Supporting Information

Electrochemical synthesis of γ -keto sulfones containing

β-quaternary carbon center via 1,2-migration

Wen Xia,^a Yawen Yang,^a Xiaohui Zhang,^a Liangzhen Hu,^{*a} and Yan Xiong^{*a,b,c} ^aSchool of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China

^bState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China

^cSchool of Chemical and Environmental Engineering, and Collaborative Innovation Center for High Value Transformation of Coal Chemical Process By-products, Xinjiang Institute of Engineering, Xinjiang 830091, P. R. China E-mail: xiong@cqu.edu.cn

Table of contents

1.	General information	S2
1.1	Preparation of allylic alcohols	S2
1.2	Preparation of aryl sulfonhydrazides	S3
1.3	Preparation of γ-keto sulfones	S 3
1.4	Gram-scale reaction	S4
1.5	5 Control experiments	S4
1.6	6 Reductive reaction	S4
1.7	Cyclic voltammetry (CV) experiments	S5
2.	Green metrics	S5
3.	Characterization of the products	S6
4.	References	S24
5.	¹ H NMR, and ¹³ C NMR spectra of products	S25

1. General information

¹H-NMR and ¹³C-NMR spectra were recorded in CDCl₃ solution on a Bruker Avance 400 spectrometer at 20~25 °C. ¹H NMR spectra were reported in parts per million using tetramethylsilane TMS ($\delta = 0.00$ ppm) as an internal standard. The data of ¹H NMR were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd= doublet of doublets, dt = doublet of triplets, m = multiplet), coupling constants (*J*, Hz), and integration. ¹³C NMR spectra were reported in parts per million using solvent CDCl₃ ($\delta = 77.2$ ppm) as an internal standard. The data of ¹³C NMR are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet), and coupling constants (*J*, Hz). Reactions were monitored by TLC and column chromatography was performed using silica gel. Commercially available reagents were used without further purification unless otherwise specified.

1.1 Preparation of allylic alcohols

The raw materials (1) were prepared according to literature procedures.¹⁻⁶ To a twonecked flask under argon atmosphere loaded with a solution of ketone (5 mmol) in anhydrous THF (5 mL), then Grignard reagent (1.0 M in THF, 5.5 mL, 5.5 mmol, 1.1 eq.) was dropwise added via syringe under vigorous stirring in ice-bath. After continuously stirring for 0.5 h, the mixture was warmed to room temperature (or 50 °C) and stirred for 5 h. Then it was detected by TLC and aqueous NH₄Cl (6 mL) was added at 0 °C to quench the reaction. Removed THF solvent. Subsequently, the mixture was extracted with EtOAc (5 mL × 3) and the combined organic layer was dried with anhydrous magnesium. The solvent was removed in vacuo by a rotary evaporator and the final crude was purified by chromatography on silica gel to yield desired allylic alcohol.

$$R^{1} = Aryl, Alkyl$$

$$R^{2} = Aryl, Alkyl$$

$$R^{3} = H, Me$$

$$R^{3} = M R^{3}$$

$$R^{3} = H, Me$$

$$R^{3} = H, Me$$

For *α*, *α***-diaryl allylic alcohols** (1a-m): 0 °C to rt.

For α -alkyl, α -aryl allylic alcohols (1m-r) and α , α -dialkyl allylic alcohols (1s-z): 0 °C to 50 °C.

1.2 Preparation of aryl sulfonhydrazides

The raw materials (2) were prepared according to literature procedures.⁷⁻¹⁰ To a two-necked flask under argon atmosphere charged with arylsulfonyl chloride (5 mmol) in THF solution (25 mL), and subsequently added hydrazine hydrate (15 mmol, 3 eq.) dropwise under ice bath conditions. After stirring at 0 °C for 30 minutes, detected by TLC. Then evaporated THF solution in vacuum, and extracted the aqueous solution of crudes with ethyl acetate (30 mL \times 3). Organic layer was dried over anhydrous magnesium and removed solvents. Then the crude was purified by chromatography on silica gel to obtain desired aryl sulfonhydrazides.

ArSO₂CI
$$\xrightarrow{NH_2NH_2 \cdot H_20}$$
 ArSO₂NHNH₂ ArSO₂NHNH₂

1.3 Preparation of y-keto sulfones

An undivided cell was equipped with graphite plate anode $(10 \times 10 \times 3 \text{ mm})$ and foamed nickel cathode $(10 \times 10 \times 2 \text{ mm})$. Allyl alcohols **1** (0.25 mmol), sulfonyl hydrazines **2** (0.5 mmol, 2 eq.) and Bu₄NBF₄ electrolyte (0.5 mmol) were respectively added into the cell with a 6 mL solution of MeCN/H₂O (5/1). The mixture exposed to air was stirred and electrolyzed under constant current conditions (15 mA) at room temperature for 4 hours. Then it was extracted with ethyl acetate (15 mL × 3), and dried over anhydrous MgSO₄. After concentrating in vacuum, the residue was purified by column chromatography on silica gel to get target γ -keto sulfone possessing β -quaternary carbon center.

1.4 Gram-scale reaction

An undivided round-bottomed flask (250 mL) was equipped with graphite plate anode ($10 \times 10 \times 3$ mm) and foamed nickel cathode ($10 \times 10 \times 2$ mm), which were connected to a power supply. 2-methyl-1,1-diphenylprop-2-en-1-ol **1a** (5 mmol), 4methylbenzenesulfonhydrazide **2a** (10 mmol, 2 eq.) and Bu₄NBF₄ electrolyte (10 mmol) were respectively added into the cell with a solution of MeCN/H₂O (120 mL, 5/1). The mixture exposed to air was stirred and electrolyzed under constant current conditions (15 mA) at room temperature for 72 hours. Then evaporated MeCN solvent in vacuum and extracted with ethyl acetate (50 mL × 3). After drying over anhydrous MgSO₄ and concentrating in vacuum, the residue was purified by column chromatography on silica gel to obtain target γ -keto sulfone **3aa** (1.27 g, 84%).

1.5 Reductive reaction

A round bottomed flask was filled with γ -keto sulfone (**3aa**, 0.5 mmol, 189.2 mg) in ethanol solution (2 mL). Added sodium borohydride (1.0 mmol, 2 eq.) slowly to it under ice bath conditions. The mixture was continuously stirred for 2 hours at room temperature and detected by TLC. Quenched the reaction by adding dilute hydrochloric acid dropwise under ice bath condition. Washed with saturated salt water and ethyl acetate (15 mL × 3). After drying with anhydrous MgSO₄ and concentrating in vacuum, the mixture was purified by column chromatography on silica gel and obtained γ -hydroxyl sulfone **6** (129.2 mg, 68%).

1.6 Control experiments

Add three equivalents of 2,2,6,6-tetramethylpiperidinyl-1-oxide (TEMPO) or butylated hydroxytoluene (BHT) to the standard reaction system, and other operations are the same as **1.3**.

1.7 Cyclic voltammetry (CV) experiments

Cyclic voltammetry experiments were carried out in a three-electrode cell (25 mL) at room temperature. A steady glassy carbon electrode was used as the working electrode, while a platinum wire was used as the counter electrode and an Ag/AgCl electrode was used as reference. A mixed CH₃CN/H₂O (12 mL, 5/1) solution containing 1 mmol nBu₄NBF₄ was added into the cell. 0.5 mmol **1a** was added to determine the oxidation potential of itself. 0.1 mmol **2a** was added to determine the oxidation potential of 2a. The scan rate was 0.1 V/s, ranging from 0 V to 3 V.

2. Green metrics

Taking standard reactions as examples and calculations are conducted using atom economy (atom efficiency) and theoretical environmental factor (E-factor) as representative green metrics¹¹⁻¹³.

(a) Ji's work¹⁴: two steps, unstable PIDA, heating and other by-products (PhI, AcOH, etc.).

While $R^1 = R^2 = Ph$: Atom efficiency = 0.53, $E_{theor} = 0.89$.

(b) Wang's work¹⁵: unstable and toxic azides, high temperature, 6 equivalents of sodium p-toluenesulfonate, and many by-products (TsNH₂, TMSOH,NaN₃,etc.)

