Highly efficient biosynthesis of 2,4-dihydroxybutyric acid by a

methanol assimilation pathway in engineered Escherichia coli

Xianjuan Dong,‡^a Chao Sun,‡^{a,b,c} Jing Guo,^{a,b,c} Xiangyu Ma,^{a,d} Mo Xian^{*a,b,c} and Rubing Zhang^{*a,b,c}

^a CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

^b Shandong Energy Institute, Qingdao 266101, China

° Qingdao New Energy Shandong Laboratory, Qingdao 266101, China

^d University of Chinese Academy of Sciences, Beijing 100049, China

‡These authors contributed equally to this work.

* Correspondence:

Rubing Zhang

Mailing address: Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

Email: zhangrb@qibebt.ac.cn

Mo Xian

Mailing address: Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

Email: xianmo@qibebt.ac.cn

¹H-NMR and ¹³C-NMR analysis of the 2,4-DHB

¹H-NMR and ¹³C-NMR spectra were recorded on Bruker NMR spectrometers (600 MHz, in D₂O). ¹H-NMR and ¹³C-NMR chemical shifts (δ C) are quoted in parts per million (ppm) downfield from trimethyl silane (TMS), and coupling constants (J) are quoted in Hertz (*Hz*).

LC-MS analysis of the 2,4-DHB

The cell and supernatant were separated by centrifugation at 13,000 rpm for 30 min, and 1 µL aliquot of the supernatant was injected into an LC-MS system. The HPLC was equipped with a Thermo Aclaim Organic Acid HPLC column (4 mm x 250 mm, 5 µm) and eluted with a flow rate of 0.2 mL/min. The mobile phase A consisted of 0.1% of formic acid in water, and the mobile phase B was acetonitrile. The gradient elution was performed as described below:0-4 min, 0%B; 4-10 min, 30%B; 10-12 min, 80%B; 12-17 min, 80%; 17-25 min, 0%B. A Compact Q-TOF mass spectrometry (Bruker Daltonics, Billerica, USA) with an ESI source in negative ion mode was used for MS analysis.

GC-MS analysis of the α-hydroxy-γ-butyrolactone

The aqueous solution of 2,4-DHB was adjusted to pH 2-12 with 10 M potassium hydroxide and hydrochloric acid, respectively. And the percentages of 2,4-DHB and α -hydroxy- γ -butyrolactone were detected using GC-MS. The α -hydroxy- γ -butyrolactone was assayed as follows: An equal amount of ethyl acetate was added to the aqueous solution after pH adjustment, vortexed briefly for 2 min, and centrifuged to separate the phases. 1 µL was injected with using a split ratio 40:1 on an SH-Rtx-5MS Cap. Column (30 m, 0.25 mm ID, 0.25 µm) using helium as the carrier gas. The inlet temperature and flow rate were set at 280 °C and 3.0 mL/min, respectively. The oven temperature gradient program was set as follows: initially held at 70 °C for 2 min, raised by 10 °C/min to 250 °C, hold for 5 min. The total run time was 25 min. The MS conditions for identification of α -hydroxy- γ -butyrolactone was as follows: for Q1 scan mode, 30-500 m/z mass-range. Quantification was based on the peak area ratios of the different compounds to standard chemicals.

