Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Modulation of interfacial electronic structure in $Ni_3P/NiFe$ LDH p-n junction for efficient oxygen evolution at ampere-level current density

Xiaochen Zhang,^a Hui Xue,^{*a} Jing Sun,^a Niankun Guo,^a Tianshan Song,^a Jiawen Sun,^a

Yi-Ru Hao,^a and Qin Wang^{*a}

^a College of Chemistry and Chemical Engineering, Inner Mongolia University,

Hohhot, 010021 (P. R. China)

*Corresponding authors: E-mail: qinwang@imu.edu.cn (Q. Wang)

Material characterization

Morphology and structure Characterization: XRD patterns of the samples were measured on a powder X-ray diffraction system (XRD, PuXi XD3) using Cu Ka radiation ($\lambda = 0.15405$ nm). SEM analysis was carried out on the QUANTA FEG 400 thermal field emission scanning electron microanalyzer of FEI company in the United States. The test conditions: accelerated voltage of 20000 V. Transmission electron microscope (TEM) and high-resolution transmission electron microscope (HRTEM) images were recorded on Japan-JEOL-JEM 2100F transmission electron microscope system. The X-ray photoelectron spectrometer used in this paper is VG Scientific ESCALAB Mark II. The test conditions: excitation source Al Ka ray source, power of about 300 W, and basic vacuum of 3×10^{-9} mbar. All the measured elemental data are corrected by the C 1s peak at 284.8 eV. The d-band center was obtained by using the ultraviolet photoelectron spectrometer, the model was ESCALAB Xi+, and the test conditions: ultraviolet light source He I, vacuum degree 10⁻⁸ mbar. Diffuse reflection absorption curve is obtained by using UV-VIS spectrometer (UH4150), and the test band is 200-2500 nm.

Electrochemical measurement

Electrodeposition preparation of samples and all electrochemical performance tests were carried out on Brilliance Electrochemical Workstation (CHI 760E, CH Instruments, Shanghai). Electrolyte is 1 M KOH, and a simulated seawater test is conducted using a solution of 1 M KOH and 0.5 NaCl.

HER and OER tests involved in this paper were all carried out in a three-electrode

system, with carbon rod as the counter electrode, Hg/HgO as the reference electrode, and the synthesized catalyst as the working electrode (the test area is 0.5×0.5 cm²). The electrochemical total hydrolysis reaction adopts a double-electrode system, in which the cathode and anode are self-supporting electrodes synthesized in the experiment.

All voltages mentioned in this paper have been calibrated to the voltage of a relatively reversible hydrogen electrode (RHE). The measured voltage (relative to the Hg/HgO electrode) was calibrated to the RHE voltage by the Nernst equation:

 $E_{RHE}=E_{Hg/HgO}+0.059\times pH+0.098$

In the experiment, all LSV polarization curves were measured at a scanning rate of 2 mV·s⁻¹, and 85% manual iR compensation was carried out in the test. Before LSV test, the samples were tested by cyclic voltammetry (CV) at fast scanning speed to keep the electrode surface basically stable. For OER, the voltage window is set to 0 - 1 V, and for HER reaction, the voltage window is set to -1.5 - -0.8 V. For the OER process, in order to avoid the overlapping of the oxidation peak and the OER signal, negative scanning (inverse scanning) was chosen to obtain the experimental data. When electrochemical impedance spectroscopy (EIS) is tested, the frequency range is set to 10^{-1} to 10^{6} Hz and the amplitude is 5 mV·s⁻¹, and the same group of samples are tested at the same voltage. In order to obtain the C_{d1} of catalytic materials, we measured the CV curves at different scanning rates (10, 20, 30, 40, 50, 60 mV·s⁻¹) in the non-Faraday voltage range, drew the curve between the corresponding scanning rate and the current difference at the midpoint of the potential range and fitted it, and

selected the voltage range of oxygen evolution reaction as 0 - 0.1 V; For the hydrogen evolution reaction, the voltage range is -0.874 - -0.774 V. The electric double layer capacitance is proportional to the electrochemical active surface area, and according to this relationship, the electrochemical active surface area of catalysts can be obtained. The stability of the catalyst was characterized by chronoamperometry (i-t) and chronopotentiometry (v-t).

