Electrochemical cascade sequences for the remote C7–H bond thiocyanation of quinoxalin-2(1*H*)-ones with ammonium thiocyanate

Rajib Maity,*,[‡] Abhijit Bankura[‡] and Indrajit Das*

[‡]R.M. and A.B. contributed equally to this work

Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.

E-mail: indrajit@iicb.res.in, rajibmaity2013@gmail.com

Table of Contents

General Information.	4
Electrolysis general information	4
SI-1: General procedures for the synthesis of starting materials	5
SI-1-1: Preparation of quinoxalin-2 (1 <i>H</i>)-one derivatives	5
SI-1-2: Preparation of <i>N–alkyl, –allyl, –benzyl</i> quinoxalin-2(1 <i>H</i>)-one derivatives	5
SI-1-3: Preparation of <i>N-cinnamoyl, -aryl</i> derivatives of quinoxalin-2(1 <i>H</i>)-one	5
SI-2: Optimization of reaction conditions	6
SI-2-1: Screening for the suitable electrodes (cathode and anode)	6
SI-2-2: Screening for the stoichiometry of water required	7
SI-2-3: Screening for the stoichiometry of NH₄SCN required	7
SI-2-4: Screening of electrolytes and applied constant current for the synthesis of 4a	8
SI-3: General Procedure for the Synthesis of 3a from 1a	8
SI-3-1: Procedure for gram scale Synthesis of 3a	9
SI-4: General Procedure for the Synthesis of 4a from 1a	9
SI-5: Control experiment	0
SI-5-1: Radical trapping experiment with BHT (2,6-Di- <i>tert</i> -butyl-4-methylphenol)1	0
SI-5-1a: Deuterium radical trapping experiment with BHT	2
SI-5-2: Trapping of the in-situ generated thiocyanogen (SCN) ₂ intermediate1	4

SI-6: Role of water during C=N reduction: Deuterium incorporation experiment
SI-7: Electrochemical thiocyanation of 1-methyl-3,4-dihydroquinoxalin-2(1 <i>H</i>)-one (1aa) 17
SI-8: Role of NH_4^+ ion in electrochemical reduction
SI-8-1: Use of (KSCN + NH ₄ Cl) instead of NH ₄ SCN 17
SI-8-2: Proof for the interaction of NH_4^+ ion (NH_4SCN) with the lone pair on nitrogen of 1a 18
SI-9: Cyclic Voltammetry studies
SI-9-1: cyclic voltammetry of 1a and 2a19
SI-9-2: Role of NH $_4^+$ ions towards reduction potential of 1a
SI-9-3: CV plot of compound 3a in a mixture of CH_3CN/H_2O solvents
SI-9-4: CV plot of 1a and KSCN at different concentration in CH_3CN/H_2O solvent mixtures 22
SI-10: Change of pH of the reaction medium during electrolysis
SI-11: Calculation of Faradaic Efficiency 24
SI-12: Analytical and Spectral Data 26
SI-12-1: Analytical and Spectral data of 3a26
SI-12-2: Analytical and Spectral data of 3b29
SI-12-3: Analytical and Spectral data of 3c
SI-12-4: Analytical and Spectral data of 3d
SI-12-5: Analytical and Spectral data of 3e
SI-12-6: Analytical and Spectral data of 3f
SI-12-7: Analytical and Spectral data of 3g
SI-12-8: Analytical and Spectral data of 3h 41
SI-12-9: Analytical and Spectral data of 3i 43
SI-12-10: Analytical and Spectral data of 3j45
SI-12-11: Analytical and Spectral data of 3k 47
SI-12-12: Analytical and Spectral data of 3I 49
SI-12-13: Analytical and Spectral data of 3m51
SI-12-14: Analytical and Spectral data of 3n 53
SI-12-15: Analytical and Spectral data of 3055
SI-12-16: Analytical and Spectral data of 3p57
SI-12-17: Analytical and Spectral data of 3q59
SI-12-18: Analytical and Spectral data of 3r61
SI-12-19: Analytical and Spectral data of 3s63
SI-12-20: Analytical and Spectral data of 3t65
SI-12-21: Analytical and Spectral data of 3u67

SI-12-22: Analytical and Spectral data of 3v	
SI-12-23: Analytical and Spectral data of 3w	
SI-12-24: Analytical and Spectral data of 3x	
SI-12-25: Analytical and Spectral data of 4a	
SI-12-26: Analytical and Spectral data of 4b	
SI-12-27: Analytical and Spectral data of 4c	
SI-12-28: Analytical and Spectral data of 4d	
SI-12-29: Analytical and Spectral data of 4e	
SI-12-30: Analytical and Spectral data of 4f	
SI-12-31: Analytical and Spectral data of 4g	
SI-12-32: Analytical and Spectral data of 4h	
SI-12-33: Analytical and Spectral data of 4i	
SI-12-34: Analytical and Spectral data of 4j	
SI-12-35: Analytical and Spectral data of 4k	
SI-12-36: Analytical and Spectral data of 4l	
SI-12-37: Analytical and Spectral data of 4m	
SI-12-38: Analytical and spectral data of 4a-D	
SI-12-39: Analytical and spectral data of 4I-D	
SI-12-40: Analytical and spectral data of 4n-D	
SI-12-41: Analytical and Spectral data of 6a	
SI-12-42: Analytical and spectral data of 6b	
SI-12-43: Analytical and spectral data of 6c	
SI-12-44: Analytical and spectral data of 6d	
SI-12-45: Analytical and spectral data of 6e	

General Information.

All reactions were carried out in oven-dried glassware. Reagents were purchased at the highest commercial quality and used as received, unless otherwise specified. Reactions were monitored by thin layer chromatography (TLC) carried out on silica gel plates (Merck silica gel 60, f₂₅₄); the spots were visualized with UV light (254 and 365 nm) and a solution of 5% H₂SO₄-MeOH or vanillin charring solution as developing agents. Flash column chromatography was performed using 230–400 mesh silica gel. Yields refer to isolated yields after chromatographic purification.¹H NMR (600 MHz and 400 MHz) and ¹³C NMR (151 MHz and 101 MHz) spectra were recorded in DMSO- d_6 , CDCl₃, and Acetone- d_6 solvents and are reported relative to the residual solvent signal. Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (J in Hz), and integration. The following abbreviations were used to explain NMR peak multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High-resolution mass spectra (HRMS, m/z) were recorded using ESI (Q-TOF and Orbitrap, positive ion) mode. Infrared (IR) spectra were recorded on Fourier transform infrared spectroscopy; only intense peaks were reported in terms of frequency of absorption (cm⁻¹). Single-crystal X-ray data were recorded in a diffractometer with Mo K α radiation. Melting points were determined in open-end capillary tubes and are uncorrected. Depending upon the availability of solvents in our laboratory, we used different deuterated solvents for recording ¹H and ¹³C NMR spectra for the products.

Electrolysis general information

Electrochemical reactions were performed with ElectraSyn2.0 package (IKA) using the constant current or constant voltage modes. The reactions were conducted in a 10 mL vial for 5.0 mL of solvent with a stir bar and a carbon graphite-SK-50 ($5.0 \text{ cm} \times 0.8 \text{ cm} \times 0.2 \text{ cm}$) working electrode (anode and cathode) with a distance of 0.6 cm between the two electrodes. The immersion depth of the electrode is about 1.5 cm.

SI-1: General procedures for the synthesis of starting materials SI-1-1: Preparation of quinoxalin-2 (1*H*)-one derivatives¹

To a 100 mL round-bottomed flask with a stir bar was added 1,2-diaminobenzene (1.0 equiv), EtOH as a solvent, ethyl-2-oxoacetate (1.3 equiv), and then the mixture was refluxed at 80 °C for 12 h. The resulting precipitate was filtered, thoroughly washed with water, and dried under vacuum to afford quinoxalin-2 (1*H*) -ones.

SI-1-2: Preparation of N-alkyl, -allyl, -benzyl quinoxalin-2(1H)-one derivatives²

To a 100 mL round-bottomed flask with a stir bar was added quinoxalin-2(1*H*)-one (1.0 equiv), DMF solvent, K_2CO_3 (2.0 equiv) and stirred the mixture for 1 h and then R_2 -X (1.5 equiv) was added dropwise. The reaction mixture was then stirred for 12 h at room temperature, brine solution was added and extracted with EtOAc. The combined extracts were dried over Na_2SO_4 , filtered, and evaporated. The residue was purified by column chromatography (*n*-hexane/EtOAc) to afford the desired products.

SI-1-3: Preparation of N-cinnamoyl, -aryl derivatives of quinoxalin-2(1H)-one³

To a 100 mL round-bottomed flask with a stir bar was added quinoxalin-2(1*H*)-one (1.0 equiv), aryl boronic acid (1.5 equiv), $Cu(OAc)_2 H_2O(20 \text{ mol}\%)$, 1,10-phenanthroline (20 mol%) in DMSO, and the mixture was stirred at room temperature for 12-24 hours. After

¹ M. Gao, Y. Li, L. Xie, R. Chauvin and X. Cui, *Chem. Commun.*, 2016, **52**, 2846-2849;

 ² H. Ni, X. Shi, Y. Li, X. Zhang, J. Zhao and F. Zhao, *Org. Biomol. Chem.*, 2020, **18**, 6558-6563;
 ³ K. A. Kumar, P. Kannaboina, C. K. Jaladanki. P. V. Bharatam and P. Das, *ChemistrySelect*, 2016, **1**, 601–607;

completion of the reaction (monitored by TLC), brine solution was added and extracted with EtOAc. The combined extracts were dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was purified by column chromatography (*n*-hexane/EtOAc) to afford the desired products.

SI-2: Optimization of reaction conditions

1a	$ \begin{array}{c} $	x ■ Y I = 18 mA, r CH ₃ CN/H ₂ O (4.8	t NCS mL:0.2 mL)	H N J 3a CH ₃
Entry	Anode (X)	Cathode (Y)	Time (h)	Yield 3a (%) ^{a,b}
1	С	Pt	3.5	78
2	С	Ni	3.5	75
3	С	Ni foam	3.2	41
4	С	Sn	3.4	75
5	С	Mg	3.5	76
6	С	С	3.0	88
7	С	Glossy Carbon	3.0	78
8	Pt	Pt	3.2	41
9	Ni	С	3.5	n.r.
10	С	RVC	3.8	72

SI-2-1: Screening for the suitable electrodes (cathode and anode)

^aReaction conditions: Graphite plate anode (5.0 cm x 0.8 cm x 0.2 cm), Graphite plate cathode (5.0 cm x 0.8 cm x 0.2 cm), substrate **1a** (0.4 mmol), NH₄SCN **2a** (2.0 mmol), premixed solvent (CH₃CN/H₂O = 4.8:0.2, v/v, 5.0 mL), constant current (18 mA), under N₂, room temperature. ^bIsolated yield after column chromatography.

