1:1) as eluent to afford the desired products 3-61.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product $\mathbf{3}$ as a pale yellow solid ($49.4 \mathrm{mg}, 93 \%$ yield, m.p. $=151-152{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 3.00(\mathrm{brm}, 2 \mathrm{H}), 3.47(\mathrm{brm}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.35$ (brm, 1H), $5.77(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.37$ (m, 4H), 7.42-7.47 (m, 3H), 7.54-7.56 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 169.69,162.22,158.57,153.54,149.22,147.98,134.51,131.69,131.23,131.16$, 130.03, 130.41, 128.81, 128.79, 128.40, 128.27, 127.99, 127.80, 125.40, 121.25, 120.72, $112.35,102.39,55.78,55.73,53.17,33.04$; IR (ATR): $1709,1668,1632,1548,1514,1438$, $1315,1260,1237,1153,1141,1026,904,769,691,644,572$. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 554.1938$, Found: 554.1932.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 4 as a pale yellow solid (46.2 mg , 98% yield, m.p. $=182-183{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.09$ (brm, 2H), 3.81 (brm, 2H), 5.79 (s, 1H), 6.99-7.00 (m, 2H), 7.06-7.08 $(\mathrm{m}, 2 \mathrm{H}), 7.18-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.55(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.83,162.30,158.61$, 153.50, 139.31, 134.60, 131.31, 131.16, 131.05, 130.46, 129.87, 129.48, 128.90, 128.73, $128.49,128.36,128.03,127.89,126.94,125.60,120.83,102.49,52.97,33.70$; IR (ATR): 1708, 1651, 1629, 1548, 1494, 1450, 1395, 1321, 796, 755, 695, 642, 574. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 494.1727$, Found: 494.1717.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 5 as a pale yellow solid ($45.1 \mathrm{mg}, 93 \%$ yield, m.p. $=181-182{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{brm}, 2 \mathrm{H}), 3.49-4.29(\mathrm{brm}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), ~ 6.97-6.98$ (m, 2H), $7.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.23(\mathrm{~m}, 4 \mathrm{H})$, 7.31-7.39 (m, 4H), 7.41-7.47 (m, 3H), $7.54(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 169.77,162.31,158.44,153.70,136.62,136.34,134.65,131.32,131.13$, $130.97,130.52,129.90,129.58,129.45,128.76,128.46,128.33,128.06,127.85,125.51$, 120.89, 102.49, 53.34, 33.16, 21.07; IR (ATR): 1706, 1653, 1627, 1544, 1497, 1442, 1391, $1317,814,786,768,717,692,643,573$. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{2} \mathrm{NO}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 508.1883$, Found: 508.1877.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product $\mathbf{6}$ as a pale green solid ($44.6 \mathrm{mg}, 89 \%$ yield, m.p. $=163-164{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $3.02(\mathrm{brm}, 2 \mathrm{H}), 3.51-4.25(\mathrm{brm}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 6.91-6.94(\mathrm{~m}$, $2 \mathrm{H}), 6.99(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.56$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.77,162.33,158.68,158.49$, $153.68,134.67,131.34,131.28,131.13,131.03,130.49,129.88,128.79,128.48,128.35$, 128.03, 127.88, 125.55, 120.86, 114.24, 102.59, 55.20, 53.36, 32.80; IR (ATR): 1707, 1661, 1631, 1547, 1512, 1396, 1241, 1174, 1032, 826, 787, 769, 721, 697, 641, 572. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 524.1832$, Found: 524.1824.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 7 as a pale yellow solid ($47.4 \mathrm{mg}, 97 \%$ yield, m.p. $=175-176{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.05$ (brm, 2H), 3.81 (brm, 2H), 5.81 (s, 1H), 7.00-7.01 (m, 2H), 7.05-7.10 $(\mathrm{m}, 4 \mathrm{H}), 7.18-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.57$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.80,162.27,161.91(\mathrm{~d}, J=245$ $\mathrm{Hz}), 158.73,153.36,134.94,134.51,131.28,131.26,131.19,130.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 130.43$, 129.82, 128.90, 128.57, 128.42, 128.00, 127.97, 125.49, 120.81, 115.72 (d, $J=21 \mathrm{~Hz}$), 102.47, 52.83, 32.98; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-115.60; IR (ATR): 1711, 1658, 1622, 1534, 1503, 1402, 1211, 1152, 1045, 851, 781, 751, 682, 636, 557. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{FNO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 512.1632$, Found: 512.1627.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product $\mathbf{8}$ as a pale yellow solid (48.0 mg , 95% yield, m.p. $=184-185{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.04$ (brm, 2H), 3.75 (brm, 2H), $5.73(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 3 \mathrm{H})$, 7.47-7.49 (m, 3H), 7.53-7.55 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.75$, $162.22,158.79,153.38,137.90,134.43,133.02,131.29,131.22,131.17,130.86,130.35$, $129.83,129.03,129.01,128.56,128.38,128.01,127.95,125.46,120.96,102.25,52.90,33.06$; IR (ATR): 1706, 1662, 1630, 1545, 1489, 1445, 1395, 1277, 1172, 1085, 1016, 932, 814, 769, 721, 697, 643, 574, 544. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 528.1337, Found: 528.1326.

The reaction was run at $80^{\circ} \mathrm{C}$ for 6 h , affording product 9 as a pale yellow solid (42.0 mg , 91% yield, m.p. $=108-109{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.10(\mathrm{brm}, 2 \mathrm{H}), 3.65-4.15(\mathrm{brm}, 2 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 6.37-6.39$ (m, 1H), 7.03 (brs, 2H), 7.07 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.33-7.38 (m, 4H), 7.42 (s, 1H), 7.44-7.51 (m, 3H), 7.71-7.73 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.83,162.38,158.64,153.39,152.76,141.72,134.53,131.31$, $131.16,131.08,130.61,129.85,128.83,128.50,128.39,128.00,127.90,125.62,120.59$, $110.87,107.83,102.59,49.86,26.17$; IR (ATR): 1703, 1653, 1628, 1538, 1494, 1443, 1392, 1324, 1181, 1076, 919, 163, 746, 682, 641, 604, 570. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 484.1519$, Found: 484.1510 .

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product $\mathbf{1 0}$ as a pale-green solid ($22.4 \mathrm{mg}, 53 \%$ yield, m.p. $=109-110{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.53(\mathrm{~s}, 9 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 7.09-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.33$ $(\mathrm{m}, 1 \mathrm{H}), 7.36-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.82-7.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.30,162.62,157.08,151.61,137.71,131.42,131.26,130.57,130.13$, 129.77, 129.11, 128.78, 127.98, 127.68, 127.48, 125.70, 125.58, 106.49, 60.55, 29.23; IR (ATR): 1696, 1652, 1622, 1548, 1451, 1370, 1331, 1179, 769, 689, 661, 630, 571. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 446.1727$, Found: 446.1718.

The reaction was run at $80^{\circ} \mathrm{C}$ for 8 h , affording product 11 as a pale green solid ($37.7 \mathrm{mg}, 84 \%$ yield, m.p. $=92-93{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 1.09-1.23 (m, 3H), 1.62-1.67 (m, 3H), 1.76-1.84 (m, 4H), $4.05(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}$, $1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16$ (brs, 2 H), $7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-$ $7.37(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.85-7.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.18$,
$162.50,157.78,151.03,135.72,131.70,131.12,130.75,130.52,129.87,129.01,128.46$, $128.15,127.95,127.45,125.60,104.68,60.47,31.81,26.09,25.35$; IR (ATR): 1701, 1651, 1629, 1540, 1495, 1450, 1301, 903, 765, 687, 646, 567. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 472.1883$, Found: 472.1875 .

The reaction was run at $80^{\circ} \mathrm{C}$ for 8 h , affording product 12 as a pale green solid ($39.8 \mathrm{mg}, 87 \%$ yield, m.p. $=141-142{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.79$ (brs, 2H), $6.54(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.26(\mathrm{~m}, 4 \mathrm{H})$, 7.30-7.39 (m, 9H), 7.43-7.49 (m, 3H), 7.64-7.67 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.78,162.40,158.54,152.58,136.44,134.36,131.22,131.14,130.59$, 129.68, 128.93, 128.89, 128.50, 128.40, 128.36, 128.11, 128.02, 125.54, 120.71, 102.74, 52.19; IR (ATR): 1723, 1661, 1629, 1551, 1492, 1448, 1400, 1327, 1270, 1027, 906, 796, 761, 699, 645, 628, 604, 571. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 480.1570, Found: 480.1560.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 13 as a pale green solid ($42.4 \mathrm{mg}, 92 \%$ yield, m.p. $=186-187^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 5 \mathrm{H})$, $7.35(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.80-7.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.92,162.64,160.78(\mathrm{~d}, J=247 \mathrm{~Hz}), 159.11,153.07$, $137.43(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 133.91,131.74,131.43,131.10,130.73,129.42,128.92$, 128.87, 128.47, 128.31, 128.26, 128.18, 128.02, 125.64, 122.07, 116.03 (d, $J=23 \mathrm{~Hz}$), 103.04; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.91; IR (ATR): 1721, 1658, 1613, 1551, 1456, 1431, 1322, 1245, 1072, 1002, 889, 789, 667, 653, 627, 569. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{NFO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 484.1319$, Found: 484.1319.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 14 as a pale yellow solid ($44.8 \mathrm{mg}, 94 \%$ yield, m.p. $=193-194{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.68(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H}), 7.14-7.27(\mathrm{~m}, 11 \mathrm{H}), 7.38(\mathrm{t}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.46-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.82-7.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.78,162.54,159.15,152.79,139.88,133.70,132.33,131.56,131.13$, $130.58,129.35,129.19,128.89,128.85,128.50,128.29,128.02,127.56,125.60,122.23$, 102.92; IR (ATR): 1718, 1649, 1607, 1548, 1486, 1447, 1316, 1288, 1091, 1011, 936, 829, $785,685,653,626,599,572$. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{ClNO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 500.1024, Found: 500.1025.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 15 as a pale green solid ($41.6 \mathrm{mg}, 91 \%$ yield, m.p. $=165-166{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.28(\mathrm{~s}, 3 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.14-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.32(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.45$ (m, 3H), 7.79-7.81 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.86,162.74$, $158.95,153.00,138.78,136.86,134.30,131.88,131.17,130.94,130.87,129.82,129.47$, $128.89,128.85,128.31,128.22,127.83,126.40,125.62,122.06,103.07,20.95$; IR (ATR): 1711, 1657, 1619, 1551, 1511, 1448, 1289, 1177, 1070, 1026, 791, 766, 689, 636, 609, 566, 513. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 480.1570$, Found: 480.1568.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 16 as a pale green solid ($44.0 \mathrm{mg}, 93 \%$ yield, m.p. $=168-169{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.75(\mathrm{~s}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.46$ $(\mathrm{m}, 3 \mathrm{H}), 7.80-7.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.85,162.79$, $158.89,158.08,153.06,134.17,134.07,131.89$, 131.10, 130.94, 130.77, 129.38, 128.83, $128.31,128.24,127.84,125.57,121.73,114.37,103.00,55.37$; IR (ATR): 1712, 1653, 1607, 1549, 1507, 1447, 1245, 1172, 1026, 831, 792, 766, 689, 639, 609, 562, 519. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 496.1519$, Found: 496.1520.