Calculation of TOF

The current density map of OER can be transformed into turnover frequency (TOF) map using the formula: TOF = j*A/(4*F*n), where: j is the current density (A·cm⁻²), A is the active surface area of each electrode, 4 represents the four-electron transfer process, F is the Faraday constant (96485.3 C·mol⁻¹), and n is the number of active site moles.

Calculate the Faraday efficiency

Faraday efficiency (FE) is calculated by the drainage gas collection method, and the formula is $FE=n_{gas}*Z*F/(I*t)$. Where Z is the number of electrons needed to form A molecule of gas product (O₂ is 4, H₂ is 2), F is Faraday's constant (96485.3 C·mol⁻¹), I is current (A), and t is time (s).

DFT calculations

We have employed the first-principles to perform spin-polarization density functional theory (DFT) calculations within the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) formulation.¹⁻³ We have chosen the projected augmented wave (PAW) potentials to describe the ionic cores and take valence electrons into account using a plane wave basis set with a kinetic energy cutoff of 520 eV.4,5 Partial occupancies of the Kohn-Sham orbitals were allowed using the Gaussian smearing method and a width of 0.05 eV. The electronic energy was considered self-consistent when the energy change was smaller than 10-5 eV. A geometry optimization was considered convergent when the energy change was smaller than 0.05 eV Å⁻¹. The vacuum spacing in a direction perpendicular to the plane of the structure is 18 Å. The Brillouin zone integration is performed using $2 \times 2 \times 1$ Monkhorst-Pack k-point sampling for a structure. Finally, the adsorption energies (Eads) were calculated as Eads= Ead/sub -Ead -Esub, where Ead/sub, Ead, and Esub are the total energies of the optimized adsorbate/substrate system, the adsorbate in the structure, and the clean substrate, respectively. The free energy was calculated using the equation:

G=Eads+ZPE-TS

where G, Eads, ZPE and TS are the free energy, total energy from DFT calculations, zero point energy and entropic contributions, respectively.

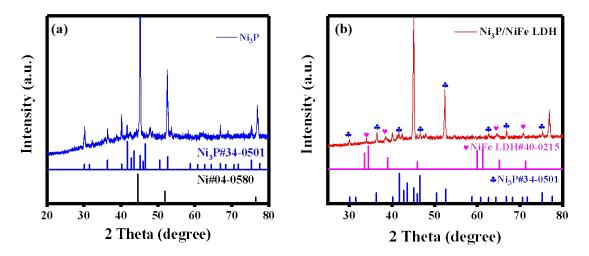


Fig. S1 XRD patterns of (a) Ni₃P; (b) Ni₃P/NiFe LDH.

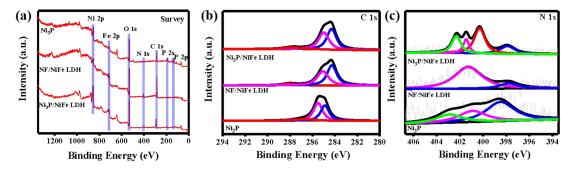
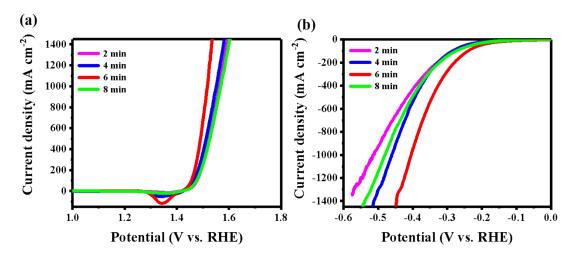



Fig. S2 XPS spectra of Ni_3P , NF/NiFe LDH, and Ni_3P /NiFe LDH. (a) XPS survey; (b) C 1s; (c) N 1s.

Fig. S3 Adjusting the electrodeposition time: (a) OER LSV polarization curves; (b) HER LSV polarization curves.