While $R^1 = R^2 = Ph$: Atom efficiency = 0.85, $E_{theor} = 0.18$.

(c) Our work: room tempreture, one step, without oxidants and catalysts, only H_2 and N_2 by-products.

While $R^1 = R^2 = Ph$: Atom efficiency = 0.92, $E_{theor} = 0.08$.

Overall, this electrochemical strategy for constructing γ -keto sulfones has higher atom economy and lower theoretical environmental factor, which is in line with the concept of green chemistry.

3. Characterization of the products

2-methyl-1,2-diphenyl-3-tosylpropan-1-one (3aa)

White solid, 84.2 mg, 89% yield, mp 102-104 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.49 (d, *J* = 8.0 Hz, 2H), 7.32-7.26 (m, 2H), 7.25-7.20 (m, 6H), 7.16-7.12 (m, 4H),4.00 (d, *J* = 14.4 Hz, 1H), 3.72 (d, *J* = 14.4 Hz, 1H), 2.32 (s, 3H), 2.04 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 201.31, 144.14, 139.52, 138.81, 136.35, 131.95, 129.74, 129.37, 129.36, 128.22, 128.08, 127.68, 126.77, 65.70, 53.81, 22.26, 21.71.
HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₃H₂₂O₃SNa 401.1182, found 401.1186.

2-methyl-1,2-di-*p*-tolyl-3-tosylpropan-1-one (3ba)

White solid, 87.4 mg, 86% yield, mp 88-90 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.52 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.02 (t, *J* = 8.0 Hz, 4H), 3.99 (d, *J* = 14.8 Hz, 1H), 3.84 (d, *J* = 14.8

Hz, 1H), 2.38 (s, 3H), 2.29 (s, 3H), 2.28 (s, 3H), 2.09 (s, 3H).

¹³C NMR (101 MHz, CDCl₃):δ 200.77, 143.86, 142.65, 138.79, 137.73, 136.50, 133.26, 129.90, 129.73, 129.53, 128.84, 127.64, 126.66, 65.81, 53.37, 22.27, 21.66, 21.57, 21.14.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₂₆O₃SNa 429.1495, found 429.1497.

1,2-bis(4-fluorophenyl)-2-methyl-3-tosylpropan-1-one (3ca)

White solid, 82.9 mg, 80% yield, mp 134-136 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.54 (d, *J* = 8.0 Hz, 2H), 7.41-7.38 (m, 2H), 7.26-7.21 (m, 4H), 6.98-6.90 (m, 4H), 3.94 (d, *J* = 14.8 Hz, 1H), 3.83 (d, *J* = 14.8 Hz, 1H), 2.34 (s, 3H), 2.02 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ 199.42, 164.99 (d, J = 242.6 Hz), 162.49 (d, J = 236.1 Hz), 144.36, 138.64, 135.03 (d, J = 3.4 Hz), 132.23 (d, J = 9.1 Hz), 131.89 (d, J = 3.3 Hz), 129.79, 128.70 (d, J = 8.2 Hz), 127.64, 116.39 (d, J = 21.5 Hz), 115.51 (d, J = 21.8 Hz), 65.60, 53.26, 22.50, 21.72.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₃H₂₀F₂O₃SNa 437.0993, found 437.0996.

1,2-bis(4-chlorophenyl)-2-methyl-3-tosylpropan-1-one (3da)

White solid, 88.3 mg, 79% yield mp 100-102 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.8 Hz, 2H), 7.16-7.08 (m, 8H), 3.85 (d, *J* = 14.4 Hz, 1H), 3.78 (d, *J* = 14.8 Hz, 1H), 2.41 (s, 3H), 2.11 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 199.59, 144.41, 138.77, 138.38, 137.48, 134.56, 133.86, 130.96, 129.79, 129.57, 128.72, 128.35, 127.60, 65.37, 53.33, 22.18, 21.75.
HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₃H₂₀Cl₂O₃SNa 469.0402, found 469.0405.

1,2-bis(4-bromophenyl)-2-methyl-3-tosylpropan-1-one (3ea)

White solid, 88.5 mg, 66% yield, mp 118-119 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.48 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 7.2 Hz, 2H), 7.23-7.19 (m, 4H), 7.09 (d, *J* = 8.8 Hz, 2H), 3.89 (dd, *J* = 18.0, 14.8 Hz, 2H), 2.42 (s, 3H), 2.08 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 199.67, 144.39, 138.25, 137.87, 134.23, 132.48, 131.70, 131.04, 129.79, 128.66, 127.55, 127.43, 122.77, 65.22, 53.34, 22.08, 21.77.
HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₃H₂₀Br₂O₃SNa 558.9372, found 558.9373.

2-methyl-3-tosyl-1,2-bis(3-(trifluoromethyl)phenyl)propan-1-one (3fa)

Colourless oil, 115.7 mg, 90% yield.

 $\begin{array}{c} \mathbf{^{T_{5}}}\\ \mathbf{^{T_{5}}}$

1H), 2.29 (s, 3H), 2.07 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ 199.36, 144.64, 139.86, 138.12, 136.32, 132.19, 131.91 (q, J = 32.7 Hz), 131.10 (q, J = 24.0 Hz), 130.45, 130.11, 129.86, 129.04, 128.76 (q, J = 3.5 Hz), 127.57, 126.21 (q, J = 4.0 Hz), 125.30 123.62 (q, J = 3.7 Hz), 123.71 (q, J = 271.0 Hz), 123.62 (q, J = 3.7 Hz), 123.49 (q, J = 273.6 Hz), 65.01, 53.66, 22.04, 21.59.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₂₀F₆O₃SNa 537.0930, found 537.0932.

2-methyl-1-phenyl-2-(p-tolyl)-3-tosylpropan-1-one (3ga) and 2-methyl-2-phenyl-1-(p-tolyl)-3-tosylpropan-1-one (3ga')

Colourless oil, 90.3 mg, 92% yield.

¹**H NMR** (400 MHz, CDCl₃): First isomer: δ 7.46 (d, J = 7.6 Hz, 2H), 7.30-7.25 (overlapped, 2H), 7.19-7.15 (overlapped,3H), 7.13-7.06 (overlapped, 4H),

6.97 (d, *J* = 7.6 Hz, 2H), 3.95 (d, *J* = 14.4 Hz, 1H), 3.73 (d, *J* = 14.8 Hz, 1H), 2.31 (s, 3H), 2.22 (s, 3H), 2.00 (s, 3H). Second isomer: δ 7.46 (d, *J* = 7.6 Hz, 2H), 7.30-7.25 (overlapped, 2H), 7.19-7.15 (overlapped, 3H), 7.13-7.06 (overlapped, 4H), 6.93 (d, *J* =

7.6 Hz, 2H), 3.95 (d, *J* = 14.4 Hz, 1H), 3.73 (d, *J* = 14.8 Hz, 1H), 2.30 (s, 3H), 2.20 (s, 3H), 2.04 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): First isomer: δ 201.42, 143.97, 142.74, 138.74, 137.87, 136.26, 131.85, 129.98, 129.59, 129.34, 128.16, 127.65, 126.59, 65.69, 53.39, 22.20, 21.67, 21.14. Second isomer: δ 200.59, 144.01, 139.70, 138.80, 136.39, 133.17, 129.70, 129.66, 129.25, 128.87, 127.93, 127.62, 126.78, 65.76, 53.74, 22.30, 21.67, 21.57.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₄H₂₄O₃SNa 415.1338, found 415.1337.