The reaction was run at $80^{\circ} \mathrm{C}$ for 10 h , affording product $\mathbf{1 7}$ as a pale yellow solid ($44.8 \mathrm{mg}, 94 \%$ yield, m.p. $=193-194{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 7.06-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.16(\mathrm{~m}$, $2 \mathrm{H}), 7.20-7.23$ (m, 2H), 7.23-7.27 (m, 5H), 7.37 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.49$ (m, 3H), 7.82 (dd, $J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $169.83,162.55,159.25,152.75,142.52,134.70$, 133.72, 131.71, 131.46, 131.18, 130.68, 129.90 , 129.44, 128.94, 128.91, $128.59,128.33$, 128.08 , $126.89,126.59,125.70,124.69$, 122.40, 102.97; IR (ATR): 1719, 1662, 1631, 1552, 1474, 1324, 1076, 917, 763, 686, 596. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{ClNO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 500.1024$, Found: 500.1020.

18

The reaction was run at $80^{\circ} \mathrm{C}$ for 10 h , affording product 18 as a pale green solid ($42.5 \mathrm{mg}, 93 \%$ yield, m.p. $=189-190^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.11(\mathrm{~s}, 3 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 7.03-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.28(\mathrm{brm}$, $2 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.73-7.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.73,162.90,158.52,152.98,140.21,135.16,134.17,131.94,131.63$, $131.50,130.99,130.83,129.50,128.89,128.69,128.28,128.12,127.98,127.94,127.16$, $125.62,119.95,102.57,18.71$; IR (ATR): 1721, 1675, 1623, 1547, 1462, 1401, 1375, 1062, 932, 757, 682, 574. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 480.1570, Found: 480.1566.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 19 as a pale yellow solid ($37.1 \mathrm{mg}, 62 \%$ yield, m.p. $=167-168{ }^{\circ} \mathrm{C}$) ; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.79-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.98(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{brm}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{brm}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.70$ (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.91(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.60-7.62 (m, 2H), $7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.73,161.91$, $159.24,153.82,149.28,148.06,134.75,132.29,131.83,131.56,131.28,131.17,130.41$, 129.70, 129.42, 129.40, 129.20, 128.91, 128.42, 128.24, 127.49 (q, $J=3.3 \mathrm{~Hz}$), 123.87 (q, $J=$ 273 Hz), 121.19, 112.30, 111.32, 102.66, 55.87, 55.72, 52.98, 33.42; ${ }^{19}$ F NMR (376 MHz , CDCl_{3}) δ-59.09; IR (ATR): 1717, 1672, 1610, 1544, 1450, 1398, 1366, 1055, 913, 742, 657, 565. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~F}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 622.1812$, Found: 622.1812 .

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 20 as a pale yellow solid ($39.2 \mathrm{mg}, 72 \%$ yield, m.p. $=155-156{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.39(\mathrm{brm}, 3 \mathrm{H}), 2.85-2.91(\mathrm{~m}, 1 \mathrm{H}), 3.09($ brs, 1 H$), 3.54$ (brs, 1H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{brm}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}$, $1 \mathrm{H}), ~ 6.78-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.11 (brm, 3H), 7.20-7.30 (m, 4H), 7.39 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.48$ (m, $3 \mathrm{H}), 7.58-7.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.72,161.21,159.10,154.91$, $149.31,148.07,134.87,131.43,131.14,130.78$, $130.59,130.52,129.89,128.98,128.89$, $128.45,128.10,125.70,125.52,121.29,112.52,111.34,55.90,55.79,33.15,18.99$; IR (ATR): 1714, 1654, 1630, 1550, 1517, 1447, 1390, 1319, 1261, 1243, 1160, 1136, 1080, 1028, 911, 864, 805, 762, 716, 689, 640, 580, 544. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 568.2094$, Found: 568.2101.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 21 as a pale
 yellow solid ($32.0 \mathrm{mg}, 57 \%$ yield, m.p. $=143-144{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.92(\mathrm{brm}, 2 \mathrm{H}), 3.64(\mathrm{brm}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 4.12(\mathrm{brm}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.85-6.89 (m, 3H), 7.18-7.25 (m, 4H), 7.31-7.45 (m, 6H), 7.52-7.54 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.60, 158.31, 149.20, 147.94, $134.79,131.88,131.17,130.87,130.73,130.25,129.45,128.78,128.38$, 127.91, 125.45 , 121.27, 120.62, 120.16, 115.29, 112.45, 111.24, 110.70, 102.53, 55.82, 55.78, 55.18, 52.28, 33.20; IR (ATR): 1702, 1668, 1637, 1549, 1514, 1452, 1398, 1320, 1286, 1239, 1154, 1139, 1024, $911,858,804,774,757,722,696,665,647,626,569,523$. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 584.2044$, Found: 584.2047.

The reaction was run at $80^{\circ} \mathrm{C}$ for 10 h , affording product 22 as a pale yellow solid ($48.8 \mathrm{mg}, 87 \%$ yield, m.p. $=92-93{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 3.03$ (brm, 2 H), $3.51(\mathrm{brm}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{brm}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.89(\mathrm{~m}, 2 \mathrm{H}), 7.07$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.42-7.46 (m, 3H), 7.54-7.56 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.67,162.17,159.29$, $158.68,153.73,149.32,148.07,134.62,132.43,131.81,131.17,131.10,130.47,129.33$, 128.86, 128.07, 127.83, 125.47, 121.93, 121.31, 120.52, 115.11, 114.69, 112.44, 111.33, $102.38,55.84,55.79,55.07,53.27,33.12$; IR (ATR): 1704, 1654, 1630, 1514, 1492, 1452, 1390, 1317, 1266, 1240, 1157, 1025, 837, 805, 775, 715, 691, 642, 628. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 584.2044 , Found: 584.2054.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 23 as a pale yellow solid ($52.7 \mathrm{mg}, 96 \%$ yield, m.p. $=197-198{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.05$ (brm, 2H), 3.72 (brm, 2H), 3.77 (s, 3H), 3.87 (s, 3H), $5.79(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.93(\mathrm{~m}, 3 \mathrm{H})$, 6.98-7.02 (m, 2H), 7.05-7.07 (m, 2H), $7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.57(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.63$, 162.51 (d, $J=248 \mathrm{~Hz}$), 162.19, 158.90, 153.78, 149.37, 148.13, 134.41, 131.84 (d, $J=8.0$ $\mathrm{Hz}), 131.72,131.39,131.21,130.39,128.89,128.03,127.92,127.23(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 125.49$, 121.31, 119.84, 115.54, 115.33, 112.46, 111.37, 102.13, 55.86, 55.80, 53.35, 33.10. ${ }^{19}$ F NMR (376 MHz, CDCl_{3}) $\delta-112.16$; IR (ATR): 1710, 1668, 1627, 1544, 1515, 1436, 1387, 1259,

1238, 1140, 1085, 1024, 910, 844, 807, 772, 715, 694, 644, 592, 518. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{FNO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 572.1844$, Found: 572.1840.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 24 as a pale yellow solid ($53.7 \mathrm{mg}, 95 \%$ yield, m.p. $=173-174^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 3.05$ (brm, 2H), 3.63 (brm, 1H), 3.77 ($\mathrm{s}, 3 \mathrm{H}$), 3.88 ($\mathrm{s}, 3 \mathrm{H}$), 4.12 (brm, 1H), $5.78(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.80-6.91(\mathrm{~m}, 4 \mathrm{H}), 7.04-7.06(\mathrm{~m}, 2 \mathrm{H})$, $7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{tt}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.43-7.48 (m, 3H), 7.55-7.57 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $169.60,161.99,159.08,153.92,149.38,148.14,134.46,134.37,131.68,131.42,131.27$, 130.34, 129.76, 128.91, 128.57, 128.06, 127.97, 125.52, 121.31, 119.60, 112.44, 111.38, 102.11, 55.86, 55.81, 53.38, 33.09; IR (ATR): 1703, 1654, 1612, 1533, 1501, 1424, 1390, 1267, 1244, 1136, 1095, 1033, 931, 861, 767, 721, 652, 574. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+}: 588.1548$, Found: 588.1543.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 25 as a pale yellow solid ($57.2 \mathrm{mg}, 94 \%$ yield, m.p. $=168-169{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 3.06(\mathrm{brm}, 2 \mathrm{H}), 3.62(\mathrm{brm}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $4.14(\mathrm{brm}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.78-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.39$ (m, 1H), 7.41-7.48 (m, 5H), 7.54-7.57 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 169.60,161.92,159.10,153.89,149.39,148.15,134.37,131.68,131.53,131.43$, 131.29, 130.35, 130.25, 128.91, 128.07, 127.98, 125.53, 122.73, 121.32, 119.61, 112.45, 111.39, 102.12, 55.87, 55.81, 53.39, 33.10. IR (ATR): 1720, 1657, 1631, 1550, 1511, 1412, $1355,1243,1255,1124,1045,1032,925,832,673,567$. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{BrNO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 632.1043$, Found: 632.1041.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 26 as a pale
 yellow solid ($55.1 \mathrm{mg}, 92 \%$ yield, m.p. $=190-191{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.09(\mathrm{brm}, 2 \mathrm{H}), 3.65(\mathrm{brm}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $4.08(\mathrm{brm}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.58(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.40,161.80,159.67,154.51,149.46,148.22,135.15$ (q, $J=1.2 \mathrm{~Hz}$), 134.14, 131.68, 131.55, 131.47, 130.35, 130.26, 130.04, 128.96, 128.02, 128.00, 125.61, $125.20(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.89(\mathrm{q}, J=272 \mathrm{~Hz}), 121.35,119.16,112.47$,
111.44, 101.85, 55.88, 55.82, 53.65, 33.06; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.82; IR (ATR): 1713, 1671, 1628, 1543, 1521, 1402, 1378, 1225, 1154, 1033, 934, 815, 663, 587. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 622.1812$, Found: 622.1804.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 27 as a pale yellow solid ($51.7 \mathrm{mg}, 93 \%$ yield, m.p. $=172-173{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.08(\mathrm{brm}, 2 \mathrm{H}), 3.72(\mathrm{brm}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, 4.10 (brm, 1H), $5.80(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (dd, $J=8.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.98(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38$ (tt, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.58$ (m, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.28,161.42,160.10,154.84,149.48,148.24,136.33$, $133.96,131.86,131.72,131.62,130.79,130.11,128.98,128.06,128.05,125.65,121.33$, $118.60,118.45,112.47,111.75,111.46,101.59,55.89,55.81,53.72,33.00 .{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.82; IR (ATR): 2247, 1715, 1662, 1633, 1534, 1501, 1397, 1345, 1218, 1133, 1044, 985, 857, 678, 596. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 579.1890, Found: 579.1882.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 28 as a pale yellow solid ($46.9 \mathrm{mg}, 86 \%$ yield, m.p. $=121-122{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{brm}, 2 \mathrm{H}), 3.42(\mathrm{brm}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 4.33(\mathrm{brm}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H})$, , 6.86-6.90 (m, 3H), 7.08 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.14 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.54-$ $7.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.89,162.47,158.30,153.26,149.29,148.05$, $138.51,134.73,131.75,131.17,131.01,130.57,129.70$, 129.10, 128.85, 128.32, 128.09, $127.89,125.45,121.31,120.93,112.43,111.31,102.70,55.85,55.82,53.02,33.21,21.36$. IR (ATR): 1717, 1663, 1631, 1538, 1498, 1432, 1378, 1294, 1165, 1136, 1047, 834, 734, 675, 568. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 568.2094, Found: 568.2096.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 29 as a pale yellow solid ($47.1 \mathrm{mg}, 84 \%$ yield, m.p. $=151-152{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 3.00$ (brm, 2H), 3.46 (brm, 1H), 3.78 (s, 3H), 3.84 (s, 3H), 3.86 (s, 3H), 4.35 (brm, 1H), 5.76 ($\mathrm{s}, 1 \mathrm{H}), 6.72$ (s, 1H), $6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.84-6.89 (m, 3H), 6.93 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{tt}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.53-$ $7.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.90,162.56,159.64,158.11,152.97,149.29$,
$148.05,134.69,131.73,131.17,130.96,130.56,129.44,128.84,128.00,127.87,125.41$, $123.47,121.30,120.60,113.87,112.43,111.31,102.61,55.84,55.80,55.27,52.97,33.17$; IR (ATR): 1709, 1670, 1626, 1542, 1507, 1449, 1394, 1253, 1174, 1141, 1084, 1028, 905, 829, 772, 721, 693, 640, 562. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 584.2044, Found: 584.2036.