	+ NH ₄ SCN $I = 18 \text{ mA, rt,}$	solvent NCS	
1a	2a		3а СН ₃
Entry	Solvent (mL)	Time (h)	Yield 3a (%) ^{a,b}
1	dry CH ₃ CN (5)	6.0	16 ^c
2	bottle grade CH ₃ CN (5)	3.3	66
3	CH ₃ CN:H ₂ O (4.9:1)	3.3	73
4	CH ₃ CN:H ₂ O (4.8:0.2)	3.0	88
5	CH ₃ CN:H ₂ O (4.6:0.4)	3.4	42
6	CH ₃ CN:H ₂ O (4:1)	3.4	40 ^{<i>c</i>}
7	CH ₃ CN:H ₂ O (3:2)	3.4	41 ^c
8	CH ₃ CN:H ₂ O (2.5:2.5)	4.3	21 ^c
9	H ₂ O (5 mL)	5.0	n.r.

SI-2-2: Screening for the stoichiometry of water required

^aReaction conditions: Graphite plate anode (5.0 cm x 0.8 cm x 0.2 cm), Graphite plate cathode (5.0 cm x 0.8 cm x 0.2 cm), substrate **1a** (0.4 mmol), NH₄SCN **2a** (2.0 mmol), solvent (CH₃CN) or mixture of solvents (CH₃CN/H₂O, v/v, 5.0 mL), constant current (18 mA), under N₂, room temperature. ^bIsolated yield after column chromatography. ^cStarting decomposes.

SI-2-3: Screening for the NH₄SCN (mmol) required

N N CH ₃ 1a (0.4 mmol)	+ NH ₄ SCN	c nA, rt (4.8:0.2)	NCS 3a CH ₃
Entry	NH₄SCN (x mmol)	Time (h)	Yield 3a (%) ^{a,b}
1	0.8	3.3	46 ^{<i>c</i>}
2	1.2	3.3	53 ^c
3	2	3.0	88
4	2.8	3.0	88

^aReaction conditions: Graphite plate anode (5.0 cm x 0.8 cm x 0.2 cm), Graphite plate cathode (5.0 cm x 0.8 cm x 0.2 cm), substrate **1a** (0.4 mmol), NH₄SCN **2a** (x mmol), premixed solvent (CH₃CN/H₂O = 4.8 mL:0.2 mL, v/v, 5.0 mL), constant current (18 mA), under N₂, room temperature. ^{*b*}Isolated yield after column chromatography. ^{*c*}Starting left.

L Ia	$ \begin{array}{c} N \\ N \\ N \\ O \\ I \\ CH_3 \end{array} + NH_4SCN \\ \begin{array}{c} 2a \end{array} $	$c = c$ $I = 18 \text{ mA},$ $CH_3CN/H_2O = 4.8 \text{ mL:} 0.2 \text{ mL}$ $N_2, \text{ rt; then added electrolyte,}$ with a change in constant current	NCS	4a CH ₃
Entry	Supporting electrolyte	e (equiv) Constant current (mA)	Time (h)	Yield 4a (%) ^{a,b}
1	^{<i>n</i>} Bu ₄ NBF ₄ (1.5)	18	5.0	24 ^{<i>c</i>}
2	ⁿ Bu ₄ NBF ₄ (1.5)	10	8.0	39 ^c
3	ⁿ Bu ₄ NBF ₄ (1.5)	5	6.0	80
4	ⁿ Bu ₄ NBF ₄ (1.5)	2	7.5	77
5	ⁿ Bu ₄ NBF ₄ (1.0)	5	6.5	76
6	ⁿ Bu₄NBr (1.5)	5	6.5	68
7	ⁿ Bu ₄ NPF ₆ (1.5)	5	6.5	75
8	LiClO ₄ (1.5)	5	6.5	60 ^c
9	^{<i>n</i>} Bu ₄ NClO ₄ (1.5)	5	6.5	70

SI-2-4: Screening of electrolytes and applied constant current for the synthesis of 4a

^aReaction conditions: Graphite plate anode (5.0 cm x 0.8 cm x 0.2 cm), Graphite plate cathode (5.0 cm x 0.8 cm x 0.2 cm), substrate **1a** (0.4 mmol), NH₄SCN (2.0 mmol), premixed solvent (CH₃CN/H₂O = 4.8:0.2, v/v, 5.0 mL), constant current (18 mA), under N₂, room temperature; then added electrolyte with a constant current (5 mA). ^{*b*}Isolated yield after column chromatography. ^{*c*}Decomposition of **3a** with time.

SI-3: General Procedure for the Synthesis of 3a from 1a

In an electrasyn undivided glass vial (10 mL) equipped with a stir bar, 1-methylquinoxalin-2(1*H*)-one **1a** (64 mg, 0.4 mmol), ammonium thiocyanate **2a** (152 mg, 2.0 mmol), and CH₃CN/H₂O (5.0 mL = 4.8:0.2) was added. The vial was equipped with graphite plate (5.0 cm x 0.8 cm x 0.2 cm, about 1.5 cm immersion depth in solution) as the anode and as well as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 18 mA under N₂ atmosphere at room temperature for 3.0 h. After completion of the reaction, as indicated by TLC, the reaction mixture was diluted with DCM and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the crude residue was purified by column chromatography [230–400 mesh; eluent: ethyl acetate/*n*-hexane] to afford the desired product **3a**.

Following the same experimental protocol as mentioned, all the products $\bf 3$ were prepared from $\bf 1$ on a 0.4 mmol batch size.

SI-3-1: Procedure for gram scale Synthesis of 3a

In an electrasyn undivided glass vial (20 mL) equipped with a stir bar, 1-methylquinoxalin-2(1*H*)-one **1a** (1 gm, 6.2 mmol), ammonium thiocyanate **2a** (2.3 gm, 31 mmol), and CH₃CN/H₂O (15 mL = 14.4:0.6) was added. The vial was equipped with graphite plate as the anode and as well as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 40 mA under N₂ atmosphere at room temperature for 20 h. After completion of the reaction, as indicated by TLC, the reaction mixture was diluted with DCM and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the crude residue was purified by column chromatography [230–400 mesh; eluent: ethyl acetate/*n*-hexane] to afford 60% of the desired product **3a**.

SI-4: General Procedure for the Synthesis of 4a from 1a

In an electrasyn undivided glass vial (10 mL) equipped with a stir bar, 1-methylquinoxalin-2(1*H*)-one **1a** (64 mg, 0.4 mmol), ammonium thiocyanate **2a** (152 mg, 2.0 mmol), CH₃CN/H₂O (5.0 mL = 4.8 mL:0.2 mL) was added. The vial was equipped with graphite plate (5.0 cm x 0.8 cm x 0.2 cm, about 1.5 cm immersion depth in solution) as the anode and as well as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 18 mA under N₂ atmosphere at room temperature until complete consumption of **1a**. Therefore, supporting electrolyte ^{*n*}Bu₄NBF₄ (197 mg, 1.5 equiv) was added into the same reaction pot and electrolyzed at a constant current of 5 mA under N₂ atmosphere at room temperature for 3.0 h. After completion of the reaction, as indicated by TLC, the reaction mixture was diluted with DCM and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the crude residue was purified by column chromatography [230–400 mesh; eluent: ethyl acetate/*n*-hexane] to afford the desired product **4a**.

Following the same experimental protocol as mentioned, all the products $\mathbf{4}$ were prepared from $\mathbf{1}$ on a 0.4 mmol batch size via the intermediate $\mathbf{3}$.

SI-5: Control experiment

SI-5-1: Radical trapping experiment with BHT (2,6-Di-tert-butyl-4-methylphenol)

In an oven-dried undivided glass bottle (10 mL) equipped with a stir bar, **1a** (64 mg, 0.4 mmol, 1.0 equiv), ammonium thiocyanate **2a** (152 mg, 2.0 mmol), 2,6-di-*tert*-butyl-4-methylphenol BHT (176 mg, 2.0 equiv), CH₃CN/H₂O (4.8 mL:0.2 mL) were sequentially added. The bottle was equipped with graphite plate (5.0 cm x 0.8 cm x 0.2 cm, about 1.5 cm immersion depth in solution) as the anode and as well as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 18 mA under N₂ atmosphere at room temperature for 30 minutes, then a small aliquot was taken for the ESI-QTOF-HRMS studies. The formation of a BHT-adduct **5a** (ESI-QTOF-HRMS: m/z calcd for C₂₄H₃₃N₂O₂ [M + H]⁺: 381.2542; found: 381.2545 and m/z calcd for C₂₄H₃₂N₂O₂Na [M + Na]⁺: 403.2362; found: 403.2363) suggested that the reaction proceeds through the radical pathway. This further confirmed that the reaction initially underwent electrochemical reduction at the C=N double bond followed by the electrochemical thiocyanation at the C7-position to generate the desired product.

To isolate the corresponding **5a**, the crude mixture was purified by silica gel column chromatography. However, it remained inseparable with other unidentified product mixtures. We were able to collect the ¹H NMR of the mixture, where **5a** was the major product.

¹H NMR of the mixture **5a** (major product in the BHT-adduct): ¹H NMR (400 MHz, CDCl₃): δ = 7.15 (ddd, *J* = 8.0, 7.2, 1.6 Hz, 1 H), 7.07 (dd, *J* = 8.0, 1.6 Hz, 1 H), 6.96-7.01 (m, 2 H), 6.43 (s, 2H), 3.66 (s, 2 H), 3.34 (s, 3 H), 1.42 (s, 3 H), 1.17 ppm (s, 18 H). HRMS (ESI-QTOF): *m/z* calcd for C₂₄H₃₃N₂O₂ [*M* + H]⁺: 381.2542; found: 381.2545 and *m/z* calcd for C₂₄H₃₂N₂O₂Na [*M* + Na]⁺: 403.2362; found: 403.2363

¹H (400 MHz, CDCl₃) NMR spectra of **5a**, contaminated with inseparable mixtures:

SI-5-1a: Deuterium radical trapping experiment with BHT.