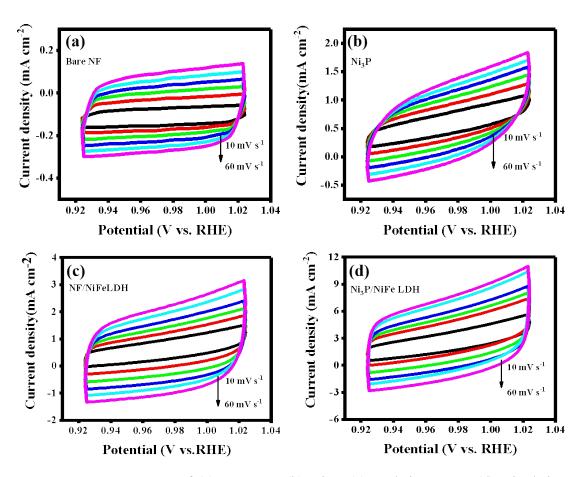


Fig. S4 OER CV curves of (a) Bare NF, (b) Ni_3P , (c) NF/NiFe LDH, (d) $Ni_3P/NiFe$ LDH catalysts at different scan rates of 10, 20, 30, 40, 50, and 60 mV·s⁻¹ in a non-Faradaic region.

The specific capacitance of the flat reference material of 1 cm² is usually 40 μ F·cm⁻², and the electrochemically active surface area of the catalyst is calculated by analogy.

Calculation of ECSA for each catalyst:

 $ECSA = C_{dl}/C_s$

ECSA Bare NF = 2.8 mF·cm⁻²/40 μ F·cm⁻² = 70 cm⁻²_{ECSA}

ECSA $Ni_xP_v = 10.4 \text{ mF} \cdot \text{cm}^{-2}/40 \mu\text{F} \cdot \text{cm}^{-2} = 260 \text{ cm}^{-2}_{\text{ECSA}}$

ECSA NF/NiFe LDH = 24.8 mF·cm⁻²/40 μ F·cm⁻² = 620 cm⁻²_{ECSA}

ECSA Ni_xP_y/NiFe LDH = 44.8 mF·cm⁻²/40 μ F·cm⁻² = 1120 cm⁻²_{ECSA}

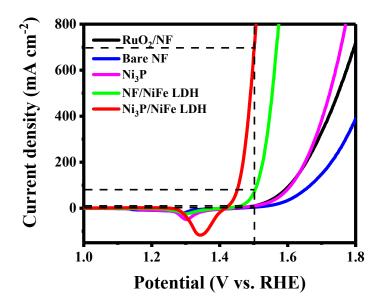
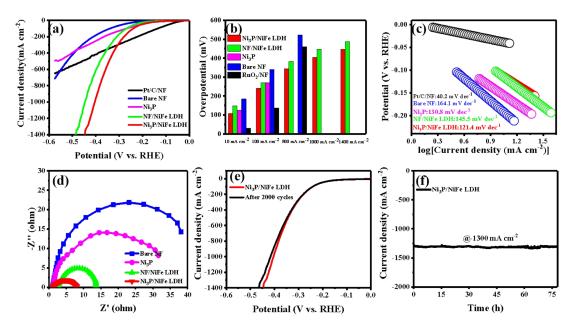



Fig. S5 OER polarization curves of catalysts in 1 M KOH.

Fig. S6 (a) HER polarization curves of bare NF, Ni₃P, NF/NiFe LDH, and Ni₃P/NiFe LDH in 1.0 M KOH solution; (b) HER overpotentials at current densities; (c) Tafel slopes; (d) EIS; (e) LSV curves of Ni₃P/NiFe LDH before and after 2000 CV cycles; (f) Timing current (i-t) stability test.

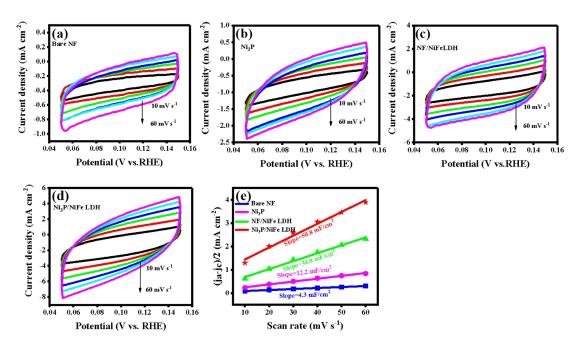


Fig. S7 (a-d) HER CV curves of bare NF, Ni₃P, NF/NiFe LDH, and Ni₃P/NiFe LDH at different scanning rates (10, 20, 30, 40, 50, and 60 mV·s⁻¹) in the non-Faraday region; (e) C_{dl} .