Strain and plasmid	Descriptions	Sources		
Strains				
E. coli DH5α	strain used for general cloning	Laboratory stock		
E. coli BL21(DE3)	Strain used for constructing engineering bacteria	Laboratory stock		
	and protein expression			
<i>E. coli</i> W3110	Strain used for constructing engineering bacteria and protein expression	Laboratory stock		
JW0855	E. coli K-12 poxB::kan	Keio collection		
JW0886	E. coli K-12 pflB::kan	Keio collection		
JW1228	E. coli K-12 adhE::kan	Keio collection		
JW2294	E. coli K-12 pta::kan	Keio collection		
D1	E. coli W3110 poxB::kan	This study		
D2	<i>E. coli</i> W3110 Δ <i>poxB</i>	This study		
D3	<i>E. coli</i> W3110 Δ <i>poxBpflB::kan</i>	This study		
D4	$E. coli W3110 \Delta pox B \Delta pfl B$	This study		
D5	<i>E. coli</i> W3110 Δ <i>poxB</i> Δ <i>pflB</i> Δ <i>adhE::kan</i>	This study		
D6	<i>E. coli</i> W3110 $\Delta poxB\Delta pflB\Delta adhE$	This study		
JW0348	E. coli K-12 frmR::kan	Keio collection		
JW0347	E. coli K-12 frmA::kan	Keio collection		
JW0346	E. coli K-12 frmB::kan	Keio collection		
D7	<i>E. coli</i> W3110 $\Delta poxB\Delta pflB\Delta adhE\Delta frmRAB::kan$	This study		
D8	<i>E. coli</i> W3110 $\Delta pox B \Delta p fl B \Delta a dh E \Delta frm RAB$	This study		
DHB1	<i>E. coli</i> W3110 harboring pETDuet-lac- <i>khb-par</i>	This study		
DHB2	<i>E. coli</i> W3110 harboring pETDuet-lac- <i>khb-pgcr</i>	This study		
DHB3	E. coli W3110 harboring pETDuet-lac-khb-cpar4	This study		
DHB4	E. coli W3110 harboring pETDuet-lac-khb-ldh	This study		
DHB5	E. coli W3110 harboring pETDuet-lac-khb-2ldh	This study		
DHB6	<i>E. coli</i> W3110 harboring pETDuet-lac- <i>khb</i> -m <i>dh</i>	This study		
DHB7	<i>E. coli</i> W3110 Δ <i>poxB</i> harboring pETDuet-lac-	This study		
	khb-1dh			
DHB8	<i>E. coli</i> W3110Δ <i>poxB</i> Δ <i>pflB</i> harboring pETDuet- lac- <i>khb</i> -l <i>dh</i>	This study		
	<i>E. coli</i> W3110 $\Delta poxB\Delta pflB\Delta adhE$ harboring			
DHB9	pETDuet-lac-khb-ldh	This study		
DHB10	<i>E. coli</i> W3110 Δ <i>poxBΔpflBΔadhE</i> harboring			
	pETDuet-lac-mdh2 _{Bm} -khb-ldh	This study		
DHB11	<i>E. coli</i> W3110 Δ <i>poxBΔpflBΔadhE</i> harboring			
	pETDuet-lac-mdh _{Cn} -khb-ldh	This study		
DHB12	<i>E. coli</i> W3110 Δ <i>poxBΔpflBΔadhE</i> harboring			
	pETDuet-lac-mdh _{cn} (G48F)-khb-ldh	This study		
DUD12	<i>E. coli</i> W3110Δ <i>poxB</i> Δ <i>pflB</i> Δ <i>adhE</i> ΔfrmRAB	This of 1		
DHB13	harboring pETDuet-lac-mdh _{cn} (G48F)-khb-ldh	i nis study		

Table S1 Strains and plasmids used in this study.