In an oven-dried undivided glass bottle (10 mL) equipped with a stir bar, **1a** (64 mg, 0.4 mmol), ammonium thiocyanate **2a** (152 mg, 2.0 mmol), 2,6-di-*tert*-butyl-4-methylphenol BHT (176 mg, 2.0 equiv), dry CH₃CN/D₂O (4.8 mL:0.2 mL) were sequentially added. The bottle was equipped with graphite plate (5.0 cm x 0.8 cm x 0.2 cm, about 1.5 cm immersion depth in solution) as the anode and as well as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 18 mA under N₂ atmosphere at room temperature for 30 minutes, then a small aliquot was taken for the ESI-Orbitrap-HRMS studies. The formation of a BHT-D adduct **5aa-D** (ESI-Orbitrap-HRMS: m/z calcd for m/z calcd for C₁₅H₂₃DONa [M + Na]⁺: 244.1788; found: 244.1788 suggested that the deuterium radical formed during cathodic reduction of D₂O. The cathodic reduction of D₂O may generate deuterium radical which can combine with C-3 carbon radical center of **1a** to form intermediate **II** (Proposed mechanism in Scheme 3 of the manuscript).

SI-5-2: Trapping of the in-situ generated thiocyanogen (SCN)₂ intermediate

In an oven-dried undivided glass bottle (10 mL) equipped with a stir bar, **1a** (64 mg, 0.4 mmol), ammonium thiocyanate **2a** (152 mg, 2.0 mmol), 1,1-diphenylethylene (137 μ L, 2.0 equiv), and CH₃CN/H₂O (5.0 mL = 4.8:0.2) were added. The bottle was equipped with graphite plate (5.0 cm x 0.8 cm x 0.2 cm, about 1.5 cm immersion depth in solution) as the anode and as well as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 18 mA under N₂ atmosphere at room temperature for 30 minutes, then a small aliquot was taken for ESI-QTOF studies, which had supported the formation of an adduct via the addition of thiocyanogen (SCN)₂ to 1,1-diphenylethylene. The formation of the addition product (1,2-dithiocyanatoethane-1,1-diyl)dibenzene (**5b**) suggested that thiocyanogen was initially generated via the anodic oxidation of thiocyanate, which was utilized further for the thiocyanation to deliver the desired product.

We were able to isolate the pure 1,2-dithiocyanatoethane-1,1-diyl)dibenzene (**5b**) after column chromatography.

¹H NMR (400 MHz, CDCl₃): δ = 7.41-7.44 (m, 2 H), 7.38-7.41 (m, 3 H), 7.35-7.38 (m, 1 H), 7.29-7.33 (m, 4 H), 4.01 ppm (s, 2 H).

¹H (400 MHz, CDCl₃) NMR spectra of 1,2-dithiocyanatoethane-1,1-diyl) dibenzene (**5b**)

ESI-QTOF spectra of 1,2-dithiocyanatoethane-1,1-diyl) dibenzene (5b)

SI-6: Role of water during C=N reduction: Deuterium incorporation experiment

In an oven-dried undivided glass bottle (10 mL) equipped with a stir bar, **1a** (64 mg, 0.4 mmol), ammonium thiocyanate **2a** (152 mg, 2.0 mmol) and 5.0 mL of dry CH₃CN/D₂O (4.8 mL:0.2 mL) was added. The bottle was equipped with graphite plate (5.0 cm x 0.8 cm x 0.2 cm, about 1.5 cm immersion depth in solution) as the anode and as well as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 18 mA under N₂ atmosphere at room temperature for 30 minutes, then a small aliquot was taken and analyzed by ESI-QTOF-HRMS studies. Isolation and detection of deuterium incorporated product **3a**-**D** (>95% D incorporation) suggested that during electrochemical reduction of **1a**, protonation at C-3 takes place from D₂O.

Analytical and spectral data of **3a**-*D*: $R_f = 0.3$; eluent, EtOAc/*n*-hexane (30%); white solid; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.12$ (dd, J = 8.4, 2.0 Hz, 1 H), 7.07 (d, J = 2.0 Hz, 1 H), 6.67 (d, J = 8.4 Hz, 1 H), 4.27 (s, 1 H), 4.00 (m, 1 H), 3.35 ppm (s, 3 H); HRMS (ESI-QTOF): m/z calcd for $C_{10}H_9DN_3OS [M + H]^+$: 221.0607; found: 221.0615.

¹H (400 MHz, CDCl₃) NMR spectra of **3a-D**:

ESI-QTOF-HRMS spectra of **3a-D**:

SI-7: Electrochemical thiocyanation of 1-methyl-3,4-dihydroquinoxalin-2(1H)-one (1aa)

In an oven-dried undivided glass bottle (10 mL) equipped with a stir bar, 1-methyl-3,4dihydroquinoxalin-2(1*H*)-one **1aa** (64 mg, 0.39 mmol, 1.0 equiv), ammonium thiocyanate **2a** (148 mg, 5.0 equiv), and 5.0 mL of CH₃CN/H₂O (4.8 mL:0.2 mL) was added. The bottle was equipped with graphite plate (5.0 cm x 0.8 cm x 0.2 cm, about 1.5 cm immersion depth in solution) as the anode and as well as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 18 mA under N₂ atmosphere at room temperature for 2 h. After completion of the reaction and usual work-up and purification procedure, the desired product (**3a**) was isolated in 49% yield, thereby suggesting that the reaction proceeded through **1aa** intermediate. The spectroscopic data of **3a** was exactly matched with that obtained from the original method.

SI-8: Role of NH₄⁺ ion in electrochemical reduction

SI-8-1: Use of (KSCN + NH₄Cl) instead of NH₄SCN

In an oven-dried undivided glass bottle (10 mL) equipped with a stir bar, **1a** (64 mg, 0.4 mmol, 1.0 equiv), KSCN (116 mg, 3.0 equiv), NH₄Cl (63 mg, 3.0 equiv), and 5.0 mL of CH₃CN/H₂O (4.8:0.2) was added. The bottle was equipped with graphite plate (5.0 cm x 0.8 cm x 0.2 cm, about 1.5 cm immersion depth in solution) as the anode and as well as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 18 mA under N₂ atmosphere at room temperature for 2 h. After usual work-up and purification, the desired product **3a** was isolated, albeit in low yield (26 mg, 29%). In contrast, when the reaction was conducted in the presence of KSCN instead of NH₄SCN, **3a** was not formed and the unreacted starting material was isolated. These control experiments suggested that ammonium ions had a definite role during the electrochemical reduction of the C=N bond at the cathode.

SI-8-2: Proof for the interaction of NH4⁺ ion (NH4SCN) with the lone pair on nitrogen of 1a

All the ¹H NMR (400 MHz) data was collected in a mixture of 5 mL CD₃CN/D₂O solvents (4.8 mL:0.2 mL). The chemical shift value of **1a** was found to be slightly down-fielded after addition of NH₄SCN, thereby suggesting the interaction of ammonium cation with lone pair on nitrogen of **1a**.

SI-9: Cyclic Voltammetry studies

All cyclic voltammetry studies were measured using Potentiostat-Galvanostat (Autolab PGSTAT204) at room temperature in acetonitrile and water solvent mixture (4.8:0.2, mL). Before collecting CV data, solution was degassed with argon gas to overcome one extra reduction potential peak coming for oxygen present in solution. nBu_4NPF_6 (0.1 M) was used as the supporting electrolyte, and a glassy carbon electrode was used as the working electrode while the counter electrode was a platinum plate. The reference was an Ag/AgCl electrode submerged in a saturated aqueous KCl solution. The scan rate was 100 mV/s ranging from -2.0 V to +2.0 V.

SI-9-1: cyclic voltammetry of 1a and 2a

5.0 mL of CH₃CN/H₂O (4.8 mL:0.2 mL) solvent mixtures (i) containing 0.1 M of ${}^{n}Bu_{4}NPF_{6}$ (black line); (ii) containing 0.1 M of ${}^{n}Bu_{4}NPF_{6}$ with 0.015 M of 1a (red line); (iii) containing 0.1 M of ${}^{n}Bu_{4}NPF_{6}$ with 0.015 M of 2a (blue line).

Discussion: The CV of **1a** (0.015 M) showed a one-electron reduction peak in the potential at -1.63 V and an oxidation potential peak at +1.63 V was observed, whereas NH₄SCN (0.015 M) had oxidation potential 0.82 V. So, in this reaction NH₄SCN preferentially undergo anodic oxidation to form SCN[•] and (SCN)₂ to initiate the reaction, subsequently, **1a** underdoes cathodic reduction on the graphite electrode surface.

SI-9-2: Role of NH4⁺ ions towards reduction potential of 1a

During cyclic voltammetry studies, we observed certain changes on reduction potential value of **1a** when NH₄SCN **2a** was added into the solution of **1a** (same concentration 0.015 M). In presence of NH₄SCN (1:2 equivalent), a decrease in reduction potential of **1a** was observed from -1.63 V to -1.23 V, which indicated NH₄⁺ might co-ordinate or protonate with *N*-4 of **1a** and subsequently reduced the reduction potential value. This phenomenon was clearly noticed when the concentration of NH₄SCN was increased by 2 to 3, 4, 5 times; only one reduction potential value of **1a**. This result indicated that with increasing concentration of NH₄SCN in the reaction mixture, **1a** undergoes protonation as a result reduction potential of protonated **1a** appear at more positive potential (-1.16 V vs Ag/AgCl) than **1a** (-1.63 V vs

Ag/AgCl) which facilitated the reduction of **1a** with ensuing thiocyanation, which ultimately improved the overall yield of the reaction.

5.0 mL of CH₃CN/H₂O (4.8 mL:0.2 mL) solvent mixtures (i) containing 0.1 M of ^{*n*}Bu₄NPF₆ (**black line**); (ii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of **1a** (**red line**); (iii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of **2a** (**blue line**); (iv) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of **1a** and 0.015 M of **2a** (**pink line**); (v) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of **1a** and 0.030 M of **2a** (**green line**); (vi) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of **1a** and 0.045 M of **2a** (**dark blue**); (vii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of **1a** and 0.045 M of **2a** (**violet**); (viii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of **1a** and 0.060 M of **2a** (**violet**); (viii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of **1a** and 0.060 M of **2a** (**violet**); (viii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of **1a** and 0.060 M of **2a** (**violet**); (viii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of **1a** and 0.060 M of **2a** (**violet**); (viii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of **1a** and 0.060 M of **2a** (**violet**); (viii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of **1a** and 0.075 M of **2a** (**purple**). The CV was measured after degassing each solution with argon gas

SI-9-3: CV plot of compound 3a in a mixture of CH₃CN/H₂O solvents

5.0 mL of CH₃CN/H₂O (4.8 mL:0.2 mL) solvent mixtures (i) containing 0.1 M of n Bu₄NPF₆ (**black line**); (ii) containing 0.1 M of n Bu₄NPF₆ with 0.015 M of Compound **3a** (**red line**); (iii) containing 0.1 M of n Bu₄NPF₆ with 0.015 M of compound **3a** and 1.5 equivalent of n Bu₄NBF₄ (**blue line**).