1-(4-fluorophenyl)-2-methyl-2-phenyl-3-tosylpropan-1-one (3ha) and 2-(4-fluorophenyl)-2-methyl-1-phenyl-3-tosylpropan-1-one (3ha')

White solid, 86.1 mg, 87% yield, mp 99-107 °C.
¹H NMR (400 MHz, CDCl₃): First isomer: δ 7.55 (t, J = 8.8 Hz, 2H), 7.41-7.38 (overlapped, 2H), 7.33 (d, J = 6.8 Hz, 2H), 7.28 (overlapped, 2H),

7.22 (t, J = 8.0 Hz, 2H), 6.90 (t, J = 8.4 Hz, 3H), 4.04 (d, J = 14.4 Hz, 1H), 3.78 (d, J = 14.4 Hz, 1H), 2.39 (s, 3H), 2.11 (s, 3H). Second isomer: δ 7.55 (t, J = 8.8 Hz, 2H),
7.41-7.38 (overlapped, 1H), 7.28 (overlapped, 3H), 7.26 (d, J = 2.8 Hz, 2H), 7.23 (t, J = 8.0 Hz, 2H), 6.96 (t, J = 8.4 Hz, 3H), 3.97 (d, J = 14.8 Hz, 1H), 3.85 (d, J = 14.4 Hz, 1H), 2.40 (s, 3H), 2.10 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃): First isomer: δ 199.61, 164.78 (d, J = 255.1 Hz), 144.20, 139.44, 138.62, 132.25(d, J = 3.5 Hz), 132.19, 132.13 (d, J = 6.8 Hz), 129.76, 129.46, 127.66, 126.72, 115.36 (d, J = 21.8 Hz), 65.68, 53.79, 22.32, 21.71. Second isomer: δ 201.07, 162.48 (d, J = 249.1 Hz), 144.28, 138.75, 135.92, 135.03 (d, J = 3.5 Hz), 129.75, 129.39, 128.71 (d, J = 8.2 Hz), 128.31, 128.20, 127.62, 116.25 (d, J = 21.5 Hz), 65.56, 53.23, 22.41, 21.69.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₃H₂₁FO₃SNa 419.1088, found 419.1089.

1-(4-bromophenyl)-2-methyl-2-phenyl-3-tosylpropan-1-one (3ia) and 2-(4bromophenyl)-2-methyl-1-phenyl-3-tosylpropan-1-one (3ia')

S9

Colourless oil, 94.9 mg, 83% yield.

¹**H NMR** (400 MHz, CDCl₃): First isomer: δ 7.47 (dt, *J* = 8.4, 2.0 Hz, 2H), 7.32-7.43 (overlapped, 3H), 7.20-7.16 (overlapped, 3H), 7.14-7.09 (overlapped, 5H), 3.97 (d, *J* = 14.8 Hz, 1H), 3.68 (d, *J* = 14.8 Hz, 1H), 2.30 (s, 3H), 2.00 (s, 3H). Second isomer: δ 7.39 (dt, *J* = 8.4, 2.0 Hz, 2H), 7.32-7.43 (overlapped, 3H), 7.20-7.16 (overlapped, 3H), 7.14-7.09 (overlapped, 3H), 7.03 (dt, *J* = 8.8, 2.0 Hz, 2H), 3.84 (s, 2H), 2.32 (s, 3H), 2.00 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): First isomer: δ 200.13, 144.18, 139.22, 138.10, 134.90, 131.46, 130.91, 129.73, 129.44, 128.19, 127.60, 126.90, 126.63, 65.51, 53.73, 22.18, 21.65. Second isomer: δ 200.64, 144.21, 138.66, 138.30, 135.62, 132.27, 132.22, 129.69, 129.38, 128.68, 128.30, 127.49, 122.48, 65.27, 53.29, 22.09, 21.68.
HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₂BrO₃S 457.0468, found 457.0468.

2-(3,4-dimethylphenyl)-2-methyl-1-phenyl-3-tosylpropan-1-one (3ja) and 1-(3,4dimethylphenyl)-2-methyl-2-phenyl-3-tosylpropan-1-one (3ja')

White solid, 76.2 mg, 75% yield, mp 132-137 °C. ¹**H NMR** (400 MHz, CDCl₃): First isomer: δ 7.41 (dt, *J* = 8.4, 2.0 Hz, 2H), 7.29-7.25 (m, 3H), 7.21-7.15 (overlapped, 4H), 7.08-7.05 (m, 3H), 3.93 (d, *J* =

14.8 Hz, 1H), 3.78 (d, *J* = 14.4 Hz, 1H), 2.29 (s, 3H), 2.10 (s, 3H), 2.00 (s, 3H), 1.97 (s, 3H). Second isomer: δ 7.46 (dt, *J* = 8.4, 2.0 Hz, 2H), 7.21-7.15 (overlapped, 1H), 7.14-7.10 (m, 3H), 6.98-6.90 (m, 3H), 6.88-6.80 (m, 3H), 3.95 (d, *J* = 14.4 Hz, 1H), 3.72 (d, *J* = 14.8 Hz, 1H), 2.29 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): First isomer: δ 201.46, 143.74, 139.77, 138.66, 137.38, 136.48, 136.36, 131.78, 130.50, 129.38, 129.18, 128.11, 127.62, 127.59, 127.08, 65.67, 53.22, 22.12, 21.62, 19.90, 19.45. Second isomer: δ 200.78, 143.95, 141.45, 138.82, 136.65, 136.49, 133.60, 130.86, 127.95, 129.62, 129.33, 127.87, 127.62, 126.78, 123.97, 65.79, 53.74, 22.26, 21.62, 19.87, 19.79.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₅H₂₆O₃SNa 429.1495, found 429.1496.

10-methyl-10-(tosylmethyl)phenanthren-9(10H)-one (3ka)

White solid, 82.8 mg, 88% yield, mp 127-128 °C.

3ka

¹**H NMR** (400 MHz, CDCl₃): δ 8.09 (d, J = 8.0 Hz, 1H), 8.01 (d, J = 8.0 Hz, 2H), 7.62 (t, J = 8.0 Hz, 1H), 7.38-7.26 (m, 5H), 7.19-7.14 (m, 1H), 7.03 (d, J = 8.4 Hz, 2H), 4.51 (d, J = 14.4 Hz, 1H), 3.91 (d, J = 14.4 Hz, 1H), 2.26 (s, 3H), 1.35 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ 198.62, 144.26, 138.83, 137.84, 137.03, 134.89, 129.58, 129.31, 128.92, 128.51, 128.34, 128.11, 128.08, 127. 93, 127.85, 124.02, 123.22, 64.83, 49.12, 30.78, 21.67.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₃H₂₀O₃SNa 399.1025, found 399.1024.

1,2-diphenyl-3-tosylpropan-1-one (**3la**)¹⁵

White solid, 56.5 mg, 62% yield.

Ts **¹H NMR** (400 MHz, CDCl₃): δ 7.82 (d, J = 7.6 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.42 (t, J = 7.2 Hz, 1H), 7.31 (t, J = 7.6 Hz, 2H), 7.19-7.10 (m, 7H), 5.21 (dd, J = 8.8, 3.6 Hz, 1H), 4.34 (dd, J = 14.0,

8.8 Hz, 1H), 3.35 (dd, *J* = 14.0, 3.6 Hz, 1H), 2.31 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 196.03, 144.86, 136.66, 136.54, 135.64, 133.58, 129.96, 129.53, 129.03, 128.74, 128.29, 128.26, 128.11, 59.46, 47.68, 21.76.

2-methyl-2-phenyl-1-(thiophen-2-yl)-3-tosylpropan-1-one (3ma)

Colourless oil, 39.5 mg, 41% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.39-7.35 (m, 3H), 7.18-7.12 (m, 5H), 7.06 (d, *J* = 8.4 Hz, 2H), 6.90 (dd, *J* = 4.0, 1.2 Hz, 1H), 6.76 (dd, *J* =

3ma 4.8, 4.0 Hz, 1H), 3.89 (d, *J* = 15.2 Hz, 1H), 3.83 (d, *J* = 14.8 Hz, 1H), 2.30 (s, 3H), 2.12 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 193.81, 143.97, 140.51, 139.16, 138.53, 133.97, 133.51, 129.66, 129.01, 128.18, 127.78, 127.74, 127.60, 64.96, 53.80, 22.78, 21.69.
HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₁H₂₀O₃S₂Na 407.0746, found 407.0746.

2-methyl-1-phenyl-2-(thiophen-2-yl)-3-tosylpropan-1-one (3ma')

3ma

Colourless oil, 19.2 mg, 20% yield.

