Contents Page

1. General Information S2
2. General Procedure for the Photoelectrolysis S2
3. Characterization Data for the Photoelectrolysis Products S3
4. Cyclic Voltammetry Studies S8
5. NMR Spectra for Photoelectrolysis Products S9

1. General Information

Acetonitrile was obtained by distillation under argon from calcium hydride. Flash column chromatography was performed with silica gel (230-400 mesh). NMR spectra were recorded on Bruker AV-400 and Bruker AV-500 instruments. Data were reported as chemical shifts in ppm relative to $\mathrm{TMS}(0.00 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ and $\mathrm{CDCl}_{3}(77.2 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$, respectively. The abbreviations used for explaining the multiplicities were as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. High resolution mass spectra (ESI HRMS) were recorded on a Micromass QTOF2 Quadruple/Time-of-Flight Tandem mass spectrometer by the instrumentation center of Department of Chemistry, Xiamen University. Cyclic voltammograms were obtained on a CHI 760E potentiostat. Infrared spectra (IR) were recorded on a Nicolet AVATER FTIR330 spectrometer.

2. General Procedure for the Photoelectrolysis

A 10 mL Schlenk tube (Figure S1a) equipped with a RVC ($100 \mathrm{PPI}, 1.2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 0.5 \mathrm{~cm}$) anode and a Pt plate ($1 \mathrm{~cm} \times 1 \mathrm{~cm}$) cathode was charged with arene $(0.5 \mathrm{mmol})$, carbamate or azole (1.0 mmol), DDQ ($20 \mathrm{~mol} \%$), $\mathrm{Et}_{4} \mathrm{NBF}_{4}(0.05 \mathrm{mmol})$ and $\mathrm{MeCN}(6 \mathrm{~mL})$ under argon. The electrolysis cell was suspended 6 mm above the blue LEDs (25 W). A reflector was employed to increase reaction efficiency (Figure S1b). The photoelectrolysis was carried out at rt (cooled by the axial fan) using a constant current of 2 mA . Upon completion, the reaction mixture was concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with ethyl acetate/hexanes to give the final product.

The gram scale reaction was conducted in a 200 mL beaker-type cell equipped with a RVC anode (100 PPI, $1.2 \mathrm{~cm} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}$) and a Pt plate ($3 \mathrm{~cm} \times 3 \mathrm{~cm}$) cathode. The cell was charged with 1 ($1.01 \mathrm{~g}, 13 \mathrm{mmol}, 1.0$ equiv), $2(3.04 \mathrm{~g}, 26 \mathrm{mmol}, 2.0$ equiv), DDQ ($0.59 \mathrm{~g}, 20$ $\mathrm{mol} \%), \mathrm{Et}_{4} \mathrm{NBF}_{4}(0.28 \mathrm{~g}, 1.3 \mathrm{mmol}, 0.1$ equiv), and $\mathrm{MeCN}(156 \mathrm{~mL}) .5$ blue LEDs (25 W each) were placed around the cell within about 6 mm (Figure S1c). The photoelectrolysis was carried out at rt using a constant current of 52 mA . Upon completion, the reaction mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with ethyl acetate/hexanes to afford $\mathbf{3}$ as a white solid ($1.62 \mathrm{~g}, 65 \%$ yield).

Figure S1. a. The assembled electrolysis cell. b. Reaction setup for small scale reaction. c. Reaction setup for the gram scale reaction.

3. Characterization Data for the Photoelectrolysis Products

The compounds $\mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}, \mathbf{1 5}, \mathbf{1 6}, \mathbf{1 7}, \mathbf{1 8}, \mathbf{2 0}, \mathbf{2 1}, \mathbf{2 3}, \mathbf{2 4}, \mathbf{2 5}, 27$ and 28 are known in the literature.

tert-Butyl phenylcarbamate (3). Yield $=83 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 152.9,138.5,129.1,123.2,118.7,80.6,28.5$.

tert-Butyl (3,4-dichlorophenyl)carbamate (4). Yield $=70 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.5,138.1,132.9,130.5$, 126.2, 120.3, 117.9, 81.5, 28.4.