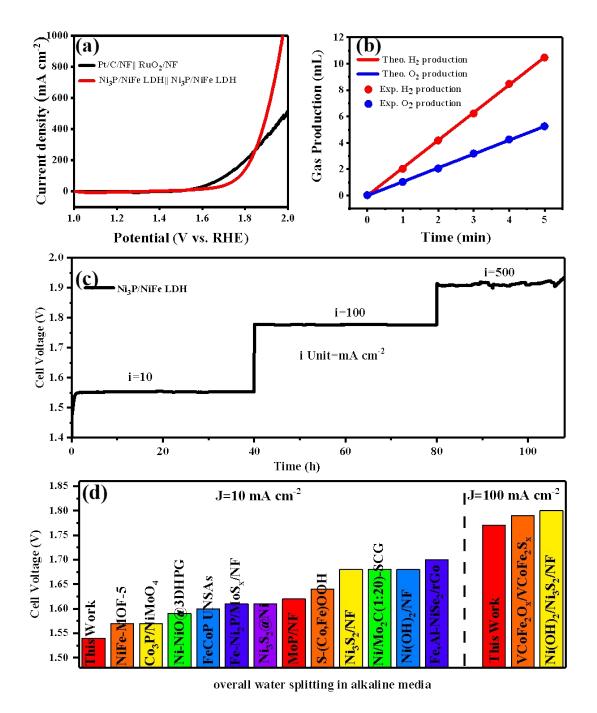
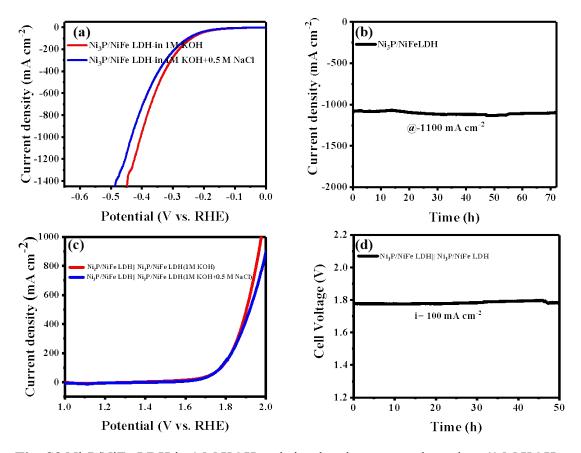



Fig. S8 (a) LSV polarization curve of $Ni_3P/NiFe$ LDH $||Ni_3P/NiFe$ LDH and $RuO_2/NF||Pt/C/NF$ double electrode system in 1.0 M KOH solution; (b) Faraday efficiency; (c) Continuous constant potential (v-t) stability test; (d) Comparison of overall water splitting properties at 10 and 100 mA·cm⁻².

Fig. S9 Ni₃P/NiFe LDH in 1 M KOH and simulated seawater electrolyte (1 M KOH + 0.5 M NaCl). (a) HER LSV curves; (b) Timing current (i-t) stability test in a simulated seawater electrolyte; (c) totally dissolved (seawater) water test of Ni₃P/NiFe LDH||Ni₃P/NiFe LDH double electrode system; (d) stability test in a simulated seawater electrolyte.

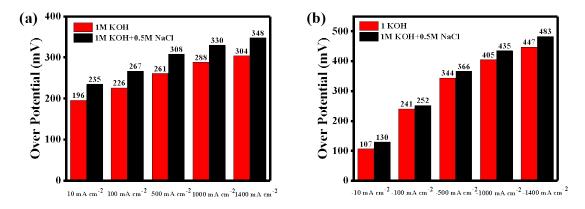


Fig. S10 (a) OER overpotentials required for $j = 10, 100, 500, 1000, and 1400 mA \cdot cm^{-2}$. (b) HER overpotentials required for $j = -10, -100, -500, -1000, and -1400 mA \cdot cm^{-2}$.