Discussion: cyclic voltammetry measurement of **3a** shows two oxidation potential peaks at 0.94 V and 1.55 V (*vs* AgCl/Ag) but has no significant reduction potential peak, suggesting oxidation of **3a** at the anodic surface. Thus, after complete reduction and thiocyanation of **1a** to form **3a**, it underwent oxidation to furnish product **4a** when the current supply is reduced to 5 mA from 18 mA and ^{*n*}Bu₄NBF₄ was used as a supporting electrolyte.

SI-9-4: CV plot of 1a and KSCN at different concentration in CH₃CN/H₂O solvent mixtures

5.0 mL of CH₃CN/H₂O (4.8 mL:0.2 mL) solvent mixtures (i) containing 0.1 M of ^{*n*}Bu₄NPF₆ (**black line**); (ii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of KSCN (**red line**); (iii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of compound **1a** and 0.015 M KSCN (**blue line**); (iv) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of compound **1a** and 0.030 M KSCN (**pink line**); (v) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of compound **1a** and 0.045 M KSCN (**green line**); (vi) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of compound **1a** and 0.045 M KSCN (**green line**); (vi) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of compound **1a** and 0.060 M KSCN (**dark blue line**); (vii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of compound **1a** and 0.060 M KSCN (**dark blue line**); (vii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of compound **1a** and 0.060 M KSCN (**dark blue line**); (vii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of compound **1a** and 0.060 M KSCN (**dark blue line**); (vii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of compound **1a** and 0.060 M KSCN (**dark blue line**); (vii) containing 0.1 M of ^{*n*}Bu₄NPF₆ with 0.015 M of compound **1a** and 0.075 M KSCN (**violet line**). The CV was measured after degassing each solution with argon gas.

Discussion: Cyclic voltammetry measurement of **1a** shows a reduction potential peak at - 1.63 V (*vs* AgCl/Ag). The addition of KSCN (instead of NH₄SCN) to the solution of **1a** did not affect the reduction potential of **1a**, might be due to the absence of any interaction of KSCN with *N*-4 of **1a**. Thus, reduction of **1a** in the presence of KSCN may not be possible under the standard reaction conditions.

SI-10: Change of pH of the reaction medium during electrolysis

We measured pH of the reaction mixture (before electrolysis and during electrolysis for synthesis of **3a** and **4a** starting from **1a**) using METTLER TOLEDO (FiveEasy Plus FP20) at 25 $^{\circ}$ C.

Electrolysis time (h)	Change of pH of the reaction medium
0	4.79
0.5	6.69
1.0	6.99
1.5	7.08
2.0	7.30
2.5	7.37
3.0	7.40
3.5	7.30
4.0	7.24
4.5	7.08
5.0	7.08
5.5	6.70
6.0	6.67
7.5 · 7.0 · 6.5 · 6.0 · 5.5 · 5.0 · 4.5 · 4.0 · 3.5 · 0.0 0.5 10 1 ·	
0.0 0.5 1.0 1.	5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Time (h)

Discussion: We measured pH of the reaction mixture of **1a** before electrolysis (pH = 4.79) and during electrolysis for the synthesis of **3a** followed by 4a. We showed that pH of the reaction medium increases from (pH = 4.79) acidic to basic (pH = 7.40) during the synthesis of 3a. This might be due to protonation of 1a followed by cathodic reduction (PCET) decreases the ammonium cation (acidic) concentration and release ammonia (basic) in the reaction medium. Again, when we measured the pH for the 2nd step, we showed that pH of the reaction medium decreases from 7.40 to 6.67. Thus, reaction medium changes from basic to slightly acidic may be due to release of proton during anodic oxidation of 3a for synthesis of 4a, combine with ammonia(basic) to form ammonium cation (acidic).

SI-11: Calculation of Faraday Efficiency

The Faraday Efficiency (F.E.) is the percentage value that specifies the ratio of charged consumed by the system to charge given to the system. It is calculated for all hydrogenation followed by thiocyanation reaction and subsequent dehydrogenation reaction by using the following formula (0.4 mmol of **1**):

$$F. E. = \frac{z * Np * F}{I * t} \times 100\%$$

z: The number of electrons involves in the product formation; Np: Number of moles of product formed (mol); F: Faraday constant (96485 s. A. mol⁻¹); I: the current (A); t: the time (s).

For the product **3a** in **Table 2** (main manuscript), we calculated F.E. by considering cathodic reduction

F. E. of
$$\mathbf{3a} = \frac{2 * 0.352 * 10^{-3} \text{ mol } * 96485 \text{ s. A. mol}^{-1}}{18 * 10^{-3} \text{ A} * 10800 \text{ s}} \ge 100\% = 35\%$$

For all other derivatives, F.E. was calculated by using the above formula, only replacing the mmol of different products and reaction time.

Product ID	Yield of product (%)	Time of reaction (h)	Faradaic Efficiency
			(%)
3a	88	3.0	35.0
3b	79	3.2	29.4
3c	83	3.3	30.0
3d	64	3.3	32.2
Зе	90	3.1	34.6
3f	36	3.1	13.8
3g	52	3.3	18.8
3h	80	3.4	28.0
3i	78	3.5	26.6
Зј	60	3.3	21.6
3k	79	3.0	31.4
31	55	2.5	26.2
3m	79	3.3	28.6
3n	88	3.2	32.8
30	86	3.5	29.2
3р	68	3.25	25.0
3q	81	3.3	29.2
3r	41	3.1	15.8
3s	85	3.3	30.6
3t	67	3.0	26.6
3u	70	3.2	26.0
3v	83	3.5	28.2

3w	60	2.5	28.6
3x	72	2.5	34.2

For calculation of F.E. for one pot two step electrochemical process (1st step hydrogenation followed by thiocyanation to yield **3** and subsequent anodic dehydrogenation in the 2nd step to form product **4**), we consider four electron process (two electrons for cathodic reduction and two electrons for anodic oxidation). For the synthesis of **4a** in **Table 3**, F.E. was calculated by using the following formula:

F.E. of
$$4\mathbf{a} = \frac{4 * 0.32 * 10^{-3} \text{ mol } * 96485 \text{ s.A. mol}^{-1}}{(18 * 10^{-3} \text{ A} * 10800 \text{ s}) + (5 * 10^{-3} \text{ A} * 10800 \text{ s})} \times 100\% = 50\%$$

F.E. of all other derivatives of **4** was calculated by using the above formula by replacing mmol of product and corresponding reaction time.

Product ID	Yield of product (%)	Time of reaction (h)	Faradaic Efficiency
			(%)
4a	80	6.0	50.0
4b	86	6.3	49.6
4c	70	6.3	40.3
4d	52	6.3	30.0
4e	58	6.3	33.4
4f	70	6.1	42.4
4g	89	6.3	51.3
4h	70	6.2	41.3
4i	4i 40 6.3		23.0
4j	70	6.5	38.5
4k	67	6.3	39.0
41	78	6.5	43.0
4m	75	6.2	44.3

SI-12: Analytical and Spectral Data

SI-12-1: Analytical and Spectral data of 3a

1-Methyl-7-thiocyanato-3,4-dihydroquinoxalin-2(1*H***)-one 3a**: Prepared according to the general procedure discussed above: reaction time = 3.0 h; R_f = 0.3; eluent, EtOAc/*n*-hexane (30%); white solid (77 mg, 88%); mp 158–160 °C; solvent of crystallization, DCM/MeOH (1.5 mL:0.5 mL, *v/v*) at room temperature. ¹H NMR (400 MHz, CDCl₃): δ = 7.13 (dd, *J* = 8.4, 2.0 Hz, 1 H), 7.08 (d, *J* = 2.0 Hz, 1 H), 6.67 (d, *J* = 8.4 Hz, 1 H), 4.20 (s, 1 H), 4.02 (d, *J* = 1.6 Hz, 2 H), 3.36 ppm (s, 3 H); ¹³C{¹H} NMR

(101 MHz, CDCl₃): δ = 164.7, 137.7, 130.0, 128.6, 119.0, 114.9, 111.9, 111.3, 47.0, 28.9 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₀H₁₀N₃OS [*M* + H]⁺: 220.0544; found: 220.0545.

X-ray determined molecular structure of **3a** (**CCDC 2266370**). The thermal ellipsoids are shown in 50% probability level. Solvent of crystallization, DCM/MeOH (1.5 mL:0.5 mL, v/v) at room temperature 25–30 °C.

Datablock 3a							
Bond precision: C-C = 0.0086 A Wavelength=1.54178					Vavelength=1.54178		
Cell:	a=8.2596 alpha=90	5(7))	b=11. beta=	1219(9) 110.896(3)	c= ga	:11.4922 mma=9	2(9) 90
Temperature:	100 K						
		Calculate	ed				Reported
Volume		986.27(14	4)				986.27(14)
Space group		Рс					P 1 c 1
Hall group		P -2yc					Р -2ус
Moiety formu	la	C10 H9 N	13 O S				C10 H9 N3 O S
Sum formula		C10 H9 N	13 O S				C10 H9 N3 O S
Mr		219.26					219.26
Dx,g cm-3		1.477					1.477
Z		4					4
Mu (mm-1)		2.716					2.716
F000		456.0					456.0
F000'		458.53					
h,k,lmax		9,13,13					9,13,13
Nref		3625[18:	19]				3260
Tmin,Tmax		0.710,0.7	42				0.501,0.753
Tmin'		0.553					
Correction me AbsCorr = MU	ethod= # ILTI-SCAN	Reported I	T Lim	its: Tmin=0.5	01	Tmax=().753
Data complete	eness= 1.	79/0.90		Theta(max)=	= 68	3.513	
R(reflections)	= 0.0408	(3084)				wR2(re (3260)	flections)= 0.1073
S = 1.074		Npar	= 273				

 ^1H (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl_3) NMR spectra of 3a:

SI-12-2: Analytical and Spectral data of 3b

1-Benzyl-7-thiocyanato-3,4-dihydroquinoxalin-2(1*H***)-one 3b**: Prepared according to the general procedure discussed above: reaction time = 3.2 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (30%); white solid (74 mg, 79%); mp 177–180 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.10-7.12 (m, 2 H), 6.67 (d, J = 7.8 Hz, 1 H), 4.21 (s, 1 H), 3.99-4.02 (m, 2 H), 3.97 (q, J = 7.2 Hz, 2 H), 1.27 ppm (t, J = 7.2 Hz, 3 H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ = 163.6, 137.4, 128.3, 127.8, 118.3, 114.7, 111.4, 110.9, 46.5 (CH₂),

36.5 (CH₂), 11.9 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₁H₁₂N₃OS [*M* + H]⁺: 234.0701; found: 234.0693.