¹**H** NMR (400 MHz, CDCl₃): δ 7.61 (d, *J* = 8.0 Hz, 2H), 7.37-7.32 (m, 3H), 7.23-7.18 (m, 5H), 6.87 (d, *J* = 4.4 Hz, 1H), 6.83 (dd, *J* =

3.6, 1.2 Hz, 2H), 4.19 (d, *J* = 14.4 Hz, 1H), 3.63 (d, *J* = 14.0 Hz, 1H), 2.35 (s, 3H), 2.08 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 200.73, 144.47, 138.70, 136.83, 131.78, 129.88, 128.78, 128.27, 127.81, 126.27, 126.06, 66.08, 51.74, 24.02, 21.76.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{21}H_{20}O_3S_2Na$ 407.0746, found 407.0746.

3-methyl-3-phenyl-4-tosylbutan-2-one (3na)

Colourless oil, 64.9 mg, 82% yield.

¹³C NMR (101 MHz, CDCl₃): δ 207.44, 144.15, 138.57, 138.44, 129.70, 129.03, 127.85, 127.61, 126.56, 63.88, 54.26, 25.11, 21.63, 20.06.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{20}O_3SNa$ 339.1025, found 339.1024.

3-methyl-4-tosyl-3-(4-(trifluoromethyl)phenyl)butan-2-one (3oa)

3na

White solid, 63.4 mg, 66% yield, mp 89-91 °C.

³ ¹H NMR (400 MHz, CDCl₃): δ 7.35 (t, J = 7.2 Hz, 4H), 7.17 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 7.6 Hz, 2H), 3.74 (dd, J = 16.4, 15.2 Hz, 2H), 2.30(s, 3H), 1.98 (s, 3H), 1.86 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 206.82, 144.45, 142.09, 137.90, 129.79, 129.32 (q, J = 160.1 Hz), 127.56, 127.38, 125.89 (q, J = 3.7 Hz), 123.95 (q, J = 273.2 Hz) 63.44, 54.31, 25.13, 21.58, 19.99.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₉H₁₉F₃O₃SNa 407.0899, found 407.0897.

1-cyclohexyl-2-methyl-2-phenyl-3-tosylpropan-1-one (3pa)

White solid, 81.7 mg, 85% yield, mp 92-94 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.41 (d, *J* = 8.0 Hz, 2H), 7.13-7.11 (m, 3H), 7.08 (s, 1H), 7.06-7.03 (m, 3H), 3.79 (d, *J* = 14.8 Hz, 1H), 3.63 (d, *J* = 14.8 Hz, 1H), 2.32-2.25 (m, 4H), 1.99 (s, 3H), 1.68-1.62

(m, 2H), 1.49-1.40 (m, 2H), 1.35-1.16 (m, 2H), 1.09-1.03 (m, 2H), 0.90-0.78 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 212.34, 143.96, 138.55, 137.41, 129.63, 128.76, 127.82, 127.61, 127.17, 63.91, 54.45, 45.94, 30.92, 30.84, 25.65, 25.63, 25.56, 21.64, 19.16.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₃H₂₈O₃SNa 407.1651, found 407.1649.

6-methyl-6-(tosylmethyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (3qa)

Colourless oil, 55.6 mg, 65% yield.

O Ts

3qa

5H), 7.68 (d, J = 6.4 Hz, 1H), 3.46 (d, J = 14.0 Hz, 1H), 3.37 (d, J = 14.0 Hz, 1H), 2.78-2.71 (m, 1H), 2.69-2.62 (m, 1H), 2.36 (s, 3H),

¹**H** NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 8.0 Hz, 2H), 7.35-7.19 (m,

2.21-2.13 (m, 1H), 1.93-1.84 (m, 1H), 1.37 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 210.97, 144.67, 140.20, 138.83, 136.96, 131.19, 130.00, 128.69, 128.67, 127.73, 126.80, 63.97, 49.47, 35.08, 33.29, 22.93, 22.83, 21.74.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₀H₂₂O₃SNa 365.1182, found 365.1182.

1-cyclopropyl-2-methyl-2-phenyl-3-tosylpropan-1-one (3ra) and 2-cyclopropyl-2-

methyl-1-phenyl-3-tosylpropan-1-one (3ra')

Colourless oil, 70.8 mg, 82% yield.

¹H NMR (400 MHz, CDCl₃): First isomer: δ 7.407.30 (overlapped, 2H), 7.15-7.12 (m, 3H), 7.07-7.04 (m, 4H), 3.79 (d, J = 14.8 Hz, 1H), 3.66 (d, J = 14.8

Hz, 1H), 2.28 (s, 3H), 2.00 (s, 3H), 1.55-1.49 (m, 1H), 0.89 (t, J = 4.4 Hz, 2H), 0.50-0.44 (m, 2H). Second isomer: δ 7.71-7.68 (m, 2H), 7.64-7.62 (m, 2H), 7.40-7.30 (overlapped, 3H), 7.25 (d, J = 8.4 Hz, 2H), 3.87 (d, J = 13.6 Hz, 1H), 3.45 (d, J = 14.0 Hz, 1H), 2.36 (s, 3H), 1.22 (s, 3H), 1.16-1.12 (m, 1H), 0.78-0.73 (m, 1H), 0.56-0.52 (m, 2H), 0.36-0.31 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) First isomer: δ 209.90, 143.92, 139.38, 138.74, 129.92, 129.59, 128.84, 127.72, 127.68, 63.79, 54.31, 21.61, 20.33, 17.40, 11.46, 2.41.

Second isomer: § 207.08, 144.49, 138.92, 138.44, 130.70, 128.04, 127.76, 127.56, 127.20, 65.64, 49.53, 21.71, 19.31, 18.70, 12.73, 3.19.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₀H₂₂O₃SNa 365.1182, found 365.1181.

2-methyl-2-(tosylmethyl)cyclopentan-1-one (3sa)

Colourless oil, 48.6 mg, 73% yield. ¹**H** NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.4 Hz, 2H), 7.27 (d, J =

3sa 8.0 Hz, 2H), 3.24 (s, 2H), 2.50-2.42 (m, 1H), 2.37 (s, 3H), 2.33-2.23 (m, 2H), 2.06-1.97 (m, 2H), 1.90-1.79 (m, 1H), 1.08 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 219.60, 144.84, 138.46, 130.05, 127.78, 62.51, 47.27, 36.28, 34.36, 22.41, 21.77, 18.90.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₄H₁₈O₃SNa 289.0869, found 289.0870.

2-methyl-2-(tosylmethyl)cyclohexan-1-one (3ta)

Colourless oil, 51.9 mg, 74% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.72 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.0

```
3ta
```

Hz, 2H), 3.45 (d, J = 14.4 Hz, 1H), 3.27 (d, J = 14.4 Hz, 1H), 2.49-2.40 (m, 1H), 2.37-2.32 (m, 4H), 2.13-2.10 (m, 2H), 1.94-1.86 (m, 1H), 1.77-

1.68 (m, 3H), 1.30 (s, 3H)

¹³C NMR (101 MHz, CDCl₃): δ 212.13, 144.58, 139.02, 129.94, 127.73, 63.47, 48.67, 38.06, 37.73, 26.60, 23.30, 21.72, 21.05.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₅H₂₀O₃SNa 303.1025, found 303.1025.

2-methyl-2-(tosylmethyl)cycloheptan-1-one (3ua)

Colourless oil, 52.2 mg, 71% yield.

¹**H** NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.4 Hz, 2H), 7.27 (d, J =7.6 Hz, 2H), 3.30 (dd, J = 18.8, 14.4 Hz, 2H), 2.66-2.60 (m, 1H), 2.56-

2.47 (m, 2H), 2.37 (s, 3H), 1.69 (dd, J = 14.4, 8.8 Hz, 1H), 1.63-1.52 (m, 5H), 1.46-1,39 (m, 1H), 1.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 214.88, 144.69, 138.81, 130.01, 127.77, 63.24, 50.74, 40.83, 35.22, 30.47, 25.91, 24.54, 24.21, 21.76.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₆H₂₂O₃SNa 317.1182, found 317.1181.

2-methyl-2-(tosylmethyl)cyclooctan-1-one (3va)

Colourless oil, 51.7 mg, 67% yield.