30

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 30 as a pale yellow solid ($55.2 \mathrm{mg}, 91 \%$ yield, m.p. $=166-167{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.06(\mathrm{brm}, 2 \mathrm{H}), 3.56(\mathrm{brm}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $4.40(\mathrm{brm}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.41(\mathrm{~m}$, $2 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.63-7.65(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.79,162.36,158.67,153.63,149.33,148.08$, $141.12,140.35,134.55,131.75,131.27,131.14,130.48,130.28,128.89,128.82,128.05$, $127.92,127.59,127.06,126.99,125.50,121.33,120.38,112.43,111.33,102.44,102.44$, $55.85,55.81,53.30,33.15$; IR (ATR): 1716, 1657, 1627, 1546, 1515, 1447, 1390, 1319, 1246, $1158,1026,910,837,810,764,721,689,645,625,574$. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 630.2251$, Found: 630.2256 .

The reaction was run at $80^{\circ} \mathrm{C}$ for 10 h , affording product 31 as a pale yellow solid ($47.1 \mathrm{mg}, 81 \%$ yield, m.p. $=180-181{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.83-2.85(\mathrm{brm}, 2 \mathrm{H}), 3.57(\mathrm{brm}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.87$ $(\mathrm{s}, 4 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.84-7.04(\mathrm{~m}, 6 \mathrm{H}), 7.16-$ $7.25(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.64-7.65(\mathrm{~m}, 2 \mathrm{H})$, $7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 169.76,162.02,159.27,155.82,149.22,148.00,134.77,133.58,131.48,131.30$, $131.20,130.60,129.64,129.22,128.92,128.43,128.12,127.89,126.45,125.79,125.61$, $125.20,124.61,121.20,112.40,111.29,102.77,55.88,55.80,33.22$. IR (ATR): 1719, 1664, 1629, 1547, 1535, 1441, 1378, 1310, 1268, 1048, 975, 878, 805, 747, 587. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{38} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 604.2094$, Found: 604.2092.

The reaction was run at $80^{\circ} \mathrm{C}$ for 8 h , affording product 32 as a pale yellow
 solid ($41.1 \mathrm{mg}, 85 \%$ yield, m.p. $=117-118{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 6.57(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{brm}, 2 \mathrm{H}), 7.20-7.24$ (m, 5H), $7.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.49(\mathrm{~m}, 3 \mathrm{H})$, 7.78-7.79 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.81,161.90,158.79$,
$139.50,133.92,132.69,131.58,131.23,130.79,130.52,129.59,128.99,128.30,128.15$, 128.01, 127.37, 126.81, 125.60, 125.26, 117.94, 102.69; IR (ATR): 1726, 1673, 1628, 1556, 1488, 1447, 1287, 1089, 1012, 851, 791, 764, 689, 675, 652, 635, 605, 575, 515. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{ClNO}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 506.0588$, Found: 506.0581.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 33 as a pale yellow solid ($53.9 \mathrm{mg}, 95 \%$ yield, m.p. $=221-222{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.04(\mathrm{brm}, 2 \mathrm{H}), 3.55(\mathrm{brm}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 4.34(\mathrm{brm}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84-6.92(\mathrm{~m}, 5 \mathrm{H}), 6.96-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.35$ $(\mathrm{m}, 3 \mathrm{H}), 7.52-7.57(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.55$, 164.41 (d, $J=252 \mathrm{~Hz}), 164.28(\mathrm{~d}, J=252 \mathrm{~Hz}), 161.95,158.02(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}), 153.52,149.46,148.20,131.97,131.11,130.70(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 130.38(\mathrm{~d}, J=9.2$ $\mathrm{Hz}), 129.84,128.56,128.39,127.74,127.66,126.69(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 121.43,120.70,116.15$ (d, $J=22.2 \mathrm{~Hz}$), $114.99(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 112.50,111.40,101.59,55.93,55.86,53.65,33.05$; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-107.22,-107.65$. IR (ATR): $1714,1662,1617,1543,1476$, 1434, 1276, 1077, 1021, 869, 758, 676, 664, 648, 582. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 590.1750$, Found: 590.1751.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 34 as a pale yellow solid ($55.1 \mathrm{mg}, 92 \%$ yield, m.p. $=215-216{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.98(\mathrm{brm}, 2 \mathrm{H}), 3.43(\mathrm{brm}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 4.41(\mathrm{brm}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.89-6.93 (m, 5H), $7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.58,161.80,157.83,153.21,149.47,148.22,137.48,137.42$, $132.89,131.86,130.96,129.87,129.37,129.22,128.82,128.65,128.42,128.12,126.70$, $121.44,121.22,112.43,111.40,102.02,55.95,55.88,53.64,33.02$; IR (ATR): 1717, 1665, 1627, 1545, 1511, 1490, 1440, 1391, 1264, 1153, 1086, 1011, 904, 819, 787, 753, 698, 637, 575. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 622.1158$, Found: 622.1169 .

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 35 as a pale
 yellow solid ($63.9 \mathrm{mg}, 93 \%$ yield, m.p. $=205-206{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.94(\mathrm{brm}, 2 \mathrm{H}), 3.41(\mathrm{brm}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 4.42(\mathrm{brm}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 6.74-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.88-6.92(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.59 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.68$, 161.77, 157.89, 153.16, 149.47, 148.22, 133.33, 132.19, 131.83, 131.09, $130.94,129.86,129.51,129.25,128.67,128.42,126.84,125.91,125.85$, $121.44,121.33,112.40,111.39,102.03,55.94,55.88,53.62,33.01$; IR (ATR): 1713, 1663, $1627,1586,1544,1510,1486,1441,1389,1270,1151,1068,1008,903,817,786,750,699$, 636, 573. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{Br}_{2} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 710.0148$, Found: 710.0152 .

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 36 as a pale yellow solid ($50.8 \mathrm{mg}, 91 \%$ yield, m.p. $=190-191{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.94$ (brm, 2H), 3.45 (brm, $1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{brm}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}$, $1 \mathrm{H}), 6.72$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.94$ (m, $6 \mathrm{H}), 7.19$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23-7.27 (m, 3H), 7.39 (d, $J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.80,162.50,158.83,154.02$, $149.26,148.00,141.66,131.85,131.46,129.91,129.56,128.48,128.33,128.26,128.20$, $127.79,125.41,121.33,120.24,112.40,111.29,101.90,55.85,55.79,53.13,33.15,21.44$, 21.42. IR (ATR): 1716, 1658, 1612, 1538, 1524, 1487, 1455, 1378, 1257, 1158, 1052, 948, 779, 567. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 582.2251$, Found: 582.2240.

The reaction was run at $80^{\circ} \mathrm{C}$ for 8 h , affording product 37 as a pale yellow solid ($54.4 \mathrm{mg}, 92 \%$ yield, m.p. $=136-137{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.01$ (brm, 2H), 3.60 (brm, 2H), 3.77 ($\mathrm{s}, 3 \mathrm{H}$), 3.78 (s , $3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.72-$ $6.73(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.92-$ $6.95(\mathrm{~m}, 4 \mathrm{H}), 7.00-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.27, 162.57, 161.96, 161.89, $158.86,154.45,149.25,147.98,132.06,131.59,130.17,129.88$, 128.97, 128.23, 128.19, $127.24,126.96,123.08,121.31,119.33,114.24,113.06,112.52,111.30,100.84,55.86,55.81$,
55.47, 55.29, 53.27, 33.13; IR (ATR): 1700, 1656, 1605, 1539, 1509, 1442, 1390, 1321, 1241, 1184, 1023, 853, 824, 782, 744, 698, 639, 612, 563. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 614.2149$, Found: 614.2155.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product $\mathbf{3 8}$ as a pale green solid ($44.6 \mathrm{mg}, 92 \%$ yield, m.p. $=196-197{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H})$, 6.96-7.03 (m, 5H), $7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.27$ (brs, $1 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.14,162.89,159.13,153.17,138.84,138.74$, $137.85,136.75,134.28,131.94,131.88,131.77,130.82,129.79,129.52,128.73,128.24$, 128.16, 127.42, 126.35, 126.23, 125.66, 122.78, 121.87, 103.09, 21.36, 21.17, 20.97; IR (ATR): 1708, 1662, 1627, 1548, 1509, 1432, 1345, 1297, 909, 782, 726, 693, 566. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 508.1883 , Found: 508.1889.