DHB14	<i>E. coli</i> BL21(DE3) harboring pET28a (+)- <i>mdh2_{Bm}</i> from <i>B. methanolicus</i> MGA3	This study
DHB15	<i>E. coli</i> BL21(DE3) harboring pET28a (+)- <i>mdh</i> _{cn} from <i>Cupriavidus necator</i>	This study
DHB16	<i>E. coli</i> BL21(DE3) harboring pET28a (+)- <i>mdh</i> _{Cn} (G48F)	This study
DHB17	<i>E. coli</i> BL21(DE3) harboring pET28a (+)- <i>mdh</i> _{Cn} (M52F)	This study
DHB18	<i>E. coli</i> BL21(DE3) harboring pET28a (+)- <i>mdh</i> _{Cn} (C369N)	This study
	Plasmids	
pCP20	Amp ^R Cm, FLP recombinase expression	Laboratory stock
pKD46	Amp ^R , λ Red recombinase expression	Laboratory stock
pETDuet-1	<i>E. coli</i> expression vector, Amp ^R , T7 promoter	Laboratory stock
pETDuet-lac	<i>E. coli</i> expression vector, Amp ^R , lac ₁₋₆ promoter	This study
pETDuet-lac- <i>khb</i>	pETDuet-lac, Amp ^R , <i>khb</i> expression, lac	This study
	promoter	Tinb Stady
pETDuet-lac- <i>khb-par</i>	pETDuet-lac- <i>khb</i> , Amp ^R , <i>par</i> expression, lac	This study
pETDuet-lac-khb-pgcr	pETDuet-lac- <i>khb</i> , Amp [*] , <i>pgcr</i> expression, lac promoter	This study
pETDuet-lac- <i>khb-cpar4</i>	pETDuet-lac- <i>khb</i> , Amp ^R , <i>cpar4</i> expression, lac promoter	This study
pETDuet-lac- <i>khb-ldh</i>	pETDuet-lac- <i>khb</i> , Amp ^R , <i>ldh</i> expression, lac promoter	This study
pETDuet-lac- <i>khb-2ldh</i> pETDuet-lac- <i>khb</i> , Amp ^R , <i>2ldh</i> expression, lac promoter		This study
pETDuet-lac-khb-mdh	pETDuet-lac- <i>khb</i> , Amp ^R , <i>mdh</i> expression, lac promoter	This study
pETDuet-lac- <i>mdh2_{Bm}-khb-ldh</i>	pETDuet-lac- <i>khb</i> - <i>ldh</i> , Amp ^R , <i>mdh</i> 2 _{<i>Bm</i>} , <i>mdh</i> 2 _{<i>Bm</i>} expression, lac promoter	This study
pET28a(+)	E. coli expression vector, Kan ^R , T7 promoter	This study
pET28a-mdh2 _{Bm}	pET28a(+), Kan ^R , <i>mdh2_{Bm}</i> expression, T7 promoter	This study
pET28a-mdh _{Cn}	pET28a(+), Kan ^R , <i>mdh</i> _{Cn} expression, T7 promoter	This study
pET28a-mdh _{Cn} (G48F)	pET28a(+)- <i>mdh</i> _{Cn} , Kan ^R , <i>mdh</i> _{Cn/G48F} expression, T7 promoter	This study
pET28a- mdh_{Cn} (M52F) pET28a(+)- mdh_{Cn} , Kan ^R , $mdh_{Cn/M52F}$ expression, T7 promoter		This study
pET28a-mdh _{Cn} (C369N)	pET28a(+)- <i>mdh</i> _{Cn} , Kan ^R , <i>mdh</i> _{Cn/C369N} expression, T7 promoter	This study
pETDuet-lac-mdh _{Cn} -khb-ldh	pETDuet-lac- <i>khb-ldh</i> , Amp ^R , <i>mdh</i> _{Cn} expression, lac promoter	This study

pETDuet-lac-mdh _{Cn} (G48F)-khb-	pETDuet-lac- mdh_{Cn} - khb - ldh , Amp ^R , mdh_{Cn} ^{G48F}	This study
ldh	expression, lac promoter	This study