^o ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 7.6 Hz, 2H), 3.49 (d, J = 14.8 Hz, 1H), 3.08 (d, J = 14.4 Hz, 1H), 2.71 ³va (td, J = 11.6, 3.2 Hz, 1H), 2.37-2.30 (m, 4H), 2.18-2.05 (m, 2H), 1.84-

1.76 (m, 1H), 1.71-1.58 (m. 3H), 1.55-1.42 (m, 2H), 1.37 (s, 3H), 1.31-1.21 (m, 1H), 0.84-0.74 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 217.48, 144.62, 139.07, 129.99, 127.69, 59.12, 50.56, 35.86, 32.45, 30.16, 26.18, 25.03, 24.37, 22.66, 21.72.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{24}O_3SNa 331.1338$, found 331.1339.

2-methyl-2-(tosylmethyl)cyclononan-1-one (3wa)

Colourless oil, 52.4 mg, 65% yield.

¹**H NMR** (400 MHz, CDCl₃): δ7.72 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 7.6 Hz, 2H), 3.46 (d, *J* = 14.4 Hz, 1H), 3.14 (d, *J* = 14.4 Hz, 1H), 2.85-2.78 (m, 1H), 2.37 (s, 3H), 2.23-2.17 (m, 1H), 2.06-1.99 (m,

1H), 1.80-1.65 (m, 3H), 1.50-1.43 (m, 4H), 1.37-1.30 (m, 4H), 1.29-1.22 (m, 2H), 1.16-1.08 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃): δ 215.23, 144.59, 139.09, 129.98, 127.70, 61.07, 51.99, 34.20, 33.69, 25.31, 24.62, 23.16, 22.38, 21.73, 21.27, 20.29.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{26}O_3SNa$ 345.1495, found 345.1496.

2-methyl-2-(tosylmethyl)cyclotridecan-1-one (3xa)

White solid, 56.8 mg, 60% yield, mp 112-114 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 3.83 (d, *J* = 14.0 Hz, 1H), 2.94 (d, *J* = 13.6 Hz, 1H), 2.80-2.72 (m, 1H), 2.53-2.46 (m, 1H), 2.36 (s, 3H), 2.01-1.94 (m, 1H), 1.61 (s, 3H), 1.48-1.39 (m, 2H), 1.31-1.05 (m, 17H).

¹³C NMR (101 MHz, CDCl₃): δ 212.95, 144.53, 138.92, 129.96, 127.73, 64.42, 50.21, 40.68, 37.03, 26.81, 26.36, 26.20, 25.22, 24.71, 23.81, 23.23, 21.87, 21.76, 20.95, 20.62.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₂H₃₄O₃SNa 401.2121, found 401.2123.

4-methyl-4-(tosylmethyl)hexan-3-one (3ya)

3ya

Colourless oil, 48.0 mg, 68% yield.

¹**H** NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 3.66 (d, J = 14.0 Hz, 1H), 3.10 (d, J = 14.0 Hz, 1H), 2.66-2.57 (m, 1H), 2.50-2.42 (m, 1H), 2.37 (s, 3H), 1.67-1.60 (m, 1H),

1.54-1.47 (m, 4H), 1.00 (t, *J* = 7.2 Hz, 3H), 0.74 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ 213.37, 144.60, 138.81, 129.98, 127.78, 63.17, 50.34, 32.62, 31.46, 21.75, 20.80, 8.54, 7.90.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₅H₂₂O₃SNa 305.1182, found 305.1184.

5-methyl-5-(tosylmethyl)octan-4-one (3za)

Colourless oil, 50.4 mg, 65% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.69 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 3.64 (d, J = 14.0 Hz, 1H), 3.11 (d, J = 14.0 Hz, 1H),

2.60-2.52 (m, 1H), 2.44-2.39 (m, 1H), 2.37 (s, 3H), 1.61-1.52 (m, 3H), 1.49 (s, 3H), 1.44-1.36 (m, 1H), 1.16-1.06 (m, 2H), 0.86 (t, *J* = 7.2 Hz, 3H), 0.79 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ 212.69, 144.57, 138.86, 129.97, 127.76, 63.18, 50.25, 41.90, 39.93, 21.76, 21.33, 17.43, 16.99, 14.52, 13.84.

White solid, 78.4 mg, 86% yield, mp 109-111 °C.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{26}O_3SNa$ 333.1495, found 333.1497.

2-methyl-1,2-diphenyl-3-(phenylsulfonyl)propan-1-one (3ab)

¹**H** NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 8.0 Hz, 2H), 7.43 (t, J = 7.2 Hz, 1H), 7.33 (d, J = 6.4 Hz, 2H), 7.29-7.24 (m, 3H), 7.22-7.17 (m, 5H), 7.13 (t, J = 8.0 Hz, 2H), 3.99 (d, J = 14.4 Hz,

1H), 3.76 (d, *J* = 14.4 Hz, 1H), 2.04 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 201.19, 141.58, 139.25, 136.19, 133.19, 131.98, 129.35, 129.10, 128.21, 128.15, 127.58, 126.76, 65.60, 53.75, 22.20.

Colourless oil, 96.7 mg, 92% yield.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₂H₂₀O₃SNa 387.1025, found 387.1025.

3-((4-(*tert*-butyl)phenyl)sulfonyl)-2-methyl-1,2-diphenylpropan-1-one (3ac)

¹**H NMR** (400 MHz, CDCl₃): δ 7.49 (dt, J = 8.4, 2.0 Hz, 2H), 7.30 (dt, J = 8.8, 2.0 Hz, 2H), 7.27-7.09 (m, 10H), 3.97 (d, J = 14.8 Hz, 1H), 3.77 (d, J = 14.8 Hz, 1H), 2.03 (s, 3H), 1.22 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ 201.19, 156.86, 139.21, 138.46, 136.22, 131.90, 129.31, 129.26, 128.15, 128.04, 127.43, 126.77, 126.05, 65.44, 53.66, 35.20, 31.14, 22.14.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₆H₂₈O₃SNa 443.1651, found 443.1651.

3-((4-methoxyphenyl)sulfonyl)-2-methyl-1,2-diphenylpropan-1-one (3ad)

Colourless oil, 51.3 mg, 52% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.52 (dt, *J* = 8.4, 2.0 Hz, 2H), 7.32-7.28 (m, 1H), 7.26 (s, 1H), 7.24-7.19 (m, 6H), 7.17-7.13 (m, 2H), 6.79 (dt, *J* = 10.0, 2.4 Hz, 2H), 3.99 (d, *J* = 14.4 Hz, 1H), 3.77 (s, 3H), 3.72 (d, *J* = 14.4 Hz, 1H), 2.03

(s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 201.37, 163.40, 139.56, 136.39, 133.46, 131.95, 129.84, 129.40, 129.36, 128.23, 128.11, 126.80, 114.32, 65.86, 55.81, 53.82, 22.28.
HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₃H₂₂O₄SNa 417.1131, found 417.1133.

3-((4-fluorophenyl)sulfonyl)-2-methyl-1,2-diphenylpropan-1-one (3ae)

Colourless oil, 92.7 mg, 97% yield.

¹**H NMR** (400 MHz, CDCl₃): δ 7.60-7.57 (m, 2H), 7.30 (t, *J* = 7.2 Hz, 1H), 7.25 (d, *J* = 8.4 Hz, 2H), 7.20 (s, 5H), 7.14 (t, *J* = 8.0 Hz, 2H), 6.98 (t, *J* = 8.4 Hz, 2H), 3.97 (d, *J* = 14.4 Hz,

1H), .3.79 (d, *J* = 14.8 Hz, 1H), 2.04 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 201.14, 164.47 (d, J = 256.5 Hz), 139.08, 137.66 (d, J = 3.1 Hz), 136.04, 132.12, 130.51 (d, J = 9.7 Hz), 129.43, 129.41, 128.28, 128.26, 126.87, 116.32 (d, J = 22.6 Hz), 65.90, 53.80, 22.13.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₂H₁₉FO₃SNa 405.0931, found 405.0932.