tert-Butyl (3,4-dibromophenyl)carbamate (5). Yield $=58 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.4,138.7,133.7,125.1$, 123.3, 118.7, 117.8, 81.5, 28.4.

tert-Butyl (2,4-dichlorophenyl)carbamate (6). Yield $=60 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,134.2,128.8,127.9$, 127.8, 122.4, 120.6, 81.6, 28.4.

tert-Butyl (2,4-dibromophenyl)carbamate (7). $\mathrm{C} 1: \mathrm{C} 2=1: 1$. Yield $=46 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=$ 8.9, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,135.8$, $134.5,131.4,121.2,115.3,112.8,81.7,28.4$.

tert-Butyl (4-chloro-3-fluorophenyl)carbamate and tert-butyl (3-chloro-4-fluorophenyl)carbamate (8). $\mathrm{C} 1: \mathrm{C} 2=4.5: 1$. Yield $=38 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.07-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.59-$ $6.39(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.4(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 152.4$, $138.7(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 130.6,116.7(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 114.6,107.2(\mathrm{~d}, J=26.0 \mathrm{~Hz}), 81.5,28.4$; ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-113.7,-122.8$.

tert-Butyl (3-bromo-4-chlorophenyl)carbamate and tert-butyl (4-bromo-3-chlorophenyl) carbamate (9). $\mathrm{C} 1: \mathrm{C} 2=1: 1$. Yield $=33 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.63(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.47(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.32(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 0.5 \mathrm{H}), 7.19(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.07(\mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.65-6.52(\mathrm{~m}$, $1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.5,152.4,138.8,138.1,134.9,133.8$, $130.4,128.2,123.4,122.7,120.1,118.6,118.0,115.4,81.5,28.4$.

tert-Butyl (4-fluorophenyl)carbamate and tert-butyl (3-fluorophenyl)carbamate (10). $\mathrm{C} 1: \mathrm{C} 2=1.2: 1$. Yield $=49 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.27(\mathrm{~m}, 1.5 \mathrm{H})$, $7.20(\mathrm{td}, J=8.3,6.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.05-6.94(\mathrm{~m}, 1.5 \mathrm{H}), 6.71(\mathrm{td}, J=8.3,2.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.67-$ $6.46(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.8(\mathrm{dt}, J=10.9,7.4 \mathrm{~Hz})$, -120.2.

tert-Butyl (4-chlorophenyl)carbamate and tert-butyl (3-chlorophenyl)carbamate (11). $\mathrm{C} 1: \mathrm{C} 2=7.5: 1$. Yield $=71 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-6.92(\mathrm{~m}, 4 \mathrm{H})$, 6.70-6.51 (m, 1H), 1.54-1.49 (m, 9H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,137.1,130.0$, 129.1, 129.0, 128.1, 127.8, 123.4, 123.1, 119.9, 81.0 (2C), 28.5, 28.4.

tert-Butyl (4-bromophenyl)carbamate and tert-butyl (3-bromophenyl)carbamate (12). $\mathrm{C} 1: \mathrm{C} 2=8: 1$. Yield $=62 \%$; White solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.09(\mathrm{~m}, 4 \mathrm{H})$, 6.66-6.52 (m, 1H), 1.54-1.48 (m, 9H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.7,137.6,132.0$, 130.3, 126.1, 120.2, 115.5, 81.0, 28.5, 28.4 .

Methyl phenylcarbamate (15). Yield $=74 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{dd}, J=8.2,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 154.3,138.0,129.1,123.6,118.9,52.5$.

Ethyl phenylcarbamate (16). Yield $=78 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=8.2,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 4.22$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.9,138.1$, 129.1, 123.4, 118.8, 61.3, 14.7.

Propyl phenylcarbamate (17). Yield $=71 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 153.9, 138.1, 129.1, 123.4, 118.8, 67.0, 22.4, 10.5.

Butyl phenylcarbamate (18). Yield $=71 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.0,138.2,129.1,123.4,118.8,65.2,31.1,19.2,13.8$.