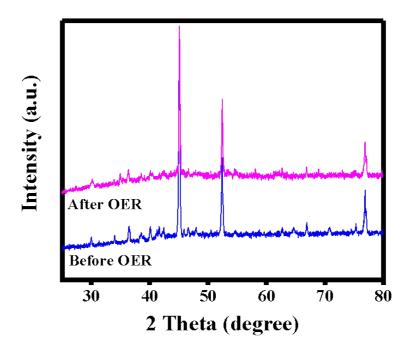
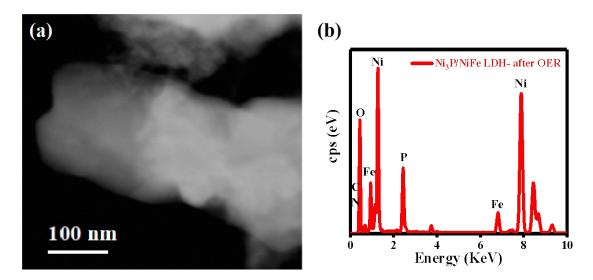



Fig. S11 XRD pattern of Ni₃P/NiFe LDH before and after reaction.

Fig. S12 (a) HAADF-STEM image; (b) STEM-EDX spectra of Ni₃P/NiFe LDH after OER.

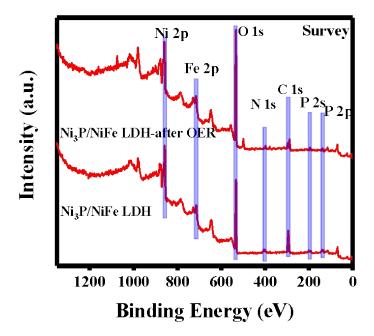
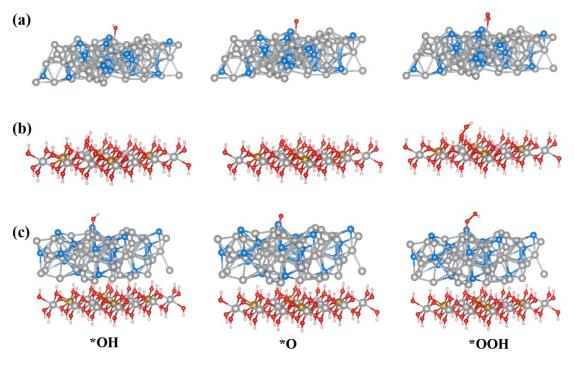



Fig. S13 XPS survey of $Ni_3P/NiFe$ LDH before and after reaction.

Fig. 14 Intermediate state (*OOH, *O, *OH) structure of OER process (a) Ni₃P; (b) NiFe LDH; (c) Ni₃P/NiFe LDH.

atomic ratio sample	Ni	Fe	Р	0	С	N
Ni ₃ P	11.77		19.79	32.87	32.75	2.82
NF/NiFe LDH	9.01	10.08		36.28	38.67	5.96
Ni ₃ P/NiFe LDH	9.96	9.18	8.88	31.02	33.27	7.69

Table S1. XPS elemental quantitative analysis results of Ni $_3$ P, NF/NiFe LDH, and Ni $_3$ P/NiFe LDH.

Table S2. Comparison of OER catalytic activity between $Ni_3P/NiFe$ LDH and recently reported advanced electrocatalyst in 1 M KOH solution at current density of 10 mA·cm⁻².

Catalyst	η_{10}^*	Tafel slope	Reference
	(mV) (mV		
Ni ₃ P/NiFe LDH	196	25.2	This work
NF@Fe ₂ -Ni ₂ P/C	205	52	ACS Catal. 2019, 9 (10), 8882-8892.
NiFe LDH-NS@DG10	210	52	Adv. Mater. 2017, 29 (17), 1700017.
Ni ₂ P-Ni ₃ S ₂ HNAs/NF	210	62	Nano Energy. 2018, 51, 26-36.
	210	40.0	J. Mater. Chem. A. 2021, 9 (5), 2999-
Gd-NiFe-LDH@CC	210	40.9	3006.
NiFe-MOF	215	49.1	Adv. Funct. Mater. 2021, 31 (33),
INIT C-IVIOT	215	49.1	2102066.
Ru/Ni ₃ V-LDH	aV-LDH 225 33		J. Am. Chem. Soc. 2022, 144 (3), 1174-
Ku/1N13 V -LD11	223	33	1186.
Ni/CeO ₂ @N-CNFs	230	54.2	Small. 2022, 18 (13), 2106592.
NiPS _{2.7} Se _{0.3}	250	76	Adv. Funct. Mater. 2021, 31 (19),
$NIPS_{2.7}Se_{0.3}$	230	70	2100618.
CoFe LDHs-Ar/NF	266	37.85	Angew. Chem. Int. Ed. 2017, 56 (21),
COLC TDU2-VI/NL	200	57.05	5867-5871.
NiCo ₂ S ₄ @NiFe LDH	370	96	App. Catal. B-Environ. 2021, 286,
	570	70	119869.