¹H (600 MHz, CDCl₃), ¹³C{¹H} (151 MHz, CDCl₃), and DEPT-135 (151 MHz, CDCl₃) NMR spectra of **3b**:

SI-12-3: Analytical and Spectral data of 3c

1-Propyl-7-thiocyanato-3,4-dihydroquinoxalin-2(1*H***)-one 3c**: Prepared according to the general procedure discussed above: reaction time = 3.3 h; R_f = 0.3; eluent, EtOAc/*n*-hexane (30%); white solid (82 mg, 83%); mp 160–162 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.11 (dd, *J* = 8.4, 2.0 Hz, 1 H), 7.08 (d, *J* = 2.0 Hz, 1 H), 6.68 (d, *J* = 8.0 Hz, 1 H), 4.17-4.22 (m, 1 H), 4.00 (s, 2 H), 3.87-3.91 (m, 2 H), 1.64-1.74 (m, 2 H), 0.98 ppm (d, *J* = 7.6 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃): δ = 164.4, 138.0, 129.1, 128.3, 119.0, 115.3, 111.9, 111.5, 47.1 (CH₂), 43.4 (CH₂), 20.2 (CH₂), 11.3 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₂H₁₄N₃OS [*M* + H]⁺:

^{248.0858;} found: 248.0852.

BMW-4-46A single_pulse NCS ¦н. -- 6.684 -- 6.664 7.117 7.112 7.112 7.096 7.091 7.069 ١Ú 00 0.991 7.1 6.6 7.0 6.9 f1 (ppm) 6.8 6.7 1.010 0.972 3.912 897 3.893 889 3.874 257 .222 ---- 0.062 0.50-] 2.33 2.13_₹ 1.02 1.21= 2.28-3.20-4.0 10.0 7.0 1.0 0.0 8.5 8.0 7.5 6.5 6.0 5.5 5.0 f1 (ppm) 4.5 3.5 3.0 2.5 2.0 1.5 0.5 9.5 9.0 NCS 'n | СН₃ √ 111.86 √ 111.48 140 135 125 f1 (ppm) 120 115 110 130 47.06 ~ 119.00 15.29 128.26 11.27 20.24 43.35 137.98 164.40 48 129.06

^1H (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl_3) NMR spectra of **3c:**

100 f1 (ppm) 90

80

70

60

50

40

30

110

120

140

130

150

10

0

20

00

190

180

170

160

SI-12-4: Analytical and Spectral data of 3d

1-Benzyl-7-thiocyanato-3,4-dihydroquinoxalin-2(1*H***)-one 3d**: Prepared according to the general procedure discussed above: reaction time = 3.3 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (30%); white solid (76 mg, 64%); mp 110 -112 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.32 (t, *J* = 7.2 Hz, 2 H), 7.23-7.27 (m, 3 H), 7.12-7.14 (m, 2 H), 6.81 (d, *J* = 7.8 Hz, 1 H), 6.76 (s, 1 H), 5.16 (s, 2 H), 4.03 ppm (d, *J* = 1.2 Hz, 2 H); ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 164.8, 139.3, 136.4, 128.6 (2 CH), 128.5, 128.1, 127.1, 126.6 (2 CH), 119.5, 114.8, 112.4, 108.5, 45.9 (CH₂), 43.8 (CH₂) ppm; HRMS (ESI-QTOF): *m/z* calcd for

C₁₆H₁₄N₃OS [*M* + H]⁺: 296.0858; found: 296.0847.

¹H (600 MHz, DMSO- d_6) and ¹³C{¹H} NMR (151 MHz, DMSO- d_6) spectra of **3d**:

SI-12-5: Analytical and Spectral data of 3e

S35

SI-12-6: Analytical and Spectral data of 3f

7-Thiocyanato-3,4-dihydroquinoxalin-2(1*H***)-one 3f**: Prepared according to the general procedure discussed above: reaction time = 3.1 h; R_f = 0.3; eluent, EtOAc/*n*-hexane (40%); white solid (30 mg, 36%); mp 204–206 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 10.41 (s, 1 H), 7.02 (dd, *J* = 8.4, 2.4 Hz, 1 H), 6.93 (d, *J* = 2.4 Hz, 1 H), 6.67 (d, *J* = 8.0 Hz, 1 H), 6.52 (s, 1 H), 3.79 ppm (s, 2 H); ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ = 10.41 (s, 1 H), 6.52 (s, 1 H), 3.79 ppm (s, 2 H); ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ = 10.41 (s, 1 H), 6.52 (s, 1 H), 3.79 ppm (s, 2 H); ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ = 10.41 (s, 1 H), 6.52 (s, 1 H), 6.52 (s, 1 H), 6.53 (s, 2 H); ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ = 10.41 (s, 1 H), 6.54 (s, 1 H), 6.55 (s, 1 H), 6.

165.7, 137.6, 128.6, 127.6, 119.2, 114.6, 113.3, 108.2, 46.0 ppm; HRMS(ESI-QTOF): m/z calcd for C₉H₈N₃OS [M + H]⁺: 206.0388; found: 206.0380.

¹H (400 MHz, DMSO- d_6) and ¹³C{¹H} (101 MHz, DMSO- d_6) NMR spectra of **3f**:

SI-12-7: Analytical and Spectral data of 3g

1-Phenyl-7-thiocyanato-3,4-dihydroquinoxalin-2(1*H***)-one 3g**: Prepared according to the general procedure discussed above: reaction time = 3.3 h; R_f = 0.3; eluent, EtOAc/*n*-hexane (30%); white solid (60 mg, 52%); mp 177–179 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.57 (t, *J* = 7.2 Hz, 2 H), 7.49 (t, *J* = 7.2 Hz, 1 H), 7.27 (d, *J* = 7.2 Hz, 2 H), 7.14 (dd, *J* = 8.4, 1.8 Hz, 1 H), 6.86 (d, *J* = 8.4 Hz, 1 H), 6.82 (s, 1 H), 6.20 (d, *J* = 2.4 Hz, 1 H), 4.05 ppm (d, *J* = 1.2 Hz, 2 H); ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 164.4, 138.4, 136.7, 130.5, 130.1 (2 CH), 129.1 (2 CH), 128.8, 128.5, 119.4, 114.9, 112.5, 108.2, 46.4 (CH₂) ppm. HRMS (ESI-

QTOF): m/z calcd for C₁₅H₁₂N₃OS [M + H]⁺: 282.0701; found: 282.0703.

¹H (600 MHz, DMSO- d_6) and ¹³C{¹H} (151 MHz, DMSO- d_6) NMR spectra of **3g**:

SI-12-8: Analytical and Spectral data of 3h

7-Thiocyanato-1-(*p***-tolyl)-3,4-dihydroquinoxalin-2(1***H***)-one 3h:** Prepared according to the general procedure discussed above: reaction time = 3.4 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (30%); white solid (96 mg, 80%); mp 194–196 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.50 (d, *J* = 8.4 Hz, 2 H), 7.28 (dd, *J* = 8.4, 1.8 Hz, 3 H), 6.99 (d, *J* = 7.8 Hz, 1 H), 6.94 (s, 1 H), 6.38 (d, *J* = 1.8 Hz, 1 H), 4.17 (s, 2 H), 2.52 ppm (s, 3 H); ¹³C{¹H} NMR (151 MHz, DMSO-*d*₆): δ = 164.4, 138.4, 138.2, 134.0, 130.6 (2 CH), 130.6, 128.8 (2 CH), 128.6, 119.5, 114.9, 112.5, 108.1, 46.4 (CH₂), 20.8 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₆H₁₄N₃OS [*M* + H]⁺: 296.0858; found: 296.0856.

¹H (600 MHz, DMSO- d_6) and ¹³C{¹H} (151 MHz, DMSO- d_6) NMR spectra of **3h**:

SI-12-9: Analytical and Spectral data of 3i

312.0802.

SI-12-10: Analytical and Spectral data of 3j

1-(Naphthalen-2-ylmethyl)-7-thiocyanato-3,4-dihydroquinoxalin-2(1*H***)-one 3**j: Prepared according to the general procedure discussed above: reaction time = 3.3 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (30%); colorless gum (84 mg, 60%). ¹H NMR (400 MHz, Acetone- d_6): $\delta = 7.84-7.87$ (m, 2 H), 7.80-7.83 (m, 2 H), 7.43-7.47 (m, 3 H), 7.23 (d, J = 2.0 Hz, 1 H), 7.08 (dd, J = 8.4, 2.0 Hz, 1 H), 6.87 (d, J = 8.4 Hz, 1 H), 6.02 (s, 1 H), 5.40 (s, 2 H), 4.13 (d, J = 1.6 Hz, 2 H); ¹³C{¹H} NMR (101 MHz, CDCl₃):

127.9, 127.8, 126.5, 126.1, 125.6, 124.7, 119.5, 115.3, 111.8, 111.6, 47.2 (CH₂), 45.8 (CH₂) ppm; HRMS (ESI-QTOF): *m/z* calcd for C₂₀H₁₆N₃OS [*M* + H]⁺: 346.1014; found: 346.1010.

 δ = 165.0, 137.8, 133.5, 133.1, 132.9, 129.2, 129.1, 128.2,

¹H NMR (400 MHz, CDCl₃) and ¹³C{¹H} NMR (101 MHz, CDCl₃) spectra of **3j**:

SI-12-11: Analytical and Spectral data of 3k

(*E*)-1-styryl-7-thiocyanato-3,4-dihydroquinoxalin-2(1*H*)-one 3k: Prepared according to the general procedure discussed above: reaction time = 3 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (30%); Colorless gum (97 mg, 79%). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.44$ -7.47 (m, 2 H), 7.35-7.39 (m, 3 H), 7.29-7.33 (m, 1 H), 7.18 (dd, J = 8.0, 2.0 Hz, 1 H), 6.95 (d, J = 14.4 Hz, 1 H), 6.90 (d, J = 14.8 Hz, 1 H), 6.78 (d, J = 8.4 Hz, 1 H), 4.27 (s, 1 H), 4.02 ppm (d, J = 1.6 Hz, 2 H); ¹³C{¹H} NMR (101 MHz, CDCl₃) $\delta = 165.1, 138.8, 134.6, 129.5, 129.4, 129.1, 128.9 (2 CH), 128.5, 126.6 (2 CH), 122.0, 121.8, 116.1, 112.1, 111.8, 47.9 (CH₂) ppm; HRMS (ESI-QTOF): <math>m/z$ calcd for C₁₇H₁₄N₃OS [M + H]⁺: 308.0857; found:

308.0859.