3-((4-chlorophenyl)sulfonyl)-2-methyl-1,2-diphenylpropan-1-one (3af)

White solid, 85.8 mg, 86% yield, mp 89-91 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.49 (dt, *J* = 8.4, 2.4 Hz, 2H), 7.31-7.23 (m, 5H), 7.19 (s, 5H), 7.14 (t, *J* = 8.0 Hz, 2H), 3.96 (d, *J* = 14.8 Hz, 1H), .3.79 (d, *J* = 14.4 Hz, 1H), 2.03 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 201.03, 139.93, 139.81, 138.98, 135.94, 132.10, 129.40, 129.38, 129.33, 129.12, 128.24, 128.22, 126.83, 65.80, 53.75, 22.10.
HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₁₉ClO₃SNa 421.0636, found 421.0635.

3-((4-bromophenyl)sulfonyl)-2-methyl-1,2-diphenylpropan-1-one (3ag)

White solid, 92.0 mg, 83% yield, mp 109-111 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.41 (m, 4H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 2H), 7.20 (s, 5H), 7.15 (t, *J* = 7.6 Hz, 2H), 3.96 (d, *J* = 14.8 Hz, 1H), .3.80 (d, *J* = 14.4 Hz,

1H), 2.04 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 201.10, 140.51, 139.02, 135.99, 132.38, 132.17, 129.47, 129.44, 129.25, 128.48, 128.30, 128.28, 126.90, 65.86, 53.81, 22.13.
HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₁₉BrO₃SNa 465.0130, found 465.0130.

3-((4-iodophenyl)sulfonyl)-2-methyl-1,2-diphenylpropan-1-one (3ah)

White solid, 90.7 mg, 74% yield, mp 96-97 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.66 (dt, J = 8.4, 2.0 Hz, 2H),
7.33-7.23 (m, 5H), 7.21-7.18 (m, 5H), 7.15 (t, J = 8.0 Hz, 2H),
3.95 (d, J = 14.8 Hz, 1H), .3.79 (d, J = 14.8 Hz, 1H), 2.03 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 201.06, 141.14, 139.01, 138.34, 136.00, 132.13, 129.46, 129.42, 129.06, 128.28, 128.24, 126.88, 101.05, 65.79, 53.78, 22.12.
HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₁₉IO₃SNa 512.9992, found 512.9990.

2-methyl-1,2-diphenyl-3-((4-(trifluoromethyl)phenyl)sulfonyl)propan-1-one (3ai)

White solid, 103.7 mg, 96% yield, mp 87-89 °C.
¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 8.4 Hz, 2H),
7.56 (d, J = 8.4 Hz, 2H), 7.33-7.29 (m, 1H), 7.27-7.23 (m, 2H),
7.16-7.13 (m, 7H), 3.96 (d, J = 14.8 Hz, 1H), 3.89 (d, J = 14.8 Hz, 1H),

J = 14.8 Hz, 1H), 2.06 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 200.94, 144.76, 138.66, 135.78, 134.71 (q, J = 22.6 Hz), 132.26, 129.48, 129.43, 128.40, 128.32, 128.28, 126.97, 126.18 (q, J = 3.7 Hz), 123.31 (q, J = 274.2 Hz), 65.75, 53.78, 22.05.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₃H₁₉F₃O₃SNa 455.0899, found 455.0899.

2-methyl-1,2-diphenyl-3-((4-(trifluoromethoxy)phenyl)sulfonyl)propan-1-one (3aj)

White solid, 95.3 mg, 85% yield, mp 99-101 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.58 (dt, *J* = 8.8, 2.8 Hz, 2H), 7.30 (t, *J* = 7.2 Hz, 1H), 7.25-7.23 (m, 2H), 7.19-7.15 (m, 6H), 7.12 (t, *J* = 8.4 Hz, 3H), 3.94 (d, *J* = 14.8

Hz, 1H), 3.87 (d, *J* = 15.2 Hz, 1H), 2.05 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃): δ 201.04, 152.46, 139.74, 138.75, 135.88, 132.19, 129.91, 129.46, 129.40, 128.31, 128.30, 126.99, 120.98, 120.36 (q, *J* = 260.4 Hz), 65.81, 53.75, 22.06.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₃H₁₉F₃O₄SNa 471.0848, found 471.0848.

4-((2-methyl-3-oxo-2,3-diphenylpropyl)sulfonyl)benzonitrile (3ak)

White solid, 79.8 mg, 82% yield, mp 139-140 °C. **¹H NMR** (400 MHz, CDCl₃): δ 7.66 (d, *J* = 8.4 Hz, 2H),

7.59 (d, J = 8.4 Hz, 2H), 7.31 (t, J = 7.6 Hz, 1H), 7.25 (d, J

= 8.0 Hz, 2H), 7.17-7.12 (m, 7H), 3.95 (d, J = 14.8 Hz, 1H), 3.88 (d, J = 13.2 Hz, 1H), 2.05 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 200.81, 145.37, 138.64, 135.60, 132.76, 132.30, 129.44, 128.42, 128.33, 128.31, 126.95, 117.35, 116.73, 65.86, 53.80, 22.01.

HRMS (ESI) m/z: [M + Na] + Calcd for C₂₃H₁₉NO₃SNa 412.0978, found 412.0984.

3-([1,1'-biphenyl]-4-ylsulfonyl)-2-methyl-1,2-diphenylpropan-1-one (3al)

White solid, 41.8 mg, 38% yield, , mp 58-60 °C. ¹**H** NMR (400 MHz, CDCl₃): δ 7.63 (dt, J = 8.4, 2.0 Hz, 2H), 7.52-7.47 (m, 4H), 7.42-7.37 (m, 2H), 7.36-7.33 (m, 1H), 7.32-7.17 (m, 8H), 7.16-7.12 (m, 2H), 4.02 (d, J =

14.8 Hz, 1H), 3.83 (d, *J* = 14.4 Hz, 1H), 2.06 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 201.24, 146.11, 140.05, 139.48, 139.26, 136.20, 132.03, 129.41, 129.39, 129.22, 128.70, 128.25, 128.18, 128.13, 127.76, 127.50, 126.88, 65.72, 53.80, 22.23.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₈H₂₄O₃SNa 463.1338, found 463.1339.

2-methyl-1,2-diphenyl-3-(o-tolylsulfonyl)propan-1-one (3am)

Colourless oil, 73.8 mg, 78% yield.

¹**H** NMR (400 MHz, CDCl₃): δ 7.63 (dd, J = 8.4, 0.8 Hz, 1H), 7.33-7.26 (m, 2H), 7.25-7.17 (m, 7H), 7.14-7.10 (m, 4H), 3.99

3am

(d, J = 14.4 Hz, 1H), 3.74 (d, J = 14.4 Hz, 1H), 2.53 (s, 3H),2.03 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 201.26, 139.53, 139.49, 137.66, 136.24, 133.35, 132.60, 131.96, 129.75, 129.35, 129.33, 128.21, 128.16, 126.66, 126.56, 64.49, 53.73, 22.28, 20.42.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₃H₂₂O₃SNa 401.1182, found 401.1182.

2-methyl-1,2-diphenyl-3-(*m*-tolylsulfonyl)propan-1-one (3an)

White solid, 81.4 mg, 86% yield, mp 99-101 °C.

3an

¹H NMR (400 MHz, CDCl₃): δ 7.42 (dt, J = 6.8, 2.0 Hz, 1H), 7.32-7.12 (m, 13H), 3.96 (d, J = 14.8 Hz, 1H), 3.79 (d, J = 14.4 Hz, 1H), 2.26 (s, 3H), 2.04 (s, 3H).
¹³C NMR (101 MHz, CDCl₃): δ 201.27, 141.45, 139.29, 136.27, 134.04, 132.00, 129.42, 129.28, 129.02, 128.25, 128.13, 127.98, 126.87, 124.72, 65.58, 53.76, 22.31, 21.41.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₃H₂₂O₃SNa 401.1182, found 401.1180.