Table S3. Comparison of OER catalytic activity between $Ni_3P/NiFe$ LDH and recently reported advanced electrocatalyst in 1 M KOH solution at current density of 100 mA·cm⁻².

Catalyst	Catalyst η_{100}^* Tafel slope (mV) (mV doc ⁻¹)		Reference
	(mV)	(mV dec ⁻¹)	
Ni ₃ P/NiFe LDH	226	25.2	This work
NiFc MOF/NF	240	44.1	Angew. Chem. Int. Ed. 2021, 60 (23),
	240	44.1	12770-12774.
FeNi-LDH/CoP/CC	248.9	33.5	Angew. Chem. Int. Ed. 2019, 58 (34),
remi-LDH/Cor/CC	240.9	33.3	11903-11909.
NiFeRu LDH	258	-	Adv. Mater. 2018, 30 (10), 1706279.
Ni-Fe NPs	270	58	Nat. Commun. 2019, 10 (1), 5599.
NiMoN@NiFeN	277	58.6	Nat. Commun. 2019, 10 (1), 5106.
S,P-			
(Ni,Mo,Fe)OOH/NiMo	279	56.7	<i>Appl. Catal. B-Environ.</i> 2021, <i>293</i> ,
P/Wood aerogel			120215.
CoFeZr oxides	290	54.2	Adv. Mater. 2019, 31 (28), 1901439.
	215	- /	Adv. Funct. Mater. 2020, 30 (12),
Strained FeP ₂ /NF	315	56	1907791.
Cu@CoFe LDH	318	44.4	Nano Energy. 2017, 41, 327-336.
FeCoNi nanotube array	390	49.9	Nano Res. 2016, 9 (3), 831-836.

Table S4. Comparison of OER catalytic activity between $Ni_3P/NiFe$ LDH and recently reported advanced electrocatalyst in 1 M KOH solution at current density of 500 mA·cm⁻².

Catalyst	η ₅₀₀ * (mV)	Tafel slope (mV dec ⁻¹)	Reference
Ni ₃ P/NiFe LDH	261	25.2	This work
Fe _{0.01} &Mo-NiO	272	51.1	Energy & Environ. Sci. 2022 , 15 (9), 3945-3957.
NiMo _x /NiMoS	278	34	Nat. Commun. 2020, 11 (1), 5462.
NiFe-MOF	297	49.1	<i>Adv. Funct. Mater.</i> 2021, <i>31</i> (33), 2102066.
Cu@NiFe LDH	311	27.8	Energy & Environ. Sci. 2017, 10 (8), 1820-1827.
NiMoN@NiFeN	337	58.6	<i>Nat. Commun.</i> 2019, <i>10</i> (1), 5106.
CoP _x @FeOOH	337	37.6	Appl. Catal. B-Environ. 2021, 294, 120256.
Co ₉ S ₈ @Fe ₃ O ₄	350	54	ACS Catal. 2022, <i>12</i> (8), 4318- 4326.
Ni-Fe-OH@Ni ₃ S ₂ /NF	370	-	Adv. Mater. 2017, 29 (22), 1700404.
Ni-Mo-B HF	407	79.0	<i>Adv. Funct. Mater.</i> 2022, <i>32</i> (4) 2107308.

Table S5. Comparison of OER catalytic activity between $Ni_3P/NiFe$ LDH and recently reported advanced electrocatalyst in 1 M KOH solution at current density of 1000 mA·cm⁻².