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 39 as a pale green solid (41.2 mg, 85\% yield, m.p. $=181-182{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 2 \mathrm{H})$, 6.82-6.83 (m, 2H), 6.91-6.94 (m, 2H), $7.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.36(\mathrm{tt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.32,163.22,160.56$, 152.64, 138.17, 136.78, 136.73, 134.35, 132.11, 131.65, 131.32, 130.72, 130.42, 129.83, 129.56, 129.37, 129.11, 128.48, 128.25, 127.85, 126.33, 126.08, 124.97, 122.37, 107.77, 20.90, 19.65. IR (ATR): 1714, 1657, 1632, 1541, 1498, 1447, 1355, 1278, 935, 774, 712, 678, 558. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{2} 7 \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 508.1883, Found: 508.1879.

The reaction was run at $80^{\circ} \mathrm{C}$ for 8 h , affording product 40 as a pale yellow solid ($47.9 \mathrm{mg}, 86 \%$ yield, m.p. $=171-172{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.28(\mathrm{~s}, 3 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.93-7.02(\mathrm{~m}, 4 \mathrm{H}), 7.24-$ $7.28(\mathrm{~m}, 6 \mathrm{H}), 7.45-7.61(\mathrm{~m}, 5 \mathrm{H}), 7.71-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.85-7.89(\mathrm{~m}, 3 \mathrm{H})$, 7.93-7.95 (m, 1H), $8.46(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.93$, $162.89,158.94,153.22,138.75,136.88,134.23,132.92,132.13,131.93$, $131.65,130.37,129.91,129.47,128.98,128.88,128.66,128.36,128.24$, 127.84, 127.73, 127.68, 127.58, 127.36, 126.97, 126.53, 126.40, 126.20, 124.83, 122.17, 121.90, 103.46, 20.95; IR (ATR): 1697, 1655, 1624, 1509, 1432, 1350, 1270, 1193, 1125, 947,

905, 867, 817, 735, 700, 563. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{39} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 580.1883, Found: 580.1895.

The reaction was run at $80^{\circ} \mathrm{C}$ for 8 h , affording product 41 as a pale yellow solid ($33.0 \mathrm{mg}, 62 \%$ yield, m.p. $=151-152{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.96$ (brm, 2H), $3.39(\mathrm{brm}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $4.11(\mathrm{brm}, 1 \mathrm{H}), 6.66-6.75(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.37-$ 7.42 (m, 2H), 7.59-7.61 (m, 1H), 7.70 (td, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.81$ (m, 1H), $7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.57-8.59(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.66,162.65,156.01,149.69$, $148.93,148.39,147.69,147.55,136.99,136.83,132.06,130.79,129.61,129.00,128.54$, 128.50, 128.26, 128.21, 125.71, 124.81, 124.70, 120.94, 120.32, 111.99, 111.16, 105.87, 55.74, 51.53, 33.79; IR (ATR): 1737, 1655, 1622, 1560, 1515, 1441, 1236, 1156, 1025, 810, 746, 696, 618. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 556.1843$, Found: 556.1846 .

The reaction was run at $80^{\circ} \mathrm{C}$ for 8 h , affording product 42 as a pale yellow solid ($44.4 \mathrm{mg}, 87 \%$ yield, m.p. $=142-143{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.83(\mathrm{brm}, 2 \mathrm{H}), 3.64(\mathrm{brm}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.88(\mathrm{brm}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=3.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=$ $3.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.27(\mathrm{~m}$, $1 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.50(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.94,158.86,153.35,150.17,149.01,147.85,147.17,145.82,144.99,144.96,131.56$, $130.75,129.32,128.70,128.54,120.97,119.74,117.66,112.52,112.20,112.03,111.91$, $111.14,101.72,55.74,55.72,51.33,33.56$; IR (ATR): 1711, 1672, 1636, 1515, 1466, 1388, $1261,1155,1016,884,749,698,592$. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 534.1523$, Found: 534.1522.

The reaction was run at $80^{\circ} \mathrm{C}$ for 8 h , affording product 43 as a pale yellow solid ($48.9 \mathrm{mg}, 90 \%$ yield, m.p. $=165-166{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.92(\mathrm{brm}, 2 \mathrm{H}), 3.70(\mathrm{brm}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $5.64(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.94 (dd, $J=4.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (dd, $J=4.8,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.42$ (dd, $J=4.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl_{3}): $\delta 162.46,161.76,154.39,153.51,149.03,147.78,137.43,134.30$, $131.34,131.33,131.30,131.22,129.51,129.39,128.62,128.54,128.34,127.76,127.13$, $121.13,120.60,112.25,111.25,102.15,55.75,55.72,52.66,33.16$; IR (ATR): 1707, 1647, $1614,1535,1440,1419,1392,1301,1262,1234,1158,1026,856,809,786,731,695,636$, 569. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 566.1066$, Found: 566.1068.

The reaction was run at $80^{\circ} \mathrm{C}$ for 8 h , affording product 44 as a pale yellow solid ($20.4 \mathrm{mg}, 50 \%$ yield, m.p. $=132-133{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{brm}, 1 \mathrm{H}), 2.79(\mathrm{brm}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{brm}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.76$ (d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.42(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 168.94,163.26,160.76,152.74,148.95,147.79,131.38,130.87$, 129.06, 128.82, 128.72, 120.82, 111.97, 111.12, 106.26, 55.85, 50.07, 33.59, 22.95, 19.74; IR (ATR): $1713,1665,1634,1561,1515,1440,1345,1237,1140,1027,944,853,792,750,699$, 657, 569. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 430.1625$, Found: 430.1633 .
 The reaction was run at $80^{\circ} \mathrm{C}$ for 8 h , affording product 45 as a pale yellow solid ($34.8 \mathrm{mg}, 80 \%$ yield, m.p. $=108-109^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.26(\mathrm{q}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.48(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.63-2.80(\mathrm{brm}, 3 \mathrm{H}), 3.74-3.90(\mathrm{brm}, 1 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 6.59-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26-7.27 (m, 2H), 7.31-7.36 (m, 1H), 7.37-7.41 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $172.63,165.47,163.32,152.85,148.89,147.71,131.51,130.87,129.07,128.72,128.65$, $120.95,120.79,111.92,111.08,104.74,55.80,50.20,33.68,28.04,26.67,10.65,9.35$. IR (ATR): $1718,1657,1623,1547,1502,1477,1332,1245,1135,1011,924,878,765,744,686$, 645. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 458.1938, Found: 458.1939.

The reaction was run at $80^{\circ} \mathrm{C}$ for 10 h , affording product 46 as a pale-green solid ($38.4 \mathrm{mg}, 83 \%$ yield, m.p. $=92-93{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 0.95 (brs, 3 H), 1.09 (brs, 3 H), 1.19 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.58-2.72(\mathrm{~m}, 3 \mathrm{H})$, 2.89 (brm, 2H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{brm}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 6.62$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.35(\mathrm{~m}$, $1 \mathrm{H}), 7.37-7.41(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.69,169.12$, $163.34,153.18,148.94,147.75,131.54,129.32,128.64,120.91,111.98,111.10,102.92$,
55.80, 50.94, 33.50, 32.67, 32.42, 20.54, 20.00, 19.90, 19.75, 19.01. IR (ATR): 1714, 1664, 1617, 1532, 1499, 1466, 1387, 1236, 1175, 1023, 952, 886, 748, 741, 687. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 486.2251$, Found: 486.2258.

The reaction was run at $80{ }^{\circ} \mathrm{C}$ for 6 h , affording the product as a separable mixture of two regioisomers (1.6:1.0 ratio) (pale yellow solid, $29.8 \mathrm{mg}, 50 \%$ yield of the major regioisomer 47, m.p. $=152-153{ }^{\circ} \mathrm{C}$); NMR data of the major regioisomer 47 was listed below: ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.02(\mathrm{brm}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.87$ (brm, $5 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 6.67-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=$ $8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.97(\mathrm{~m}, 2 \mathrm{H}), 7.00-7.04$ (m, 2H), 7.28-7.35 (m, 3H), 7.41-7.43 (m, 2H), 7.46-7.48 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 169.27,162.16,162.01,157.44,153.98,149.37,148.09,137.25,132.09,131.30$, 130.17, 129.84, 129.18, 129.02, 128.49, 128.34, 126.83, 126.70, 121.42, 120.73, 113.16, $112.55,111.35,102.60,55.94,55.87,55.35,53.32,33.15$; IR (ATR): 1718, 1662, 1603, 1546, 1510, 1440, 1389, 1256, 1168, 1087, 1031, 904, 824, 774, 750, 698, 628,609, 572. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NO}_{6} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+}: 618.1654$, Found: 618.1648.