^1H (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl_3) NMR spectra of 3k:

SI-12-12: Analytical and Spectral data of 3I

3-(4-Methoxyphenyl)-7-thiocyanato-3,4-dihydroquinoxalin-2(1*H***)-one 3**I: Prepared according to the general procedure discussed above: reaction time = 2.5 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (30%); white solid (68 mg, 55%); mp 154–156 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 10.59 (s, 1 H), 7.16-7.18 (m, 3 H), 7.07 (dd, *J* = 8.4, 2.0 Hz, 1 H), 6.97 (d, *J* = 2.0 Hz, 1 H), 6.84-6.87 (m, 2 H), 6.79 (d, *J* = 8.4 Hz, 1 H), 4.95 (d, *J* = 2.0 Hz, 1 H), 3.67 ppm (s, 3 H); ¹³C{¹H} NMR

(101 MHz, DMSO- d_6): δ = 166.0, 159.5, 136.7, 132.5, 128.8, 128.5 (2 CH), 127.0, 119.0, 114.7, 114.4 (2 CH), 113.3, 108.5, 58.8, 55.7 ppm; HRMS (ESI-QTOF): m/z calcd for C₁₆H₁₄N₃O₂S [M + H]⁺: 312.0806; found: 312.0800.

¹H (400 MHz, DMSO- d_6) and ¹³C{¹H} (101 MHz, DMSO- d_6) NMR spectra of **3I**:

SI-12-13: Analytical and Spectral data of 3m

NCS

3-Benzyl-1-methyl-7-thiocyanato-3,4-dihydroquinoxalin-2(1H)-one 3m: Prepared according to the general procedure discussed above: Н reaction time = 3.3 h; R_f = 0.3; eluent, EtOAc/*n*-hexane (30%); white solid (98 mg, 79%); mp 116–118 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.26-7.37 (m, 3 H), 7.12-7.16 (m, 3 N I CH₃ H), 7.08 (d, J = 2.0 Hz, 1 H), 6.58 (d, J = 8.0 Hz, 1 H), 4.15 (s, 1 H), 4.10 (ddd, J = 2.0, 3.2, 10.8 Hz, 1 H), 3.39 (s, 3 H), 3.22

(dd, J = 13.6, 3.2 Hz, 1 H), 2.77 ppm (dd, J = 13.6, 10.8 Hz, 1 H); ¹³C{¹H}NMR (101 MHz, CDCl₃): δ = 166.5, 136.3, 136.3, 130.0, 129.4, 129.1 (2 CH), 128.6, 127.4 (2 CH), 118.7, 115.6, 111.8, 111.5, 57.6, 38.3, 29.2 ppm; HRMS (ESI-QTOF): *m*/*z* calcd for C₁₇H₁₆N₃OS [*M* + H]⁺: 310.1014; found: 310.1011.

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (101 MHz, CDCl₃) NMR spectra of **3m**:

SI-12-14: Analytical and Spectral data of 3n

3-Ethyl-1-methyl-7-thiocyanato-3,4-dihydroquinoxalin-2(1*H***)-one 3n:** Prepared according to the general procedure discussed above: reaction time = 3.2 h; $R_{\rm f}$ = 0.3; eluent, EtOAc/*n*-hexane (30%); white solid (87 mg, 88%); mp 101–103 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.14 (dd, J = 7.8, 1.8 Hz, 1 H), 7.08 (d, J = 1.8 Hz, 1 H), 6.70 (d, J = 8.4 Hz, 1 H), 4.29 (s, 1 H), 3.90-3.92 (m, 1 H), 3.37 (s, 3 H), 1.84 (dtd, J = 15.0, 7.2, 4.8 Hz, 1 H), 1.75 (dp, J = 15.0, 7.2 Hz, 1 H), 1.00

ppm (t, J = 7.2 Hz, 3 H); ¹³C{¹H} NMR (151 MHz, CDCl₃): $\delta = 166.3$, 136.3, 129.3, 128.1, 118.2, 114.4, 111.4, 110.5, 56.9, 28.6, 25.2, 9.1 ppm; HRMS (ESI-QTOF): m/z calcd for C₁₂H₁₄N₃OS [M + H]⁺: 248.0857; found: 248.0864.

^1H (600 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ (151 MHz, CDCl_3) NMR spectra of 3n:

S54

SI-12-15: Analytical and Spectral data of 30

1-Methyl-3-phenyl-7-thiocyanato-3,4-dihydroquinoxalin-2(1*H***)-one 3o**: Prepared according to the general procedure discussed above: reaction time = 3.5 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (30%); white solid (103 mg, 86%); mp 192–194 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.31-7.33$ (m, 5 H), 7.17 (dd, J = 8.4, 2.0 Hz, 1 H), 7.10 (d, J = 2.0 Hz, 1 H), 6.74 (d, J = 8.0 Hz, 1 H), 5.12 (d, J = 1.2 Hz, 1 H), 4.65 (s, 1 H), 3.39 ppm (s, 3 H); ¹³C{¹H} NMR (101 MHz, CDCl₃): $\delta = 165.1$, 138.7, 136.6, 129.4, 129.0 (2 CH),

128.8, 128.7, 126.9 (2 CH), 118.9, 114.8, 111.9, 111.4, 60.4, 29.4 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₆H₁₄N₃OS [*M* + H]⁺: 296.0857; found: 296.0845.

^1H (400 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl₃) NMR spectra of **3o:**

SI-12-16: Analytical and Spectral data of 3p

1-Methyl-7-thiocyanato-3-(*p*-tolyl)-3,4-dihydroquinoxalin-2(1*H*)-one **3p**: Prepared according to the general procedure discussed above: reaction time = 3.25 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (30%); white solid (85 mg, 68%); mp 156–158 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.21 (d, *J* = 8.4 Hz, 2 H), 7.17 (dd, *J* = 7.8, 1.8 Hz, 1 H), 7.13 (d, *J* = 7.8 Hz, 2 H), 7.11 (d, *J* = 1.8 Hz, 1 H), 6.74 (d, *J* = 8.4 Hz, 1 H), 5.09 (s, 1 H), 4.64 (s, 1 H), 3.39 (s, 3 H), 2.32 ppm (s, 3H); ¹³C{¹H}NMR

(151 MHz, CDCl₃): δ = 164.8, 138.1, 136.1, 135.1, 129.2 (2 CH), 128.9, 128.2, 126.3 (2 CH), 118.4, 114.2, 111.4, 110.7, 59.6, 28.9, 20.7 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₇H₁₆N₃OS [*M* + H]⁺: 310.1014; found: 310.1010.

¹H (600 MHz, CDCl₃) and ¹³C{¹H} (151 MHz, CDCl₃) NMR spectra of **3p**:

SI-12-17: Analytical and Spectral data of 3q

3-(4-Methoxyphenyl)-1-methyl-7-thiocyanato-3,4-dihydroquinoxalin-2(1*H***)-one 3q**: Prepared according to the general procedure discussed above: reaction time = 3.3 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (30%); yellow solid (107 mg, 81%); mp 154–156 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.24-7.25 (m, 1 H), 7.21-7.23 (m, 1 H), 7.16 (dd, *J* = 8.0, 2.0 Hz, 1 H), 7.10 (d, *J* = 2.0 Hz, 1 H), 6.84 (d, *J* = 8.8 Hz, 2 H), 6.73 (d, *J* = 8.4 Hz, 1 H), 5.06 (s, 1 H), 4.59 (s, 1 H), 3.76 (s, 3 H), 3.39 ppm (s, 3 H): ¹³C NMR (101 MHz, CDCl₃): δ = 165.4, 159.9, 136.7.

1 H), 3.76 (s, 3 H), 3.39 ppm (s, 3 H); 13 C NMR (101 MHz, CDCl₃): δ = 165.4, 159.9, 136.7, 130.8, 129.4, 128.7, 128.2 (2 CH), 118.9, 114.8, 114.4 (2 CH), 111.9, 111.3, 59.9, 55.4, 29.4 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₇H₁₆N₃O₂S [*M* + H]⁺: 326.0963; found: 326.0955.

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (101 MHz, CDCl₃) NMR spectra of **3q**:

SI-12-18: Analytical and Spectral data of 3r

3-(4-Chlorophenyl)-1-methyl-7-thiocyanato-3,4-dihydroquinoxalin-2(1H)-one 3r: Prepared

according to the general procedure discussed above: reaction time = 3.1 h; R_f = 0.3; eluent, EtOAc/*n*-hexane (30%); colorless gum (54 mg, 41%). ¹H NMR (600 MHz, CDCl₃): δ = 7.31 (d, *J* = 9.0 Hz, 2 H), 7.29 (d, *J* = 9.0 Hz, 2 H), 7.19 (dd, *J* = 8.4, 1.8 Hz, 1 H), 7.12 (d, *J* = 1.2 Hz, 1 H), 6.77 (d, *J* = 8.4 Hz, 1 H), 5.11 (s, 1 H), 4.65 (s, 1 H), 3.39 ppm (s, 3 H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ = 164.3,

136.4, 135.7, 134.2, 128.8, 128.7 (2 CH), 128.2, 127.9 (2 CH), 118.5, 114.4, 111.3, 59.3, 29.0 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₆H₁₃ClN₃OS [*M* + H]⁺: 330.0468; found: 330.0455.

^1H (600 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ (151 MHz, CDCl₃) NMR spectra of 3r:

SI-12-19: Analytical and Spectral data of 3s

1-Methyl-7-thiocyanato-3-(thiophen-2-yl)-3,4-dihydroquinoxalin-2(1H)-one 3s: Prepared

according to the general procedure discussed above: reaction time = 3.3 h; R_f = 0.3; eluent, EtOAc/*n*-hexane (30%); yellow solid (103 mg, 85%); mp 172–175 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.21 (dd, J = 5.2, 1.2 Hz, 1 H), 7.18 (dd, J = 8.4, 2.0 Hz, 1 H), 7.12 (d, J = 2.0 Hz, 1 H), 6.97 (dt, J = 3.6, 1.2 Hz, 1 H), 6.91 (dd, J = 5.2, 3.6 Hz, 1 H), 6.77 (d, J = 8.4 Hz, 1 H), 5.37 (d, J = 1.6 Hz, 1 H), 4.78 (s, 1 H), 3.39 ppm (s, 3 H); ¹³C{¹H} NMR (101 MHz,

CDCl₃): δ = 164.3, 141.0, 135.8, 129.5, 128.6, 127.1, 126.1, 125.8, 118.8, 115.6, 112.3, 111.7, 56.6, 29.5 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₄H₁₂N₃OS₂ [*M* + H]⁺: 302.0422; found: 302.0410.