Catalyst	η_{1000}^{*}	Tafel slope	Reference	
Catalyst	(mV)	(mV dec ⁻¹)	Kerence	
Ni ₃ P/NiFe LDH	288	25.2	This work	
NF@Fe ₂ -Ni ₂ P/C	300	52	ACS Catal. 2019, 9 (10), 8882-8892.	
FeNiCoCrMnS ₂	308	39.1	Adv. Funct. Mater. 2021, 31 (48),	
renicocrimits ₂	508	39.1	2106229.	
Cu@NiFe LDH	315	27.8	Energy & Environ. Sci. 2017, 10 (8),	
Cu@Nire LDII	515	5 27.8	1820-1827.	
NiFe LDH/NiS	325	60.1	Adv. Energy Mater. 2021, 11 (46),	
	NIFE LDH/NIS 525	00.1	2102353.	
Zn-(Ni/FeOOH)@NF	330	33	Small. 2022, 18 (37), 2203710.	
CoS@NiFe/NF	330	73.1	Chem. Asian. J. 2020, 15 (9), 1484-	
COS(WINIFE/INF	550	/5.1	1492.	
NiFe(OH) _x /FeS/1F	S/1F 332		Adv. Funct. Mater. 2019, 29 (36),	
$NII^{\circ}e(OII)_{x}/I^{\circ}eS/II^{\circ}$	552	-	1902180.	
Ni ₂ P-Fe ₂ P/NF	337	58	Adv. Funct. Mater. 2021, 31 (1), 2006484	
0.05 MpCyCo So			Appl. Catal. B-Environ. 2022, 316,	
0.03-minCuC0 ₂ Se	0.05-MnCuCo ₂ Se 345 68	00	121649.	
Fe-CoP/NF	428	36	Adv. Sci. 2018, 5 (10), 1800949.	

Catalyst	voltage @j ₁₀ (V)	Durability	Substrate	Reference
Ni ₃ P/NiFe LDH	1.54	108 h	NF	This work
NiFe-MOF-5	1.57	24 h	NF	Inorg. Chem. Front., 2021, 8 (11), 2889-2899.
Co ₃ P/NiMoO ₄	1.57	12 h	NF	Ceram. Int., 2019, 45 (14), 17128-17136.
Ni-NiO@3DHPG	1.59	-	SCG	Electro. Acta, 2019, 298, 163- 171.
FeCoP UNSAs	1.6	20 h	NF	Nano Energy, 2017, 41, 583- 590.
Fe-Ni ₂ P/MoS _x /NF	1.61	36 h	NF	Adv. Mater., 2020, 7 (12), 1901926.
Ni ₃ S ₂ @Ni	1.61	30 h	NF	J. Energy Chem., 2020, 46, 178-186.
MoP/NF	1.62	20 h	NF	Small, 2018, 2 (5), 1700369.
S-(Co,Fe)OOH	1.64	50 h	Fe foam	Nanoscale, Adv., 2021, 3 (22), 6386-6394.
Ni ₃ S ₂ /NF	1.68	14 h	NF	Nanoscale, 2018, 10 (36), 17347-17353.
Ni/Mo ₂ C (1:20)-SCG	1.68	27 h	SCG	Inter. J. Hydrogen Energy, 2022, 47 (2), 761-771.
Ni(OH) ₂ / NF	1.68	24 h	NF	ACS Appl. Mater. & Inter., 2016, 8 (49), 33601-33607.
Fe Al-NiSe/rGo	17	80000 s	rGO	Nanoscale, 2020, 12 (25),

Table S6. Comparison of water splitting activity between Ni₃P/NiFe LDH and other reported electrocatalysts in 1 M KOH solution at current density of 10 mA \cdot cm⁻².

Catalyst	voltage@ j100 (V)	Durability	Substrate	Reference
Ni ₃ P/NiFe LDH	1.77	108 h	NF	This work
	1.79	-	NF	New J. Chem., 2022, 46 (8),
VCoFe ₂ O _x /VCoFe ₂ S _x				3555-3559.
	1.8	100 h	NIE	Energy & Fuels, 2019, 33 (11),
Fe, Al-NiSe ₂ /rGo			NF	12052-12062.