2-Methyl-2-nitropropyl phenylcarbamate (19). Yield = 57\%; White solid; ${ }^{1}$ H NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 4.50$ ($\mathrm{s}, 2 \mathrm{H}$), $1.64(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.6,137.4,129.2,124.1,119.0,86.7$, 69.0, 23.1; IR (neat, cm^{-1}): 3397, 1636, 1543, 1444, 1219, 1070, 692; ESI HRMS m/z $(\mathrm{M}+\mathrm{Na})^{+}$calcd 261.0846, obsd 261.0849.

Cyclohexyl phenylcarbamate (20). Yield $=81 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 4.79-$ $4.71(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.34(\mathrm{~m}, 4 \mathrm{H})$, $1.29-1.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.4,138.3,129.1,123.3,118.7,73.7$, 32.0, 25.5, 23.9.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl phenylcarbamate (21). Yield $=67 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.01$ $(\mathrm{m}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{td}, J=10.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H})$, $1.71-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.11-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.94-0.82(\mathrm{~m}$, $7 \mathrm{H}), 0.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.5,138.3,129.1,123.3$, $118.6,75.2,47.4,41.5,34.4,31.5,26.4,23.6,22.2,21.0,16.6$.

1-Ethynylcyclohexyl phenylcarbamate (22). Yield $=59 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$, $2.64(\mathrm{~s}, 1 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 1 \mathrm{H})$, $1.38-1.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 151.7,138.0,129.1,123.4,118.7,83.9$, $75.8,74.6,37.4,25.2,22.7$; IR (neat, cm^{-1}): 3305, 2936, 1712, 1523, 1442, 1313, 1220, 1052, 751; ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 266.1151, obsd 266.1158.

(3R,5R)-Adamantan-1-yl phenylcarbamate (23). Yield $=87 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}$, $1 \mathrm{H}), 2.20-2.15(\mathrm{~m}, 9 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.5,138.5$, 129.0, 123.1, 118.6, 80.5, 41.7, 36.3, 31.0.

4-Bromo-1-phenyl-1H-pyrazole (24). Yield $=65 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 141.6,139.8,129.7,127.2,127.1,119.1,95.8$.

4-Chloro-1-phenyl-1H-pyrazole (25). Yield $=69 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.9,139.6,129.7,127.1,124.9,119.1,112.5$.

Methyl 1-phenyl-1H-pyrazole-5-carboxylate (26). Yield $=62 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.7,140.3,139.8,133.1,128.8,128.7,126.0,112.7$,
52.1; IR (neat, cm^{-1}): 2920, 1733, 1501, 1316, 1238, 1103, 760; ESI HRMS m/z (M+Na) ${ }^{+}$ calcd 225.0634, obsd 225.0626.

4-Nitro-1-phenyl-1H-pyrazole (27). Yield = 53\%; White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.8,137.5,136.9,130.1,128.9,126.0,120.0$.

Phenyl-1 \boldsymbol{H}-tetrazole (28). Yield $=36 \%$; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.03(\mathrm{~s}$, $1 \mathrm{H}), 7.77-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.52(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.7,134.0$, 130.4, 130.2, 121.4.

4. Cyclic Voltammetry Studies

The cyclic voltammogram of $\mathrm{DDQ}(3 \mathrm{mM})$ was recorded in an electrolyte of $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ using a glassy carbon disk working electrode (diameter, 1 mm), a Pt wire auxiliary electrode and a SCE reference electrode. The scan rate is $100 \mathrm{mV} / \mathrm{s}$.

Figure S2. Cyclic voltammogram of DDQ (3 mM).

5. NMR Spectra for Photoelectrolysis Products

Compound 3

Compound 4

Compound 5

Compound 6

Compound 7

Compound 8

Compound 9

Compound 10

Compound 11

Compound 12

Compound 15

Compound 16

Compound 17

Compound 18

Compound 19

Compound 20

Compound 21

Compound 22

Compound 23

Compound 24

Compound 25

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 26

Compound 27

Compound 28