The reaction was run at $80^{\circ} \mathrm{C}$ for 8 h , affording the product as a separable mixture of two regioisomers (1.3:1 ratio) (pale yellow solid, $16.9 \mathrm{mg}, 36 \%$ yield of the major regioisomer 48, m.p. $\left.=45-46{ }^{\circ} \mathrm{C}\right)$; NMR data of the major regioisomer 48 was listed below: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.13(\mathrm{~s}, 3 \mathrm{H})$, 2.93 (brm, 2H), 3.79 (brm, 5H), 3.89 (s, 3H), $5.27(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.73$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.97(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=7.2,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.78,163.12,160.53,153.17,149.12,147.96,134.60,131.35,131.27$, $131.13,129.74,128.38,127.94,127.90,121.04,119.80,112.40,111.28,104.96,55.99,55.83$, 52.55, 33.50, 19.88; IR (ATR): 1717, 1639, 1612, 1559, 1514, 1440, 1261, 1142, 1026, 935, 789, 696, 568. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{29} \mathrm{H}_{2} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 492.1781$, Found: 492.1784.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 49 as a yellow solid ($63.7 \mathrm{mg}, 81 \%$ yield, m.p. $=215-216{ }^{\circ} \mathrm{C}$) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{brm}, 2 \mathrm{H})$, 7.13-7.15 (m, 2H), 7.29-7.37 (m, 11H), 7.40-7.49 (m, 10H), 7.70 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 8.07 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 8.14 (t, $J=8.0 \mathrm{~Hz}$, 4 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.02,162.55,158.25$, $152.75,140.40,140.23,140.19,140.10,138.63,137.38,132.68$, 131.78, 130.55, 130.14, 129.47, 129.30, 128.61, 128.45, 127.25, 126.97, 126.51, 126.16, 126.11, 125.95, 123.70, 123.66, 120.49, 120.44, 120.42, 109.65, 109.53, 103.13, 21.07; IR (ATR): 1718, 1670, 1599, 1509, 1448, 1336, 1225, 1170, 746, 722, 564. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{55} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 810.2727$, Found: 810.2741.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 50 as a yellow solid $(61.7 \mathrm{mg}, 61 \%$ yield, m.p. $=234-235$ ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.50-1.51(\mathrm{~m}, 36 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 7.06$ (brm, 2H), 7.16-7.18 (m, $2 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.44-7.53(\mathrm{~m}, 10 \mathrm{H}), 7.73$ (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.09$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 8.18 (d, $J=8.8 \mathrm{~Hz}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.11,162.58$, $158.35,152.85,143.49,143.47,140.93,140.74,138.68$, $138.48,138.42,137.25,132.09,131.80,130.47,130.10$, 129.47, 128.69, 128.52, 128.41, 127.18, 126.47, 126.38, 125.40, 123.79, 123.74, 123.68, $116.36,116.31,109.14,109.05,102.98,34.72,34.70,31.92,31.91,21.05$; IR (ATR): 1723, 1681, 1602, 1511, 1471, 1363, 1293, 1177, 809, 696, 610, 566. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{71} \mathrm{H}_{69} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 1034.5231, Found: 1034.5233.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 51 as a yellow solid ($49.6 \mathrm{mg}, 57 \%$ yield, m.p. $=131-132{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.66$ (s, 6H), 1.70 (s, 6H), 2.35 (s, 3H), 6.15 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.27$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.78$ (s, 1H), 6.96-7.01 (m, 10H), 7.10-7.12 (m, 2H), 7.18 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33-7.36 (m, 5H), 7.45-7.49 (m, 8H), 8.09 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.29,158.26,143.96,140.41$, 140.27, 138.55, 137.46, 134.02, 131.80, 131.29, 130.76, 130.45, $130.33,130.31,130.02,129.52,128.67,128.49,128.22,126.57,126.40,126.27,125.37$,
125.31, 120.97, 114.01, 113.96, 103.42, 35.98, 35.95, 31.18, 31.04, 21.07; IR (ATR): 1717, 1674, 1591, 1509, 1447, 1268, 1046, 743, 695, 623. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{61} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 894.3666$, Found: 894.3664.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 52 as a yellow solid ($56.8 \mathrm{mg}, 53 \%$ yield, m.p. $=115-116^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.10-2.26(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, 2.91 (s, 3H), $2.99(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.17$ (ddd, $J=16.4,8.0,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.92(\mathrm{~m}$, 6 H), 7.03 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.16-$ $7.20(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 10 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.63(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.88$, $163.52,160.18,159.73,154.72,150.89,150.59,140.35,140.31,139.92,135.92,132.49$, $131.25,129.69,129.62,128.89,128.88$, 128.04, 128.01, 127.93, 127.63, 127.19, 126.84, $126.82,126.80,126.78,126.75,126.26,125.56,125.54,124.28(\mathrm{q}, J=270 \mathrm{~Hz}), 123.02(\mathrm{q}, J$ $=33 \mathrm{~Hz}), 123.00(\mathrm{q}, J=33 \mathrm{~Hz}), 118.72$, 118.33, 115.65, 111.44, 110.18, 100.30, 77.87, 77.80, 48.67, 38.54, 35.84, 35.81, 20.96; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.60$, -61.61; IR (ATR): 1706, 1656, 1599, 1516, 1321, 1178, 1107, 1066, 820, 754, 698, 636, 564. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{6} \mathrm{H}_{55} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1094.3938$, Found: 1094.3932.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 53 as a yellow solid ($75.1 \mathrm{mg}, 72 \%$ yield, m.p. $=219-$ $220{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.29(\mathrm{~s}, 3 \mathrm{H})$, 3.23-3.43 (m, 9H), $3.66(\mathrm{brm}, 7 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.94(\mathrm{~m}, 6 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.09-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.23(\mathrm{~m}, 9 \mathrm{H}), 7.29-7.42(\mathrm{~m}$, 8 H), $7.52-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.56,166.87,163.26$, 160.68, 160.66, 159.26, 154.20, 152.83, 152.60, 148.59, $148.56,140.03,140.00,139.57,136.23,133.91,132.32$, 132.21, 130.99, 129.73, 129.60, 129.14, 128.93, 128.36, 128.04, 127.93, 127.91, 127.87, $127.02,126.29,125.26,124.20,123.13,121.31,119.79,114.75,113.46,101.13,47.57,47.40$, 46.34, 20.97; IR (ATR): 1707, 1657, 1596, 1510, 1478, 1365, 1225, 1008, 932, 760, 695, 561. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{65} \mathrm{H}_{53} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1066.3651$, Found: 1066.3658.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 54 as a pale yellow solid ($40.0 \mathrm{mg}, 85 \%$ yield, m.p. $=145-146{ }^{\circ} \mathrm{C}$); HPLC analysis (Chiralcel $\mathrm{OD},{ }^{i} \mathrm{PrOH} /$ hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=13.91 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ $($ minor $)=17.38 \mathrm{~min})$ gave the isomeric composition of the product: 99% ee, $[\alpha]^{25}{ }_{\mathrm{D}}=-120.1\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.69$ (brs, 3 H), 6.39 (brm, 3 H), 6.90-7.23 (brm, 5H), 7.31-7.47 (brm, 12H), 7.58 (brm, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 168.98,162.57,157.72,136.89,135.18,130.95,130.60,129.90,128.87,128.36$, 128.17, 128.06, 127.79, 127.03, 125.44, 17.38; IR (ATR): 1712, 1654, 1626, 1542, 1495, $1450,1401,1291,905,690,562$. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{2} 5 \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 494.1727, Found: 494.1723.

55

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 55 as a pale yellow solid ($45.2 \mathrm{mg}, 84 \%$ yield, m.p. $=166-167^{\circ} \mathrm{C}$); HPLC analysis (Chiralcel OD, ${ }^{i} \mathrm{PrOH} /$ hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$; t_{r} (major) $=24.78 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=10.72 \mathrm{~min}\right)$ gave the isomeric composition of the product: $98 \% \mathrm{ee},[\alpha]^{25} \mathrm{D}=-234.2\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.69$ (brs, 3 H), 6.29 (brm, 3H), 7.02 (brm, 3 H), 7.20 (brm, 2H), 7.31-7.41 (brm, 10H), 7.48-7.52 (brm, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $169.55,162.13,156.76,150.36,137.24,133.47$, 131.10, 129.84, 129.24, 129.13, 128.97, $128.56,125.50,128.29,128.23,126.97,126.67,17.30$; IR (ATR): 1718, 1662, 1627, 1544, 1489, 1394, 1296, 1090, 1012, 822, 755, 696, 572. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Cl}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 562.0947$, Found: 562.0943.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 56 as a pale yellow solid ($40.4 \mathrm{mg}, 81 \%$ yield, m.p. $=151-152{ }^{\circ} \mathrm{C}$); HPLC analysis $\left(\right.$ Chiralcel OD, ${ }^{i} \mathrm{PrOH} /$ hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)$ $=9.06 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=7.62 \mathrm{~min}\right)$ gave the isomeric composition of the product: $95 \% \mathrm{ee},[\alpha]^{25} \mathrm{D}=-135.1\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.68$ (brs, 3 H), 2.34 ($\mathrm{s}, 3 \mathrm{H}$), 2.40 ($\mathrm{s}, 3 \mathrm{H}$), 6.31 (brm, 3 H), 7.03 (brm, 6 H), 7.22 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29-7.38 (brm, 7 H), 7.47-7.48 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.78,157.95,151.20,141.56,141.39,132.40,131.48,129.96$, $129.57,128.78,128.20,128.09,127.90,127.02,125.39,21.43,17.36$; IR (ATR): 1711, 1652, $1598,1556,1502,1298,1232,1165,1009,843,759,684,635,605,574$. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 522.2040$, Found: 522.2047.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 57 as a pale yellow solid ($39.8 \mathrm{mg}, 75 \%$ yield, m.p. $=160-161{ }^{\circ} \mathrm{C}$); HPLC analysis $\left(\right.$ Chiralcel OD, ${ }^{i} \mathrm{PrOH} /$ hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$; $\mathrm{t}_{\mathrm{r}}($ major $)=16.30 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=12.73 \mathrm{~min}\right)$ gave the isomeric composition of the product: $98 \% \mathrm{ee},[\alpha]^{25} \mathrm{D}=-261.3\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.72$ (brs, 3 H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.86$ (s, $3 \mathrm{H}), 5.97-6.27$ (brm, 2H), 6.70 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.92 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.99-7.08 (brm, 4H), 7.27-7.30 (brm, 3H), 7.32-7.41 (brm, 5H), 7.55 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3} : $\delta 170.09,162.82,161.90,161.76,157.92,151.71,131.68,129.98,129.93,128.79$, $128.09,127.84,127.54,127.18,126.96,123.17,114.30,113.23,55.44,55.32,17.35$; IR (ATR): 1714, 1646, 1601, 1539, 1506, 1302, 1248, 1176, 1018, 838, 764, 697, 650, 614, 568. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 532.2118$, Found: 532.2121.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 58 as a pale
 yellow solid ($39.5 \mathrm{mg}, 72 \%$ yield, m.p. $=149-150{ }^{\circ} \mathrm{C}$); HPLC analysis $\left(\right.$ Chiralcel AD-H, ${ }^{i} \mathrm{PrOH} /$ hexane $=25 / 75,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)$ $=16.89 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=18.22 \mathrm{~min}\right)$ gave the isomeric composition of the product: $97 \% \mathrm{ee},[\alpha]^{25} \mathrm{D}=-75.1\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.69(\mathrm{brs}, 3 \mathrm{H}), 5.23-6.40(\mathrm{brm}, 2 \mathrm{H}), 6.97-7.39(\mathrm{~m}, 12 \mathrm{H}), 7.44-7.49(\mathrm{~m}, 5 \mathrm{H})$, 7.62 (brm, 2H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): δ 170.44, 162.44, 157.98, 135.02, 131.89, 131.18, 131.12, 130.50, 129.83, 129.02, 128.81, 128.48, 128.23, 127.79, 125.49, 122.02, 17.51; IR (ATR): 1712, 1659, 1626, 1542, 1489, 1398, 1290, 1074, 1007, 905, 765, 688, 646, 565. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{BrNO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 572.0832$, Found: 572.0833.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 59 as a pale yellow solid ($30.6 \mathrm{mg}, 63 \%$ yield, m.p. $=139-140{ }^{\circ} \mathrm{C}$); HPLC analysis $\left(\right.$ Chiralcel OD, ${ }^{i} \mathrm{PrOH} /$ hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=$ $9.06 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=7.62 \mathrm{~min}\right)$ gave the isomeric composition of the product: 95% ee, $[\alpha]^{25}{ }_{\mathrm{D}}=-153.2\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.77$ (brs, $3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 5.43-6.51(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.44(\mathrm{~m}, 15 \mathrm{H}), 7.58-7.76(\mathrm{brm}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.63,157.58,137.93,137.33,130.89,130.71,129.94,129.47,128.85$, 128.36, 128.13, 127.86, 127.77, 127.10, 127.06, 125.48, 21.03, 17.36. IR (ATR): 1720, 1647, 1613, 1565, 1511, 1392, 1247, 1135, 1012, 863, 747, 689, 631, 621, 586. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 486.2064$, Found: 486.2070.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 60 as a pale yellow solid ($40.6 \mathrm{mg}, 74 \%$ yield, m.p. $=163-164{ }^{\circ} \mathrm{C}$); HPLC analysis $\left(\right.$ Chiralcel OD, ${ }^{i} \mathrm{PrOH} /$ hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=$ $10.51 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=20.61 \mathrm{~min}\right)$ gave the isomeric composition of the product: 94% ee, $[\alpha]^{25} \mathrm{D}=-165.2\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 1.71$ (brs, 3H), 5.93-6.41 (brm, 3H), 6.83 (brm, 2H), 7.15 (brm, 2 H), 7.36-7.49 (brm, 12H), 7.59-7.60 (brm, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.59$, $162.21,158.15,150.94,140.94,134.98,131.56,131.32,131.15,130.46,128.93,128.21$, 127.75, 127.10, 125.48, 122.63, 102.01, 56.21, 17.54; IR (ATR): 1715, 1647, 1625, 1540, 1494, 1449, 1388, 1290, 1071, 909, 826, 766, 696, 647, 515. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{BrNO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 572.0832$, Found: 572.0824.