^1H (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl_3) NMR spectra of 3s:

SI-12-20: Analytical and Spectral data of 3t

1,6-Dimethyl-7-thiocyanato-3,4-dihydroquinoxalin-2(1*H***)-one 3t**: Prepared according to $H_{3}C$ $H_{3}C$

^1H NMR (600 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ NMR (151 MHz, CDCl₃) spectra of 3t:

pdata/1 RM-5-172A 1H-NMR in CDCl3

SI-12-21: Analytical and Spectral data of 3u

6-Fluoro-1-methyl-7-thiocyanato-3,4-dihydroquinoxalin-2(1H)-one 3u: Prepared according

NCS H NCS H H NCS H N CH₃

to the general procedure discussed above: reaction time = 3.2 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (30%); white solid (67 mg, 70%); mp 187–189 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.21 (d, *J* = 6.4 Hz, 1 H), 6.96 (s, 1 H), 6.64 (m, 1 H), 3.90 (s, 2 H), 3.21 ppm (s, 3 H); ¹³C NMR (101 MHz, DMSO-*d*₆): δ = 164.1 (d, *J*_{C-F} = 1.0 Hz, 1 C), 158.8 (d, *J*_{C-F} = 242.4 Hz, 1 C), 141.9 (d, *J*_{C-F} = 1.0 Hz, 1 C), 141.8 (d, *J*_{C-F} =

1.0 Hz, 1 C), 125.8 (d, $J_{C-F} = 1.0$ Hz, 1 C), 121.1 (d, $J_{C-F} = 1.0$ Hz, 1 C), 112.2 (d, $J_{C-F} = 2.0$ Hz, 1 C), 100.8 (d, $J_{C-F} = 27.3$ Hz, 1 C), 45.9 (CH₂), 28.9 ppm; HRMS (ESI-QTOF): m/z calcd for $C_{10}H_9FN_3OS [M + H]^+$: 238.0450; found: 238.0441.

¹H (400 MHz, DMSO- d_6) and ¹³C{¹H} (101 MHz, DMSO- d_6) NMR spectra of **3u**:

SI-12-22: Analytical and Spectral data of 3v

1,8-Dimethyl-7-thiocyanato-3,4-dihydroquinoxalin-2(1H)-one 3v: Prepared according to

the general procedure discussed above: reaction time = 3.5 h; R_f = 0.3; eluent, EtOAc/*n*-hexane (30%); white solid (78 mg, 83%); mp 164–166 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.08-7.12 (m, 2 H), 6.04 (s, 1 H), 3.85 (d, *J* = 1.6 Hz, 2 H), 3.22 (s, 3 H), 2.09 ppm (s, 3 H); ¹³C NMR (101 MHz, DMSO-*d*₆): δ = 164.9, 137.2, 130.0, 129.3, 123.5, 117.8, 113.2, 108.4, 46.6 (CH₂), 29.0, 17.3 ppm; HRMS (ESI-

QTOF): *m*/*z* calcd for C₁₁H₁₂N₃OS [*M* + H]⁺: 234.0701; found: 234.0700.

¹H (400 MHz, DMSO- d_6) and ¹³C{¹H} (101 MHz, DMSO- d_6) NMR spectra of **3v**:

SI-12-23: Analytical and Spectral data of 3w

7-Chloro-1-methyl-3,4-dihydroquinoxalin-2(1*H***)-one 3w: Prepared according to the general procedure discussed above: reaction time = 2.5 h; R_f = 0.3; eluent, EtOAc/***n***-hexane (30%); white solid (47 mg, 60%); mp 165–167 °C. ¹H NMR (400 MHz, CDCl₃): \delta = 6.85-6.89 (m, 2 H), 6.59 (d,** *J* **= 8.0 Hz, 1 H), 3.94 (d,** *J* **= 1.6 Hz, 2 H), 3.87 (s, 1 H), 3.32 ppm (s, 3 H); ¹³C NMR (101 MHz, CDCl₃): \delta = 165.6, 134.2, 130.2, 124.6, 123.1, 115.1, 114.8, 47.6 (CH₂), 28.9 ppm; HRMS (ESI-QTOF):** *m/z* **calcd for C₉H₁₀ClN₂O [***M*

⁺ H]⁺: 197.0481; found: 197.0482.

^1H (400 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl₃) NMR spectra of 3w:

SI-12-24: Analytical and Spectral data of 3x

6,7-Dichloro-1-methyl-3,4-dihydroquinoxalin-2(1*H***)-one 3x**: Prepared according to the general procedure discussed above: reaction time = 2.5 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (30%); white solid (67 mg, 72%); mp 187–189 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.94$ (s, 1 H), 6.74 (s, 1 H), 3.96 (s, 2 H), 3.32 ppm (s, 3 H), –NH peak absent; ¹³C{¹H} NMR (101 MHz, CDCl₃): $\delta = 165.0$, 135.0, 128.9, 126.6, 122.3, 116.4, 115.0, 47.3, 29.0 ppm; HRMS (ESI-QTOF): m/z calcd for C₉H₉Cl₂N₂O [M + H]⁺:

231.0092; found: 231.0100.

^1H (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl_3) NMR spectra of 3x:BMW-4-48A single_pulse

SI-12-25: Analytical and Spectral data of 4a

1-Methyl-7-thiocyanatoquinoxalin-2(1*H***)-one 4a:** Prepared according to the general procedure discussed above: reaction time = 6.0 h; $R_f = 0.3$:

procedure discussed above: reaction time = 6.0 h; R_f = 0.3; eluent, EtOAc/*n*-hexane (20%); white solid (70 mg, 80%); mp 133–135 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.33 (s, 1 H), 7.93 (d, *J* = 8.4 Hz, 1 H), 7.43-7.46 (m, 2 H), 3.70 ppm (s, 3 H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 154.9, 152.0, 135.0, 133.8, 132.5, 128.7, 124.1, 114.4, 109.6, 29.4 ppm; HRMS (ESI-QTOF): *m/z*

calcd for C₁₀H₈N₃OS [*M* + H]⁺: 218.0388; found: 218.0389.

^1H (400 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl₃) NMR spectra of **4a**:

1-Propyl-7-thiocyanatoquinoxalin-2(1*H***)-one 4b:** Prepared according to the general procedure discussed above: reaction time = 6.3 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (20%); white solid (86 mg, 86%); mp 150–152 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.32$ (s, 1 H), 7.93 (d, J = 8.4 Hz, 1 H), 7.40-7.44 (m, 2 H), 4.18-4.22 (m, 2 H), 1.76-1.86 (m, 2 H), 1.07 ppm (t, J = 7.6 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 154.5$, 151.8, 133.8, 132.4, 128.2, 123.6, 114.1, 109.3, 43.8 (CH₂), 20.8 (CH₂), 11.4 ppm; HRMS (ESI-QTOF): m/z calcd for C₁₂H₁₂N₃OS [M + H]⁺: 246.0701; found:

246.0690.

^1H (400 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl₃) NMR spectra of **4b**:

SI-12-27: Analytical and Spectral data of 4c

1-Benzyl-7-thiocyanatoquinoxalin-2(1*H***)-one 4c:** Prepared according to the general procedure discussed above: reaction time = 6.3 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (20%); white solid (83 mg, 70%); mp 161–163 °C. ¹H NMR (600 MHz, CDCl₃): δ = 8.42 (s, 1 H), 7.91 (d, J = 8.4 Hz, 1 H), 7.44 (d, J = 1.8 Hz, 1 H), 7.32-7.37 (m, 3 H), 7.29-7.32 (m, 3 H), 5.47 ppm (s, 2 H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ = 154.2, 151.1, 133.8, 133.3, 133.1, 131.7, 128.8 (2 CH), 127.9, 127.8, 126.8 (2 CH), 122.8, 113.7, 108.4, 45.4 (CH₂) ppm; HRMS

(ESI-QTOF): *m*/*z* calcd for C₁₆H₁₂N₃OS [*M* + H]⁺: 294.0701; found: 294.0702.

^1H (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl_3) NMR spectra of 4c:

SI-12-28: Analytical and Spectral data of 4d

1-Phenyl-7-thiocyanatoquinoxalin-2(1*H***)-one 4d:** Prepared according to the general procedure discussed above: reaction time = 6.3 h; R_f = 0.3; eluent, EtOAc/*n*-hexane (20%); white solid (56 mg, 52%); mp 154–156 °C. ¹H NMR (600 MHz, CDCl₃): δ = 8.42 (s, 1 H), 7.98 (d, *J* = 9.0 Hz, 1 H), 7.66- 7.68 (m, 2 H), 7.61-7.63 (m, 1 H), 7.45 (dd, *J* = 8.4, 1.8 Hz, 1 H), 7.28-7.30 (m, 2 H), 6.80 ppm (d, *J* = 2.4 Hz, 1 H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ = 153.8, 151.8, 151.8, 134.6, 133.8, 132.6, 131.4, 130.3 (2 CH), 129.8, 127.5 (2 CH), 123.6, 115.2, 108.5 ppm;

HRMS (ESI-QTOF): m/z calcd for C₁₅H₁₀N₃OS [M + H]⁺: 280.0544; found: 280.0541.

^1H (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl_3) NMR spectra of 4d:

SI-12-29: Analytical and Spectral data of 4e

1-(Naphthalen-2-ylmethyl)-7-thiocyanatoquinoxalin-2(1H)-one 4e: Prepared according to

the general procedure discussed above: reaction time = 6.3 h; $R_{\rm f}$ = 0.3; eluent, EtOAc/*n*-hexane (20%); white solid (80 mg, 58%); mp 140 –142 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.46 (s, 1 H), 7.91 (d, *J* = 8.4 Hz, 1 H), 7.84 (d, *J* = 8.8 Hz, 1 H), 7.80-7.82 (m, 2 H), 7.79 (d, *J* = 7.6 Hz, 1 H), 7.55 (d, *J* = 2.0 Hz, 1 H), 7.47-7.51 (m, 2 H), 7.44 (dd, *J* = 8.4, 2.0 Hz, 1 H), 7.30 (dd, *J* = 8.4, 2.0 Hz, 1 H), 5.63 (s, 2 H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 154.9, 151.7, 133.9, 133.7,

133.4, 133.1, 132.2, 131.8, 129.5, 128.6, 128.1, 127.8, 126.8, 126.7, 126.6, 125.0, 123.1, 114.1, 109.0, 46.2 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₂₀H₁₄N₃OS [*M* + H]⁺: 344.0857; found: 344.0851.