Table S7. Comparison of water splitting activity between $Ni_3P/NiFe$ LDH and otherreported electrocatalysts in 1 M KOH solution at current density of 100 mA·cm⁻².

Table S8. Comparison of OER catalytic activity between $Ni_3P/NiFe$ LDH and recently reported advanced electrocatalyst in 1 M KOH + 0.5 M NaCl solution at current density of 100 mA·cm⁻².

Catalyst	η ₁₀₀ * (mV)	Durability	Substrate	Reference
Ni ₃ P/NiFe LDH	267	78 h	NF	This work
Gly-@NCP	268	20 h	СР	Adv. Sci., 2021, 8 (14), 2100498.
S-(Ni,Fe)OOH	278	100 h	NF	Energy-Environ. Sci., 2020 , 13 (10), 3439-3446.
NiMoN@NiFeN	286	100 h	NF	Nat. Commun., 10, 5106 (2019).
(NiFeCoV)S ₂	299	50 h	NF	J. Colloid Inter. Sci., 2023, 645, 724-734.
CoP _x @FeOOH	300	80 h	NF	Appl. Catal. B-Environ., 2021, 294, 120256.
Ni ₂ P-Fe ₂ P/NF	305	48 h	NF	Adv. Funct. Mater., 2021, 31 (1), 2006484.
Fe-Ni(OH) ₂ / Ni ₃ S ₂ @NF	320	27 h	NF	Nano Research, 2021, 14, 1149– 1155.
NiFe/NiS _x -Ni	330	500 h	NF	P. National Acad. Sci., 2019, 116 (14), 6624-6629.
Cr-Co _x P	330	140 h	NF	Adv. Funct. Mater., 2023, 2214081.
NiCoHPi@Ni₃N/NF	365	120 h	NF	ACS Appl. Mater. Inter., 2022, 14 (19), 22061-22070.
Co-Fe-O-B-10	434	20 h	GC	ACS Appl. Energy Mater., 2020, 3 (8), 7619-7628.

Note: NF (Ni foam), CP (Carbon Paper), GC (Glassy Carbon).

Table S9. Comparison of OER catalytic activity between $Ni_3P/NiFe$ LDH and recently reported advanced electrocatalyst in 1 M KOH + 0.5 M NaCl solution at current density of 500 mA·cm⁻².

Catalyst	η ₁₀₀₀ * (mV)	Durability	Substrate	Reference
Ni ₃ P/NiFe LDH	308	78 h	NF	This work
Col @FoOOU	360	80 h	NF	Appl. Catal. B-Environ., 2021,
CoP _x @FeOOH	300	500 80 11	INΓ	294, 120256.
Cr-Co _x P	375	140 h	NF	Adv. Funct. Mater., 2023,
	515			2214081.
S, B-(CoFeV)OOH	388	50 h	NF	ACS Appl. Energy Mater., 2021, 4 (7), 6942-6956.
NiCoHPi@Ni ₃ N/NF	425	120 h	NF	ACS Appl. Mater.s & Inter.,
	425	25 120 h		2022 , 14 (19), 22061-22070.

Table S10. Comparison of OER catalytic activity between $Ni_3P/NiFe$ LDH and recently reported advanced electrocatalyst in 1 M KOH + 0.5 M NaCl solution at current density of 1000 mA·cm⁻².

Catalyst	η ₁₀₀₀ * (mV)	Durability	Substrate	Reference
Ni ₃ P/NiFe LDH	330	78 h	NF	This work
Cr-Co _x P	404	140 h	NIC	Adv. Funct. Mater., 2023 ,
	404	140 n	NF	2214081.
Go@Fe@Ni-Co/NF	434	0.2 h	NE	J. Mater. Chem. A., 2020 , 8 (46),
	434	0.2 h	NF	24501-24514.

References

- G. Kresse, J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. *Comput. Mater. Sci.*, 1996, 6, 15-50.
- 2. G. Kresse, J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. *Phys. Rev. B*, 1996, **54**, 11169-11186.
- J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 4. G. Kresse, D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B*, 1999, **59**, 1758-1775.
- 5. P. E. Blöchl, Projector Augmented-Wave Method. *Phys. Rev. B*, 1994, **50**, 17953-17979.