The reaction was run at $80^{\circ} \mathrm{C}$ for 10 h , affording product $\mathbf{6 1}$ as a pale yellow solid ($42.7 \mathrm{mg}, 88 \%$ yield, m.p. $=150-151^{\circ} \mathrm{C}$); HPLC analysis $\left(\right.$ Chiralcel OD, ${ }^{i} \operatorname{PrOH} /$ hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm} ; \mathrm{t}_{\mathrm{r}}($ major $)=$ $10.34 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $\left.)=12.51 \mathrm{~min}\right)$ gave the isomeric composition of the product: 99% ee, $[\alpha]^{25}{ }_{\mathrm{D}}=-114.1\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 1.72$ (brs, 3H), 2.27 (s, 3H), 6.49-6.85 (brm, 3H), 7.13-7.24 (brm, 6H), 7.37-7.48 (brm, 10H), 7.60 (brm, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.54,162.62,157.63,150.59$, $137.63,135.18,130.97,130.87,130.73,130.65,129.15,128.87,128.84,128.03,127.83$, 127.09, 126.62, 125.44, 21.49, 17.42. IR (ATR): 1718, 1654, 1612, 1561, 1488, 1438, 1377, 1286, 1082, 942, 875, 735, 664. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{33} \mathrm{H}_{2} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 508.1883, Found: 508.1884.

3) General Procedure for the One-Pot Synthesis of Di- and Trisubstituted α-Pyrones

The preparation of 3,4,6-trisubstituted $\boldsymbol{\alpha}$-pyrones: To an oven-dried Schlenk tube (10 mL) were successively added $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](10 \mathrm{~mol} \%)$, anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL}), \alpha$-diazoacetates $62(0.12 \mathrm{mmol})$, and isonitriles $\mathbf{6 3}(0.10 \mathrm{mmol})$. The reaction mixture was stirred vigorously at $80^{\circ} \mathrm{C}$ under N_{2} atmosphere. After the full consumption of isonitriles $\mathbf{6 3}$ by TLC analysis, 1,3-diketones $2(0.10 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.02 \mathrm{mmol})$ were added successively, and then the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ till completion. The reaction mixture was concentrated by rotary vaporation, and the residue was subjected to column chromatography using petroleum ether/ethyl acetate (from 5:1-1:1) as eluent to afford the desired 3,4,6-trisubstituted α-pyrones. The NMR data of these products were the same as described above.

The preparation of 4,6-disubstituted $\boldsymbol{\alpha}$-pyrones: To an oven-dried Schlenk tube (10 mL) were successively added CoBr_{2} ($20 \mathrm{~mol} \%$), anhydrous $\mathrm{MeCN}(1 \mathrm{~mL})$, α-diazoacetates $\mathbf{6 2}$ (0.12 mmol), isocyanides $\mathbf{6 3}(0.10 \mathrm{mmol})$, 1,3-diketones $2(0.10 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.02$ $\mathrm{mmol})$. The tube was backfilled with N_{2}. After stirring at $80^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was cooled and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 5:1-1:1) to give the desired 4,6-disubstituted α pyrones.

4) Spectral Data of 4,6-Disubstituted α-Pyrones

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 64 as a pale yellow solid ($16.8 \mathrm{mg}, 37 \%$ yield, m.p. $=128-129^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 4.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.84(\mathrm{~m}$, 2 H), 7.34-7.49 (m, 8H), 7.50-7.52 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 170.50, 162.47, 159.63, 157.77, 149.16, 148.02, 134.94, 131.84, 131.15,
130.77, 130.61, 128.84, 128.75, 128.51, 125.59, 121.13, 112.21, 111.38, 103.79, 101.47, 55.86, 51.62, 33.71; IR (ATR): 1701, 1654, 1625, 1515, 1449, 1409, 1260, 1139, 1026, 822, 794, 765, 726, 687, 632. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 478.1625, Found: 478.1622.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product $\mathbf{6 5}$ as a pale yellow solid ($16.4 \mathrm{mg}, 40 \%$ yield, m.p. $=103-104{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.31(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (s, 4H), 7.35$7.49(\mathrm{~m}, 8 \mathrm{H}), 7.50-7.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.51$, $162.46,159.57,157.88,136.63,135.19,134.98$, 131.79, 131.10, 130.80, $129.50,129.09,128.81,128.76,128.51,125.61,104.06,101.42,51.81$, 33.72, 21.01; IR (ATR): 1708, 1660, 1624, 1540, 1496, 1406, 1302, 1160, 1080, 918, 817, 795, 762, 729, 697, 631, 558. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{2} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 432.1570, Found: 432.1566.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 66 as a pale yellow solid ($19.8 \mathrm{mg}, 52 \%$ yield, m.p. $=89-90^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 5.19(\mathrm{~s}, 2 \mathrm{H}), 5.88(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.37 (m, 7H), 7.39-7.45 (m, 5H), 7.48-7.53 (m, 1H), 7.64-7.66 (m, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.87,162.58,159.30,157.28$, 136.18, 134.84, 132.05, 131.11, 130.82, 129.03, 128.87, 128.84, 128.59, 127.90, 127.03, 125.62, 102.67, 101.47, 52.36; IR (ATR): 1717, 1663, 1623, 1539, 1494, 1451, 1278, 1074, 966, 832, 765, 691, 594. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 404.1257, Found: 404.1262.

The reaction was run at $80^{\circ} \mathrm{C}$ for 12 h , affording product 67 as a pale yellow solid ($22.6 \mathrm{mg}, 57 \%$ yield, m.p. $=107-108{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 3.76(\mathrm{~s}, 3 \mathrm{H}), 5.56(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.96$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.43$ (m, 4H), 7.50-7.52 (m, 2H), 7.74-7.76 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 170.90,163.19,159.32,159.20,157.76,134.71,133.27,131.45$, $131.27,130.85,129.62,129.18,128.80,128.23,125.76,115.15,102.98,100.36,55.45$; IR
(ATR): 1725, 1660, 1627, 1539, 1511, 1447, 1410, 1284, 1175, 1091, 1026, 901, 828, 792, 705, 602, 527. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 420.1206$, Found: 420.1211 .

5) Scale-Up Reaction and Transformations of The Products

The scale-up synthesis of 3: To an oven-dried 10.0 mL Schlenk tube were successively added ketenimine $\mathbf{1 a}$ (1.2 mmol), 1,3-diketone 2a (1.0 mmol), anhydrous EtOAc (6 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (20 mol\%). The reaction mixture was stirred vigorously at $80^{\circ} \mathrm{C}$ under N_{2} atmosphere till full consumption of 1,3-diketone 2a by TLC analysis. The reaction mixture was then concentrated by rotary vaporation, and the residue was subjected to column chromatography using petroleum ether/ethyl acetate (from 5:1-1:1) as eluent to afford the desired product $\mathbf{3}$ in 87% yield (462 mg , pale yellow solid). The full characterization data of this compound have been described in page S 4 .

The synthesis of 68: To an oven-dried 10.0 mL Schlenk tube were successively added ketenimine 1b $(0.12 \mathrm{mmol})$, 1,3-diketone 2b $(0.10 \mathrm{mmol})$, anhydrous EtOAc (1 mL), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (20 mol\%). The reaction mixture was stirred vigorously at $80^{\circ} \mathrm{C}$ under N_{2} atmosphere till full consumption of 1,3 -diketone $\mathbf{2 b}$ by TLC analysis. The reaction mixture was then concentrated by rotary vaporation, and the residue was subjected to column chromatography using petroleum ether/ethyl acetate (from 5:1-1:1) as eluent to afford the desired product 68 in 83% yield (50.5 mg , pale yellow solid, m.p. $=182-183{ }^{\circ} \mathrm{C}$).

68
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.06$ (s, 3H), 3.13 (brm, 2H), 3.80 (s, $3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{brm}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.69(\mathrm{~m}, 2 \mathrm{H})$, 6.93-6.97 (m, 4H), 7.08 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25-7.28 (m, 2H), 7.36 ($\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41-7.45 (m, 2H), 7.50-7.54 (m, 2H), $7.83(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.79,162.32$, $162.17,161.90,160.20,155.64,139.46,139.39,137.62,130.91$, $130.02,129.54,128.98,127.59,127.09,127.00,126.20,122.54$, $116.83,114.21,113.29,99.96,55.50,55.36,53.41,44.46,33.58$; IR (ATR): 1691, 1646, 1604, 1508, 1313, 1250, 1147, 1020, 833, 761, 707, 648, 555. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 632.1713$, Found: 632.1713.

The synthesis of 69: To an oven-dried Schlenk tube (10 mL) were successively added CoBr_{2} ($20 \mathrm{~mol} \%$), anhydrous $\mathrm{MeCN}(1 \mathrm{~mL}$), ethyl diazoacetate 62a (0.12 mmol), 1-isocyano-4methylbenzene 63a (0.10 mmol), 1,3-dione 2a (0.10 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.02 \mathrm{mmol})$. The tube was backfilled with N_{2}. After stirring at $80^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was cooled and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 5:1-1:1) to give compound 69 in 56\% yield (21.3 mg , pale yellow solid, m.p. $=93-94^{\circ} \mathrm{C}$).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.30(\mathrm{~s}, 3 \mathrm{H}), 5.55(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ ($\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.76(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.88,163.16,159.34,157.71$, 138.49, 138.11, 134.66, 131.52, 131.27, 130.85, 130.59, 129.24, 128.80, 128.22, 125.76, 103.28, 100.49, 21.03. IR (ATR): 1711, 1654, 1612, 1501, 1412, 1233, 1124, 1050, 853, 747, 663, 576. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 404.1257$, Found: 404.1251.