3-((3,4-dimethylphenyl)sulfonyl)-2-methyl-1,2-diphenylpropan-1-one (3ao)

White solid, 85.4 mg, 87% yield, mp 135-136 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.35 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.26-7.24 (m, 3H), 7.22-7.19 (m, 5H),

7.15 (t, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 1H), 3.97 (d, J =

14.8 Hz, 1H), 3.75 (d, *J* = 14.4 Hz, 1H), 2.21 (s, 3H), 2.16 (s, 3H), 2.03 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 201.31, 142.86, 139.52, 138.88, 137.78, 136.38, 131.92, 130.24, 129.39, 129.25, 128.46, 128.21, 128.00, 126.82, 125.14, 65.64, 53.77, 22.36, 20.08, 19.88.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₄H₂₄O₃SNa 415.1338, found 415.1335.

3-((2,5-dichlorophenyl)sulfonyl)-2-methyl-1,2-diphenylpropan-1-one (3ap)

White solid, 81.3 mg, 75% yield, mp 143-145 °C. **¹H NMR** (400 MHz, CDCl₃): δ 7.39-7.38 (m, 1H), 7.36-7.33 (m,

3H), 7.30-7.26 (m, 2H), 7.25-7.21 (m, 3H), 7.19 (s, 1H), 7.17-

7.14 (m, 3H), 4.70 (d, J = 15.6 Hz, 1H), 3.89 (d, J = 15.6 Hz,

1H), 2.10 (s, 3H).

3ap

¹³C NMR (101 MHz, CDCl₃): δ 200.60, 139.43, 137.71, 135.28, 133.91, 133.49, 132.46, 132.37, 131.09, 130.31, 129.74, 129.06, 128.67, 128.31, 127.10, 63.36, 53.59, 22.44.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{22}H_{18}Cl_2O_3SNa$ 455.0246, found 455.0248.

2-methyl-3-(naphthalen-1-ylsulfonyl)-1,2-diphenylpropan-1-one (3aq)

White solid, 63.2mg, 61% yield, mp 83-85 °C.

3aq

¹**H NMR** (400 MHz, CDCl₃): δ 8.51 (d, *J* = 8.4 Hz, 1H), 7.90 (t, *J* = 7.6 Hz, 2H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.58-7.54 (m, 1H), 7.51-7.47 (m, 1H), 7.34-7.24 (m, 4H), 7.14-7.08 (m, 7H), 4.14 (d, *J* = 14.8 Hz, 1H), 3.98 (d, *J* = 14.8 Hz, 1H), 2.09 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 201.17, 139.21, 136.22, 136.13, 134.88, 134.15, 132.01, 130.17, 129.45, 129.23, 129.14, 128.79, 128.52, 128.23, 128.09, 126.95, 126.72, 124.49, 124.25, 64.68, 53.87, 22.45.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₆H₂₂O₃SNa 437.1182, found 437.1181.

2-methyl-3-(naphthalen-2-ylsulfonyl)-1,2-diphenylpropan-1-one (3ar)

Colourless oil, 56.0 mg, 54% yield.

¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, J = 1.6 Hz, 1H),
7.87-7.84 (m, 3H), 7.69 (dd, J = 8.8, 2.0 Hz, 1H), 7.65-7.55 (m, 2H), 7.39-7.32 (m, 3H), 7.30-7.26 (m, 2H), 7.22-7.15 (m, 4H), 7.10-7.06 (m, 1H), 4.12 (d, J = 14.4 Hz, 1H), 3.96 (d, J

= 14.8 Hz, 1H), 2.15 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 201.21, 139.08, 138.32, 136.19, 135.09, 132.13, 132.01, 129.61, 129.45, 129.42, 129.41, 129.24, 129.17, 128.24, 128.19, 127.99, 127.56, 126.82, 122.45, 65.45, 53.81, 22.32.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₆H₂₂O₃SNa 437.1182, found 437.1180.

Colourless oil, 52.8 mg, 57% yield.

2-methyl-1,2-diphenyl-3-(thiophen-2-ylsulfonyl)propan-1-one (3as)

¹**H NMR** (400 MHz, CDCl₃): δ 7.50 (dd, *J* = 7.2, 1.6 Hz, 1H), 7.32-7.27 (m, 3H), 7.26-7.24 (m, 5H), 7.23-7.20 (m, 1H), 7.16-7.13 (m, 2H), 6.89 (dd, *J* = 5.2, 4.0 Hz, 1H), 4.10 (d, *J* = 14.8 Hz, 1H), 3.89 (d, *J* = 14.8 Hz, 1H), 2.04 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 201.05, 142.99, 139.22, 136.04, 133.70, 133.61, 132.10, 129.46, 129.44, 128.26, 128.24, 127.72, 126.85, 67.17, 53.97, 22.13.
HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₈O₃S₂Na 393.0590, found 393.0588.

2-methyl-3-(methylsulfonyl)-1,2-diphenylpropan-1-one (3at)

White solid, 64.3 mg, 85% yield, mp 118-120 °C.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{18}O_3SNa$ 325.0869, found 325.0869.

3'-methyl-3'-(tosylmethyl)-10,11-dihydrospiro[dibenzo[*a*,*d*][7]annulene-5,2'oxirane] (4)

5

White solid, 73.8 mg, 73% yield, mp 167-169 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.60 (dt, *J* = 8.4, 2.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.24-7.22 (m, 1H), 7.13-7.00 (m, 5H), 6.85 (t, *J* = 7.6 Hz, 1H), 6.69 (d, *J* = 7.6 Hz, 1H), 3.34-3.27 (m, 1H), 3.23-3.15

(m, 2H), 2.94 (d, J = 14.4 Hz, 1H), 2.90-2.78 (m, 2H), 2.41 (s, 3H), 1.32 (s, 3H).
¹³C NMR (101 MHz, CDCl₃): δ 144.77, 137.90, 137.86, 137.69, 137.41, 135.94, 129.95, 129.76, 128.89, 128.58, 128.25, 128.17, 126.21, 126.07, 125.89, 125.71, 68.76, 64.07, 59.87, 32.64, 31.77, 21.87, 18.14.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{18}O_3SNa 427.1338$, found 427.1332.

(5S)-3'-methyl-3'-(tosylmethyl)-6,7,8,9-tetrahydrospiro[benzo[7]annulene-5,2'oxirane] (5)

White solid, 54.3 mg, 61% yield, mp 95-97 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.05 (t, J = 7.2 Hz, 1H), 6.98 (d, J = 6.0 Hz, 1H), 6.84 (t, J = 7.6 Hz, 1H), 6.43 (d, J = 7.6 Hz, 1H), 3.07 (d, J = 15.6 Hz, 1H),

2.70-2.54 (m, 3H), 2.40 (s, 3H), 1.93-1.63 (m, 8H), 1.31-1.25 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 144.64, 139.93, 139.27, 137.63, 129.60, 129.22, 128.62, 128.03, 126.26, 125.91, 68.69, 61.54, 60.04, 36.08, 33.36, 27.32, 27.28, 21.85, 18.67.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{18}O_3SNa$ 379.1338, found 379.1333.

2-methyl-1,2-diphenyl-3-tosylpropan-1-ol (6)

White solid, 129.4 mg, 68% yield, mp 115-117 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.54 (dd, *J* = 8.0, 2.0 Hz, 2H), 7.15-7.04 (m, 10H), 6.79 (d, *J* = 7.6 Hz, 2H), 4.99 (s, 1H), 3.74 (d, *J* = 14.4 Hz, 1H), 3.60 (d, *J* = 14.4 Hz, 1H), 2.54 (s,

1H), 2.33 (s, 3H), 1.61 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 144.42, 140.49, 139.54, 138.54, 129.86, 128.25, 127.98, 127.84, 127.63, 127.10, 80.63, 64.33, 47.03, 21.74, 20.71.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{18}O_3SNa 403.1338$, found 403.1337.