Primers	Descriptions (5'-3')	Sources
khb-F	taagaaggagatataccatgggcAAAAACTGGAAAACAAGTGCA	This study
khb-R	gccgagctcgaattcggatccTTACAGCTTAGCGCCTTCTACAGC	This study
par-F	taagaaggagatatacatatgAAAGCGATTCAGTATACCCG	This study
par-R	gccgatatccaattg <u>agatct</u> TTAGCGCGGGGGTGCAGCT	This study
pgcr-F	taagaaggagatata <u>catatg</u> AAAAGCATGATTAACGAAAACA	This study
pgcr-R	gccgatatccaattg <u>agatct</u> TTACGGCGCGCAATAGCC	This study
cpar4-F	taagaaggagatata <u>catatg</u> AGCGCGCAGCTGAAA	This study
cpar4-R	gccgatatccaattgagatetTTAATCGTTAAAGTTGTTAAAGCCCG	This study
ldh-F	taagaaggagatata <u>catatg</u> GCAAGTATTACGGATAAGGATC	This study
ldh-R	gccgatatccaattg <u>agatct</u> TTACTGACGAGTTTCGATGTCATTC	This study
2ldh-F	taagaaggagatata <u>catatg</u> ACAAAAATTCTAATGTATACCGTCCG	This study
21dh-R	gccgatatccaattg <u>agatct</u> TTAGTTGACTTGATGCGCTGACTT	This study
mdh-F	taagaaggagatata <u>catatg</u> AAAGTCGCAGTCCTCGGCG	This study
mdh-R	gccgatatccaattgagatctTTACTTATTAACGAACTCTTCGCCC	This study
mdh2 _{Bm} -F	taagaaggagatata <u>ccatgg</u> GCAAAAACACCCAGTCTGCTTT	This study
mdh2 _{Bm} -R	CCAGTTTTTCATggtatat <u>ctcctt</u> TTACATAGCGTTTTT	This study
mdh _{Cn} -F	taagaaggagatataccatgggcACCCATCTGAACATTGCGAACC	This study
mdh _{Cn} -R	CAGTTTTTCATggtatat <u>ctcctt</u> TTACATCGCCG	This study
mdh2 _{Bm} -BamHI	cagcaaatgggtcgcggatccATGAAGAATACTCAGTCAGCTTTCTACA	This study
$mdh2_{Bm}$ -SacI	gcaagcttgtcgacggagctcTCACATTGCATTCTTAATAATCTGAATAA	This study
mdh _{Cn} -BamHI	cagcaaatgggtcgcggatccATGACCCATCTGAACATTGCG	This study
mdh_{Cn} -SacI	gcaagcttgtcgacggagctcTTACATCGCCGCCGCAAA	This study
G48F-F	CGATGCGtttCTGCATAAAATGGGCCTGAGCG	This study
G48F-R	TATGCAGaaaCGCATCGGTCACAATCAGAGCT	This study
M52F-F	CCTGCATAAAtttGGCCTGAGCGAAGTGGTGG	This study
M52F-R	GGCCaaaTTTATGCAGGCCCGCATCGGTCACA	This study
S265R-F	TTTAACAACGCGgcgCTGGGCTATGTGCATGCGA	This study
S265R-R	AGcgcCGCGTTGTTAAACGCCATGCCCGCCAG	This study
C369N-F	AGATGCGaacATGCTGACCAACCCGCGCAAAG	This study
C369N-R	TCAGCATgttCGCATCTTTCTGCGCGTTGCTC	This study
pKD4-Km300-3'	GGTGAGATGACAGGAGATCCT	This study
poxB-F	CCGAAATCGC TGAAGGTTAC	This study
pflB-F	CACCGGAAAA TTTTTCTCAC	This study
adhE-F	CACCGGAAAA TTTTTCTCAC	This study
pta-F	CATATGTTTT GTCAAAATGT	This study
FrmRAB-F	TGATCACCAGCTACCGCTATACC	This study

Table S2 List of PCR primers sequences used in this study.

Enzyme	Specific activity (U/mg)
Mdh2 _{Bm}	0.003
Mdh _{Cn}	0.023

Table S3 The specific activities of the $Mdh2_{Bm}$ and Mdh_{Cn} .

Note: Data are presented as the mean (n=3).

Table S4 The specific activities of the Mdh_{Cn} and its mutants.

Mutation	Specific activity (U/mg)
WT (Mdh _{Cn})	0.023
G48F	0.074
M52F	0.032
C369N	0.046

Note: Data are presented as the mean (n=3).

Fig. S1 Gibbs free energy of the synthetic pathway of 2,4-DHB using the glucose and methanol (or formaldehyde) as co-substrate.

Fig. S2 Verification of 2,4-DHB synthesis from glucose and formaldehyde using GC-MS and LC-MS analysis. (A) GC-MS analysis of standard substance and sample. (B) The total ion chromatograms (TICs) and HRESI-MS (MS[E-]) spectrum of standard substance and sample.

Fig. S3 Verification of 2,4-DHB synthesis from glucose and formaldehyde using NMR analysis. (A) ¹H NMR spectrum of 2,4-DHB standard substance and purified product; (B) ¹³C NMR spectrum of 2,4-DHB standard substance and purified product.

Fig. S4 Interconversion between 2,4-DHB and α -hydroxy- γ -butyrolactone under pH-neutral conditions.

Fig. S5 Time profiles of 2,4-DHB biosynthesis with different substrates. (A) The production of 2,4-DHB from formaldehyde and glucose co-substrate. (B) The production of 2,4-DHB from methanol and glucose co-substrate.