The synthesis of 72: To an oven-dried sealed tube (10 mL) were successively added compound 15 (0.10 mmol), anhydrous $\mathrm{MeCN}(1.0 \mathrm{~mL})$, 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (0.30 mmol), and caesium fluoride (0.50 mmol). The tube was backfilled with N_{2}. After stirring at $100{ }^{\circ} \mathrm{C}$ for 10 h , the reaction mixture was cooled and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 6:1-3:1) to give compound 72 in 73% yield (35.7 mg , pale yellow solid, m.p. $=197-198^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.18$ ($\mathrm{s}, 3 \mathrm{H}$), 6.58 (brs, 2H), 6.78 (d, $J=6.4$
 $\mathrm{Hz}, 2 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.46(\mathrm{~m}, 7 \mathrm{H}), 7.47-$ $7.63(\mathrm{~m}, 6 \mathrm{H}), 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $181.66,141.38,141.35,141.27,139.90,138.37,138.26,138.11,136.87$, $136.83,136.81,136.76,136.09,135.06,134.04,131.06,130.62,130.16$, 130.04, 129.93, 129.01, 128.89, 128.43, 128.27, 127.67, 127.51, 127.49, 127.07, 126.43, 126.19, 126.15, 126.11, 20.82; IR (ATR): 1656, 1611, 1509, 1487, 1397, 1272, 882, 756, 693, 583. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}: 512.1985$, Found: 512.1987.

The synthesis of 73: To an oven-dried sealed tube (10 mL) were successively added compound 69 (0.10 mmol), anhydrous $\mathrm{MeCN}(1.0 \mathrm{~mL})$, 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (0.30 mmol), and caesium fluoride (0.50 mmol). The tube was backfilled with N_{2}. After stirring at $100{ }^{\circ} \mathrm{C}$ for 10 h , the reaction mixture was cooled and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 6:1-3:1) to give compound 73 in 77% yield (31.8 mg , pale yellow solid, m.p. $=103-104{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.32$ (s, 3H), $7.10(\mathrm{~s}, 4 \mathrm{H}), 7.20-7.24(\mathrm{~m}$,
 $2 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.46(\mathrm{~m}, 7 \mathrm{H}), 7.51-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.85,141.29,141.22,140.99,139.75,136.32$, 136.21, 134.06, 130.15, 129.97, 129.83, 129.18, 128.23, 128.18, 127.91, 127.47, 127.45, 126.71, 126.33, 126.14, 125.90, 124.70, 21.01; IR (ATR): 1662, 1613, 1542, 1493, 1386, 1281, 1187, 1065, 809, 729, 687. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}: 436.1672$, Found: 436.1668 .

The synthesis of 74: To a 3.0 mL vial were successively added compound $\mathbf{1 5}$ (0.10 mmol), THF (0.40 mL), MeOH (0.40 mL), $\mathrm{H}_{2} \mathrm{O}(0.20 \mathrm{~mL})$, and $\mathrm{LiOH}(1.0 \mathrm{mmol})$. After stirring at rt for 1.5 h , the reaction mixture was extracted with EtOAc ($3 \mathrm{~mL} \times 3$). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 3:1-1:1) to give compound 74 in 81% yield (26.5 mg , pale yellow solid, m.p. $=73-74^{\circ} \mathrm{C}$).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.11-7.14 (m, 4H), 7.20-7.30 (m, 3H), 7.38-7.46 (m, 3H), 7.84-7.87 (m, 2H), $13.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.81,164.65,140.04$, $136.77,136.10,135.59,130.85,129.67,128.82,128.53,128.22,127.06,126.74$, 125.56, 94.33, 38.58, 20.96. IR (ATR): 3453, 1722, 1653, 1604, 1553, 1477, 1392, $1245,1132,1047,846,733,659$. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}$: 350.1515, Found: 350.1512.

The synthesis of 75: To an oven-dried Schlenk tube (10 mL) were successively added compound 3 (0.10 mmol), anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$, and $\mathrm{BBr}_{3}(0.50 \mathrm{mmol})$. The tube was backfilled with N_{2}. After stirring at $-30^{\circ} \mathrm{C}$ for 8 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(6.0 \mathrm{~mL})$ and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/EtOAc 1:1-1:2) to give compound 75 in 87% yield (43.8 mg , yellow oil).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.84$ (brm, 2H), $3.50(\mathrm{brm}, 2 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H})$,
 $6.03(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.81-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.34$ (m, 4H), 7.41-7.43 (m, 3H), 7.54-7.56 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.41,162.61,158.83,153.70,144.21,143.23,134.33,131.51,131.30$, $131.18,131.11,130.32,130.31,129.89,128.97,128.59,128.39,128.03$, 127.93, 125.58, 121.50, 116.24, 115.52, 102.49, 53.49, 49.54, 32.86; IR (ATR): 3325, 1657, 1619, 1529, 1444, 1286, 927, 772, 697, 626, 577. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 526.1625$, Found: 526.1622.

6) Mechanistic Studies

We studied the reaction mechanism of $\mathrm{K}_{2} \mathrm{CO}_{3}$ catalyzed formal insertion of ketenimines into $\mathrm{C}(\mathrm{CO})$-C bonds of 1,3-diketones by a series of control experiments. Finally, we found that when the reaction of 2-isopropylphenyl substituted ketenimine $\mathbf{1 c}$ and 1,3 -di-o-tolylpropane-1,3-dione 2c was stirred at $80^{\circ} \mathrm{C}$ for 1 h , both the Mannich adduct 76 and α pyrone 77 could be detected through TLC and LC-MS analysis. However, despite the large steric hindrance, the Mannich adduct 76 was almost fully converted into α-pyrone 77 after the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 5 h . The structure of compound 77 was characterized by NMR, IR and HRMS.

1c (1.2 equiv)

2c (1.0 equiv)

76
Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{NO}_{4}$ Exact Mass: 545.2566
Molecular Weight: 545.6674

77
Chemical Formula: $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NO}_{3}$ Exact Mass: 513.2304
Molecular Weight: 513.6255

Monitoring the reaction by TLC

After 1 h

After 5 h

The reaction was run at $80^{\circ} \mathrm{C}$ for 5 h , affording product 77 as a pale green solid ($35.9 \mathrm{mg}, 70 \%$ yield, m.p. $=195-196{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.16(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.31$ (brs, 3 H), 2.46 (brs, $3 \mathrm{H}), 3.18(\mathrm{brm}, 1 \mathrm{H}), 6.15-6.66(\mathrm{~m}, 3 \mathrm{H}), 6.91-7.18(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.28(\mathrm{~m}$, $6 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.53(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 170.71,163.40,159.79,138.29,136.68,132.41,131.77,131.28,130.40,130.34$, $129.56,129.06,128.38,128.33,128.08,127.64,127.06,126.14,124.76,107.82,28.39,23.85$, 23.34, 20.71, 19.93. IR (ATR): 1702, 1676, 1603, 1534, 1423, 1396, 1283, 956, 782, 773, 652, 565. HRMS (ESI): Exact mass calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 536.2196$, Found: 536.2191.

7) Device Fabrication and Characterizations

At first, we prepared single component $\mathbf{5 1}$ or $\operatorname{SimCP} 2$ solution $\left(10 \mathrm{mg} \mathrm{ml}^{-1}\right.$, chlorobenzene as solvent) in N_{2}-filled glovebox and then thoroughly dissolved by successive heat stirring at $50^{\circ} \mathrm{C}$ for 2 h . After that, the blended solutions at different blending ratios (SimCP2:51, (100x): $\mathrm{x}, \mathrm{x}=1 \sim 7 \mathrm{wt} . \%$) were prepared by blending these solutions as required. For device fabrications, ITO-covered glass substrate (ITO thickness $=110 \mathrm{~nm}$, sheet resistance $=15 \Omega$ sq^{-1}) was cleaned and dried using routine method and then processed by UV-ozone treatment in air for 25 min (ref. J. Ye, Y. He, K. Li, L. Liu, C. Xi, Z. Liu, Y. Ma, B. Zhang, Y. Bao, W. Wang, Y. Cheng, L. Niu, ACS Appl. Mater. Interfaces 2022, 14, 17698-17708). After that, water dispersion of PEDOT:PSS (Clevious PVP AI4083, Heraeus) was spin-coated onto the ITO substrate and then dried in air drying oven at $120^{\circ} \mathrm{C}$ (30 min .). The thickness of such PEDOT:PSS layer was about 50 nm . Subsequently, the device samples were transferred into N_{2}-filled glovebox. Those SimCP2:51 blended solutions were spin-coated onto the surface of ITO/PEDOT:PSS at $1800 \mathrm{rpm}(1 \mathrm{~min}$.$) , followed by thermal annealing at 100^{\circ} \mathrm{C}(30 \mathrm{~min}$.) to obtain the emissive layer with a thickness of ca. 30 nm . Finally, those device samples were loaded into thermal evaporating chamber (Angstrom Engineering Corp., Canada, EVOVAC) for the subsequent thermal evaporation of DPEPO (10 nm)/TmPyPB (50 nm)/LiF $(1 \mathrm{~nm}) / \mathrm{Al}(100 \mathrm{~nm})$ in sequence. The base pressure for thermal evaporation is generally less than $5 \times 10^{-6} \mathrm{mbar}$ and the deposition rate is $0.1 \mathrm{~nm} \mathrm{~s}^{-1}$. The emissive area of each device is $3.5 \times 4 \mathrm{~mm}^{2}$, as defined by the overlap zone byetewen the Al top electrode and ITO bottom electrode. All those preparing procedures, except for the ITO and PEDOT:PSS layer, were performed under the protection of N_{2}-filled glove box (mBraun- UNIlab, Shanghai, $\left[\mathrm{O}_{2}\right]<0.1 \mathrm{ppm},\left[\mathrm{H}_{2} \mathrm{O}\right]<0.1$ ppm).

Those as-fabricated OLEDs were then measured by commercial OLED testing equipment (FS-2000TR, Fstar, Soochow, China), in which current-voltage source Keithley 2400 and high-resolution spectroradiometer CS2000A were inter-connected and computer-controlled by a home-made software. During the measurement, luminance and EL spectra were directly measured by CS2000A. All those OLEDs were not encapsulated and tested in air. For the calculations of EQE performance parameters, these OLEDs were routinely assumed as Lambert emitters.

8) Physical and Material Properties

Figure S1. Absorption and PL spectra of compounds $\mathbf{4 9}$ (a), $\mathbf{5 0}$ (b) and $\mathbf{5 1}$ (c), respectively, in different solvent $\left(10^{-5} \mathrm{M}\right)$.

Table S1. Photophysical parameters of 49-51 in different solvents.