4. References

1. X. Mo and D. G. Hall, J. Am. Chem. Soc., 2016, 138, 10762-10765.

- 2. P. Xu, K. Hu, Z. Gu, Y. Cheng and C. Zhu, Chem. Commun., 2015, 51, 7222-7225.
- 3. L. Zheng, H. Huang, C. Yang and W. Xia, Org. Lett., 2015, 17, 1034-1037.
- 4. Z. Deng, J. Wei, L. Liao, H. Huang and X. Zhao, Org. Lett., 2015, 17, 1834-1837.
- G. Barker, D. G. Johnson, P. C. Young, S. A. Macgregor and A.-L. Lee, *Chem. Eur. J.*, 2015, 21, 13748-13757.
- 6. K. Zhang, T. Liang, Y. Wang, C. He, M. Hu, X.-H. Duan and L. Liu, Org. Chem. Front., 2022, 9, 966-972.
- 7. J. Yang, G. Li, K. Yu, B. Xu, and Q. Chen, J. Org. Chem. 2022, 87, 1208-1217.
- 8. H. -D. Zuo, W.-J. Hao, C. -F. Zhu, C. Guo, S. -J. Tu, and B. Jiang, *Org. Lett.*, 2020, **22**, 4471-4477.
- 9. J. R. Thondur, D. S. Sharada, and G. Satyanarayana, Org. Lett., 2023, 25, 2793-2797.
- 10. Y. Yuan, Y. Cao, Y. Lin, Y. Li, Z. Huang, and A. Lei, ACS Catal., 2018, 8, 10871-10875.
- 11. R. A. Sheldon, Green Chem., 2007, 9, 1273-1283.
- 12. K. V. Aken, L. Strekowski, and L. Patiny, Beilstein J. Org. Chem., 2, 3-9.
- 13. B. M. Trost, Angew. Chem. Int. Ed., 1995, 34, 259-281.
- 14. X. -Q. Chu, H. Meng, X. -P. Xu, and S. -J. Ji, Chem. Eur. J., 2015, 21, 11359-11368.
- 15. X. Zhang, Z. Zhang, J. -N. Song, and Z. Wang, Chem. Sci., 2020, 11, 7921-7926.

5. ¹H NMR and ¹³C NMR of products

3aa ¹H NMR (400 MHz, CDCl₃)

S25

7.531 7.510 7.299 7.278 7.157 7.157 7.157 7.157 7.157 7.122 7.122 7.022 7.022

 $\frac{1}{2} \frac{1}{3} \frac{1}$

3ba ¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} 7.547\\ 7.527\\ 7.7522\\ 7.7399\\ 7.399\\ 7.399\\ 7.3392\\ 7.332\\ 7.332\\ 7.332\\ 7.332\\ 7.232\\ 7.722\\ 7.722\\ 7.722\\ 6.697\\ 6.697\\ 6.691\\ 6.932\\ 6.691\\$

$\int 3.959$ 3.846 2.8463.809

3ca ¹H NMR (400 MHz, CDCl₃)

7.485 7.465 7.394 7.376 7.335 7.335 7.335 7.335 7.335 7.232 7.232 7.193 7.104 7.082

₹ 3.931 3.894 3.886 3.886 3.849 - 2.419 - 2.078

— 2.291 — 2.065

3fa ¹H NMR (400 MHz, CDCl₃)

3fa ¹³C NMR (101 MHz, CDCl₃)

7,467 7,446 7,302 7,302 7,188 7,188 7,188 7,188 7,188 7,188 7,188 7,110 7,163 7,110 7,163 7,110 7,163 7,110 7,163 7,170 7,1637

¹H NMR (400 MHz, CDCl3)

¹H NMR (400 MHz, CDCl3)

¹H NMR (400 MHz, CDCl3)

¹H NMR (400 MHz, CDCl3)

3ka ¹H NMR (400 MHz, CDCl₃)

3Ia ¹H NMR (400 MHz, CDCl₃)

7.393 7.367 7.377 7.367 7.367 7.367 7.365 7.365 7.356 7.567

— 2.299 — 2.121

3ma ¹H NMR (400 MHz, CDCl₃)

3ma' ¹H NMR (400 MHz, CDCl₃)

3na ¹H NMR (400 MHz, CDCl₃)

3na ¹³C NMR (101 MHz, CDCl₃)

[']CF₃ **3oa** ¹H NMR (400 MHz, CDCl₃)

3pa ¹H NMR (400 MHz, CDCl₃)

3pa ¹³C NMR (101 MHz, CDCl₃)

3qa ¹H NMR (400 MHz, CDCl₃)

3qa ¹³C NMR (101 MHz, CDCl₃)

7,701 7,689 649 7,689 7,689 7,689 7,689 7,589 7,539 7,539 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,332 7,

¹H NMR (400 MHz, CDCl3)

O_____Ts

3sa ¹H NMR (400 MHz, CDCl₃)

3sa ¹³C NMR (101 MHz, CDCl₃)

3ta ¹H NMR (400 MHz, CDCl₃)

3ta ¹³C NMR (101 MHz, CDCl₃)

3ua ¹H NMR (400 MHz, CDCl₃)

3ua ¹³C NMR (101 MHz, CDCl₃)

3va ¹H NMR (400 MHz, CDCl₃)

3wa ¹H NMR (400 MHz, CDCl₃)

3,844 3,360 3,560

3xa ¹³C NMR (101 MHz, CDCl₃)

$< \frac{7.704}{7.683}$

3 534 3 534 3 537 3 537 3 537 3 537 3 537 3 533 5 5555 5 5555 5 5555 5 5555 5 5555 5 5555 5 5555 5 5555 5 5555 5 5555 5 55555 5 55555 5 555

3ya ¹H NMR (400 MHz, CDCl₃)

3za ¹H NMR (400 MHz, CDCl₃)

— 2.041

3ab ¹H NMR (400 MHz, CDCl₃)

30300#040/jp23860140;ja 4 0 0 0 4 0 0 4 2 2 2 0 0 0 0 2 0 0 2 0 2	5	0
	8	8
て ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ	N	, '

3ac ¹H NMR (400 MHz, CDCl₃)

3ac ¹³C NMR (101 MHz, CDCl₃)

7,7550 7,7519 7,7519 7,7519 7,7519 7,7513 7,519 7,7513 7,519 7,751 7,519 7,750 7,728 7,729

3ad ¹H NMR (400 MHz, CDCl₃)

— 2.044

3ae ¹H NMR (400 MHz, CDCl₃)

3ae ¹³C NMR (101 MHz, CDCl₃)

7,509 7,502 7,481 7,481 7,475 7,475 7,475 7,475 7,475 7,213 7,213 7,273 7,273 7,261 7,261 7,263 7,263 7,263 7,263 7,263 7,263 7,263 7,263 7,263 7,263 7,263 7,263 7,263 7,263 7,263 7,263 7,273

- 2.032

3af ¹H NMR (400 MHz, CDCl₃)

3af ¹³C NMR (101 MHz, CDCl₃)

7,468 7,446 7,446 7,445 7,418 7,418 7,418 7,314 7,314 7,314 7,314 7,205 7,205 7,205 7,153 7,153

3ag ¹H NMR (400 MHz, CDCl₃)

3ah¹H NMR (400 MHz, CDCl₃)

3ah ¹³C NMR (101 MHz, CDCl₃)

3ai ¹H NMR (400 MHz, CDCl₃)

3ai ¹³C NMR (101 MHz, CDCl₃)

O S OCF3

3aj ¹H NMR (400 MHz, CDCl₃)

3ak ¹H NMR (400 MHz, CDCl₃)

0 0 `S. // 0

3al ¹H NMR (400 MHz, CDCl₃)

3am ¹H NMR (400 MHz, CDCl₃)

人 3.992 3.771 人 3.775 人 3.735 2.211
2.160
2.032

3ao ¹H NMR (400 MHz, CDCl₃)

110 100 f1 (ppm)

110 100 f1 (ppm)

0 ó

3aq ¹H NMR (400 MHz, CDCl₃)

3aq ¹³C NMR (101 MHz, CDCl₃)

0 ď

3ar ¹H NMR (400 MHz, CDCl₃)

7,508 7,1508 7,322 7,322 7,322 7,322 7,322 7,228 7,238 7,238 7,238 7,238 7,238 7,238 7,238 7,238

3as ¹H NMR (400 MHz, CDCl₃)

3.796 3.715 3.715 - 2.371

3at ¹H NMR (400 MHz, CDCl₃)

S70

4 ¹H NMR (400 MHz, CDCl₃)

S71

5 ¹H NMR (400 MHz, CDCl₃)

6¹H NMR (400 MHz, CDCl₃)