Compound	Solvent	$\begin{aligned} & \lambda_{\text {abs. }}{ }^{[\mathrm{a}]} \\ & {[\mathrm{nm}]} \end{aligned}$	$\begin{aligned} & \lambda_{\mathrm{PL}}{ }^{[\mathrm{a}]} \\ & {[\mathrm{nm}]} \end{aligned}$	$\begin{aligned} & \mathrm{E}_{\mathrm{g}}^{[\mathrm{a}]} \\ & {[\mathrm{nm}]} \end{aligned}$	FWHM [nm]
49	Toluene	340	475	2.81	108
	CB	340	482	2.82	97
	THF	341	484	2.85	106
50	Toluene	347	485	2.77	93
	CB	345	507	2.74	99
	THF	345	510	2.80	103
51	Toluene	353	533	2.69	104
	CB	352	590	2.86	134
	THF	320	615	2.92	156

[^0]

Figure S2. PL transient decay of compounds 49 (a), $\mathbf{5 0}$ (b) and 51 (c), respectively, in solution $\left(10^{-5} \mathrm{M}\right.$, CB as solvent).

Table S2. Fitting results of PL transient decays of 49-51 in solution.

| Compound | τ_{1} | $\mathrm{~A}_{1}$ | τ_{2} | $\mathrm{~A}_{2}$ | χ^{2} | $\tau_{\text {ave }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{4 9}$ | 0.4455 | 1624.506 | 4.4219 | 76.6985 | 1.3865 | 1.7143 |
| $\mathbf{n o}]$ | 0.3385 | 1155.333 | 3.6333 | 48.0219 | 1.2854 | 1.3550 |
| $\mathbf{5 1}$ | 6.5389 | 1934.428 | 23.1639 | 102.3752 | 1.0211 | 9.1635 |

[a] The average lifetime calculated by $\tau_{\text {ave }}=\sum \mathrm{A}_{\mathrm{i}} \tau_{\mathrm{i}}{ }^{2} / \sum \mathrm{A}_{\mathrm{i}} \tau_{\mathrm{i}}$, where A_{i} is the pre-exponential for lifetime $\tau_{\mathrm{i}}(\mathrm{i}=1,2)$ shown in the Table.

Figure S3. Chemical structures of materials (except 51) using in solution-processed OLEDs.

Figure S4. Bias-dependent EL spectra of solution-processed OLEDs using 47 dopant at different doping concentrations, i.e. $1 \mathrm{wt} . \%$ (a), $3 \mathrm{wt} \$.$% (b), 5 \mathrm{wt} . \%$ (c) and $7 \mathrm{wt} . \%$ (d), respectively.

9) X-Ray Crystallographic Data for Compounds 30, 47, 48, 72 and 74

Data intensity of $\mathbf{3 0}$ was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at $292.99(10)$ K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by fullmatrix least-squares on F2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC deposition number 2245130 (30).

Crystal data.
Empirical formula
Formula weight
$\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{NO}_{5}$

Temperature/K 607.67

Crystal system
292.99(10)

Space group
monoclinic
a / \AA
P2 1 /c
b / \AA
13.5520(14)
10.2862(10)
c / \AA
23.234(3)
$\alpha /{ }^{\circ}$
90
$\beta /{ }^{\circ} \quad 95.963(10)$
$\gamma{ }^{\circ} 90$
Volume $/ \AA^{3} \quad 3221.2(6)$
Z
4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3} \quad 1.253$
$\mu / \mathrm{mm}^{-1} \quad 0.082$
$\mathrm{F}(000) \quad 1280.0$
Crystal size $/ \mathrm{mm}^{3} \quad 0.12 \times 0.11 \times 0.09$
Radiation $\quad \mathrm{Mo} \mathrm{K} \alpha(\lambda=0.71073)$
2 Θ range for data collection $/{ }^{\circ} 4.334$ to 59.21
Index ranges
$-18 \leq h \leq 14,-13 \leq k \leq 10,-32 \leq 1 \leq 22$
Reflections collected
16913
Independent reflections $\quad 7598\left[\mathrm{R}_{\text {int }}=0.0563, \mathrm{R}_{\text {sigma }}=0.1036\right]$
Data/restraints/parameters 7598/0/418
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.024$
Final R indexes $[I>=2 \sigma(I)] \quad R_{1}=0.0724, \mathrm{wR}_{2}=0.1445$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.1788, \mathrm{wR}_{2}=0.1931$
Largest diff. peak/hole / e $\AA^{-3} 0.36 /-0.21$

Data intensity of $\mathbf{4 7}$ was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at $150.00(10) \mathrm{K}$. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by fullmatrix least-squares on F2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC deposition number 2245131 (47).

Crystal data.

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a / \AA
b/Å
c / \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ} \quad 98.050(4)$
$\gamma^{\circ} \quad 90$
Volume/ \AA^{3}
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ} 6.384$ to 147.464
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0530, \mathrm{wR}_{2}=0.1325$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0732, \mathrm{wR}_{2}=0.1478$
Largest diff. peak/hole / e $\AA^{-3} 0.30 /-0.39$

Data intensity of $\mathbf{4 8}$ was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at $150.00(10) \mathrm{K}$. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by fullmatrix least-squares on F2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC deposition number 2245132 (48).

Crystal data.
Empirical formula
Formula weight
$\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{5}$

Temperature/K
469.51

Crystal system
Space group
$\mathrm{a} / \AA \AA$ 150.00(10) triclinic
P-1
b/Å
11.0361(5)
c / \AA
14.2348(5)
16.7656(6)
$\alpha /{ }^{\circ}$
79.529(3)
$\beta{ }^{\circ} \quad 88.302(3)$
$\gamma^{\circ} \quad$ 75.050(4)
Volume/ \AA^{3}
2501.88(18)

Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
4
μ / mm^{-1}
1.246
0.085
$\mathrm{F}(000) \quad 992.0$
Crystal size $/ \mathrm{mm}^{3} \quad 0.13 \times 0.12 \times 0.11$
Radiation \quad Mo $\mathrm{K} \alpha(\lambda=0.71073)$
2 Θ range for data collection $/{ }^{\circ} 4.214$ to 59.222
Index ranges
$-13 \leq \mathrm{h} \leq 15,-18 \leq \mathrm{k} \leq 19,-22 \leq 1 \leq 22$
Reflections collected
21663
Independent reflections $\quad 11671\left[\mathrm{R}_{\text {int }}=0.0320, \mathrm{R}_{\text {sigma }}=0.0651\right]$
Data/restraints/parameters 11671/0/637
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.023$
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0603, \mathrm{wR}_{2}=0.1368$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0963, \mathrm{wR}_{2}=0.1608$
Largest diff. peak/hole / e $\AA^{-3} 1.12 /-0.22$

Data intensity of 72 was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at $170.00(10) \mathrm{K}$. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by fullmatrix least-squares on F2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC deposition number 2245133 (72).

Crystal data.
Empirical formula
Formula weight
$\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{NO}$

Temperature/K
489.58

Crystal system
170.00(10)

Space group
triclinic
P-1
a / \AA 10.3653(9)
b / \AA 11.5399(8)
$\mathrm{c} / \AA \quad 12.1483(9)$
$\alpha{ }^{\circ} \quad 86.936(6)$
$\beta{ }^{\circ} \quad$ 75.711(7)
$\gamma^{\circ} \quad 69.063(7)$
Volume $/ \AA^{3} \quad 1314.21(19)$
Z 2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3} \quad 1.237$
$\mu / \mathrm{mm}^{-1} \quad 0.568$
$\mathrm{F}(000) \quad 516.0$
Crystal size $/ \mathrm{mm}^{3} \quad 0.14 \times 0.12 \times 0.10$
Radiation $\quad \mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ} 7.514$ to 146.72
Index ranges
$-12 \leq \mathrm{h} \leq 12,-10 \leq \mathrm{k} \leq 14,-14 \leq 1 \leq 14$
Reflections collected
8974
Independent reflections $\quad 5121\left[\mathrm{R}_{\text {int }}=0.0343, \mathrm{R}_{\text {sigma }}=0.0471\right]$
Data/restraints/parameters 5121/0/344
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.164$
Final R indexes [I>=2 $\sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0485, \mathrm{wR}_{2}=0.1269$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0652, \mathrm{wR}_{2}=0.1374$
Largest diff. peak/hole / e $\AA^{-3} 0.18 /-0.26$

Data intensity of 74 was collected using a Bruker 'Bruker APEX-II CCD' diffractometer at $170.00(10) \mathrm{K}$. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by fullmatrix least-squares on F2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. CCDC deposition number 2245134 (74).

Crystal data.
Empirical formula $\quad \mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}$
Formula weight
327.41

Temperature/K
170.00(10)

Crystal system
triclinic
Space group
a/ \AA
P-1
5.8318(4)
b/Å
11.6046(8)
c / \AA 26.5835(15)
$\alpha{ }^{\circ} \quad 86.525(5)$
$\beta /{ }^{\circ} \quad 87.942(5)$
$\gamma^{\circ} \quad 87.181(5)$
Volume $/ \AA^{3} \quad 1792.6(2)$
Z 4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3} \quad 1.213$
$\mu / \mathrm{mm}^{-1} \quad 0.571$
$\mathrm{F}(000) \quad 696.0$
Crystal size $/ \mathrm{mm}^{3} \quad 0.14 \times 0.12 \times 0.09$
Radiation $\quad \mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2 Θ range for data collection $/{ }^{\circ} 6.666$ to 148.43
Index ranges
$-7 \leq \mathrm{h} \leq 5,-14 \leq \mathrm{k} \leq 14,-32 \leq 1 \leq 32$
Reflections collected 12192
Independent reflections $\quad 7010\left[\mathrm{R}_{\text {int }}=0.0461, \mathrm{R}_{\text {sigma }}=0.0583\right]$
Data/restraints/parameters 7010/0/453
Goodness-of-fit on F^{2}
1.098

Final R indexes [I>=2 $\sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0614, \mathrm{wR}_{2}=0.1720$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0868, \mathrm{wR}_{2}=0.1892$
Largest diff. peak/hole / e $\AA^{-3} 0.40 /-0.28$

10）Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Products $\mathbf{3 - 7 6}$

＂

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

⿷匚⿳一⿴囗十丌

 Kiz

ㅠㅠㄴ

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ल్
©
©
๗్め

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

僉

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	\%

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

䓵

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

๗

气

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ఱొ è eig

N

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 落会导

$\stackrel{\text { 粏 }}{\stackrel{\circ}{i}}$

 芯

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

		¢్లిక్ర్ర్ర్ర	与気\％	等
¢	¢ ¢ّ¢	N¢¢¢	\％\％\％	\ddagger

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\text { N }}{\text { N }}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{lllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

77
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11) Copies of HPLC Spectra of Products 54-61

[^0]: ${ }^{[a]}$ Measured in solution with a concentration of $10^{-5} \mathrm{M}$.