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (101 MHz, CDCl₃) NMR spectra of **4e**:

SI-12-30: Analytical and Spectral data of 4f

1-Allyl-7-thiocyanatoquinoxalin-2(1H)-one 4f: Prepared according to the general procedure

discussed above: reaction time = 6.1 h; R_f = 0.3; eluent, EtOAc/*n*-hexane (20%); white solid (65 mg, 70%); mp 109–111 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.33 (s, 1 H), 7.91 (d, *J* = 8.4 Hz, 1 H), 7.43 (d, *J* = 2.0 Hz, 1 H), 7.38 (dd, *J* = 8.4, 2.0 Hz, 1 H), 5.89 (ddt, *J* = 17.2, 10.8, 5.6 Hz, 1 H), 5.32-5.36 (m, 1 H), 5.20-5.25 (m, 1 H), 4.87 ppm (dt, *J* = 5.2, 1.6 Hz, 2 H); ¹³C NMR (101 MHz, CDCl₃): δ = 154.2, 151.6, 133.8, 133.6, 132.2, 129.8, 128.3, 123.5, 119.3, 114.4,

109.1, 44.5 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₂H₁₀N₃OS [*M* + H]⁺: 244.0544; found: 244.0543.

^1H (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl_3) NMR spectra of 4f:

BMW-4-34C single_pulse

3-Benzyl-1-methyl-7-thiocyanatoquinoxalin-2(1H)-one 4g: Prepared according to the

general procedure discussed above: reaction time = 6.3 h; $R_{\rm f}$ = 0.3; eluent, EtOAc/*n*-hexane (20%); white solid (110 mg, 89%); mp 110–112 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.89 (d, *J* = 8.4 Hz, 1 H), 7.43-7.46 (m, 2 H), 7.41 (dd, *J* = 8.4, 2.4 Hz, 1 H), 7.38 (d, *J* = 1.6 Hz, 1 H), 7.30 (tt, *J* = 8.4, 1.6 Hz,

2 H), 7.20-7.24 (m, 1 H), 4.26 (s, 2 H), 3.66 (s, 3 H); ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃): δ = 161.2, 154.3, 136.4, 134.6, 132.9, 131.6, 129.7 (2 CH), 128.6 (2 CH), 126.9, 126.5, 123.9, 114.1, 109.5, 40.8 (CH₂), 29.4 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₇H₁₄N₃OS [*M* + H]⁺: 308.0857; found: 308.0857.

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (101 MHz, CDCl₃) NMR spectra of 4g:

SI-12-32: Analytical and Spectral data of 4h

3-Ethyl-1-methyl-7-thiocyanatoquinoxalin-2(1H)-one 4h: Prepared according to the general

procedure discussed above: time = 6.2 h; R_f = 0.3; eluent, EtOAc/*n*-hexane (20%); white solid (65 mg, 70%); mp 127–129 °C; solvent of crystallization, DCM/MeOH (1.5 mL/0.5 mL) at room temperature. ¹H NMR (400 MHz, CDCl₃): δ = 7.86 (dd, *J* = 7.2, 1.6 Hz, 1 H), 7.41 (dd, *J* = 7.6, 2.0 Hz, 2 H), 3.69 (s, 3 H),

2.97 (q, J = 7.6 Hz, 2 H), 1.32 ppm (t, J = 7.6 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃): $\delta = 163.9$, 154.4, 134.4, 133.1, 131.3, 125.9, 124.1, 114.3, 109.7, 29.3, 27.6, 10.6 ppm; HRMS (ESI-QTOF): m/z calcd for C₁₂H₁₂N₃OS [M + H]⁺: 246.0701; found: 246.0692.

X-ray determined molecular structure of **4h (CCDC 2266371)**. The thermal ellipsoids are shown in 50% probability level. Solvent of crystallization, DCM/MeOH (1.5 mL:0.5 mL, v/v) at room temperature 25-30 °C.

Datablock: 4h

Bond precision:		C-C = 0.0020 A			Wavelength=1.54178		
Cell:	a=3.9964(3)		b=8.0048(5)		c=1	c=17.9743(12)	
	alpha=90.426(2)		beta=	=90.934(2) gamma=		nma=9	8.213(2)
Temperature: 100 K							
		Calculate	ed				Reported
Volume		569.00(7))				569.00(7)
Space group		P -1					P -1
Hall group		-P 1					-P 1
Moiety formu	la	C12 H11	N3 O S	j			C12 H11 N3 O S
Sum formula		C12 H11	N3 O S	•			C12 H11 N3 O S
Mr		245.30					245.30
Dx,g cm-3		1.432					1.432
Z		2					2
Mu (mm-1)		2.418					2.418
F000		256.0					256.0
F000'		257.34					
h,k,lmax		4,9,21					4,9,21
Nref		2006					1852
Tmin,Tmax		0.805,0.9	76				0.517,0.753
Tmin'		0.730					
Correction me AbsCorr = MU	ethod= # JLTI-SCAN	Reported I	T Limi	ts: Tmin=0.5	517 T	[max=0	0.753
Data completeness= 0.923 T				⁻ heta(max)= 66.462			
R(reflections)= 0.0350 (1849)					wR2(reflections)= 0.0921 (1852)		
S = 1.123		Npar	= 157				

Alert level A: <u>PLAT029 ALERT 3 A</u> _diffrn_measured_fraction_theta_full value Low. 0.923 Why? Author Response: The crystal diffracted poorly. No reflection was removed by intention.

^1H (400 MHz, CDCl₃) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl₃) NMR spectra of **4h**:

SI-12-33: Analytical and Spectral data of 4i

1-Methyl-7-thiocyanato-3-(thiophen-2-yl) quinoxalin-2(1H)-one 4i: Prepared according to

the general procedure discussed above: reaction time = 6.3 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (20%); white solid (48 mg, 40%); mp 187–189 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.50 (dd, J = 4.0, 1.6 Hz, 1 H), 7.91-7.93 (m, 1 H), 7.63 (dd, J = 4.8, 1.2 Hz, 1 H), 7.44-7.46 (m, 2 H), 7.21 (dd, J = 4.8, 3.6 Hz, 1 H), 3.79 ppm (s, 3 H); ¹³C NMR (101 MHz, CDCl₃): δ = 153.7, 150.1, 139.1, 134.1, 133.8, 133.3, 133.2, 131.7, 128.5, 126.3, 124.8, 114.6,

110.0, 30.0 ppm. HRMS (ESI-QTOF): *m/z* calcd for C₁₄H₁₀N₃OS₂ [*M* + H]⁺: 300.0265; found: 300.0273.

^1H (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl_3) NMR spectra of 4i:

SI-12-34: Analytical and Spectral data of 4j

1-Methyl-3-phenyl-7-thiocyanatoquinoxalin-2(1*H***)-one 4j: Prepared according to the general procedure discussed above: reaction time = 6.5 h; R_{\rm f} = 0.3; eluent, EtOAc/***n***-hexane (20%); white solid (83 mg, 70%); mp 190–192 °C. ¹H NMR (600 MHz, CDCl₃): \delta = 8.31 (dd, J = 7.8, 1.2 Hz, 2 H), 7.97 (d, J = 9.0 Hz, 1 H), 7.47-7.52 (m, 3 H), 7.43-7.45 (m, 2 H), 3.76 ppm (s, 3 H); ¹³C{¹H} NMR (151 MHz, CDCl₃): \delta = 155.4, 154.2, 135.4, 134.4, 133.2, 131.9, 131.0, 129.7 (2 CH), 128.2 (2 CH), 126.7, 123.9, 113.9, 109.4,**

29.5 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₆H₁₂N₃OS [*M* + H]⁺: 294.0701; found: 294.0692.

^1H (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl_3) NMR spectra of **4j**:

SI-12-35: Analytical and Spectral data of 4k

3-(4-Methoxyphenyl)-1-methyl-7-thiocyanatoquinoxalin-2(1H)-one4k: Prepared according

to the general procedure discussed above: reaction time = 6.3 h; $R_{\rm f}$ = 0.3; eluent, EtOAc/*n*-hexane (20%); white solid (88 mg, 67%); mp 190–192 °C.¹H NMR (400 MHz, CDCl₃): δ = 8.43 (d, J = 8.8 Hz, 2 H), 7.95 (d, J = 9.2 Hz, 1 H), 7.42-7.45 (m, 2 H), 7.00 (d, J = 9.2 Hz, 2 H), 3.89 (s, 3 H), 3.77 ppm (s, 3 H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 162.2, 154.5, 154.4, 134.3, 133.4,

131.8 (2 CH), 131.6, 128.1, 125.9, 124.2, 114.2, 113.7 (2 CH), 109.7, 55.5, 29.5 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₇H₁₄N₃O₂S [*M* + H]⁺: 324.0806; found: 324.0804.

^1H (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl_3) NMR spectra of 4k:

SI-12-36: Analytical and Spectral data of 4I

1,8-Dimethyl-7-thiocyanatoquinoxalin-2(1*H***)-one 4I:** Prepared according to the general procedure discussed above: reaction time = 6.5 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (20%); white solid (73 mg, 78%); mp 186 –188 °C. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.32$ (s, 1 H), 7.29 (d, J = 4.2 Hz, 2 H), 3.68 (s, 3 H), 2.68 ppm (s, 3 H); ¹³C{¹H} NMR (151 MHz, CDCl₃): $\delta = 154.5$, 149.7, 141.7, 134.5, 132.0, 127.5, 124.7, 111.7, 109.3, 29.0,

17.7 ppm; HRMS (ESI-QTOF): m/z calcd for C₁₁H₁₀N₃OS [M + H]⁺: 232.0544; found: 232.0542.

^1H (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl_3) NMR spectra of **4I:**

pdata/1 BMW-43A 1H-NMR in CDCl3

6-Fluoro-1-methyl-7-thiocyanatoquinoxalin-2(1*H***)-one 4m: Prepared according to the general procedure discussed above: reaction time = 6.2 h; R_f = 0.3; eluent, EtOAc/***n***-hexane (20%); white solid (71 mg, 75%); mp 187–189 °C. ¹H NMR (400 MHz, CDCl₃): \delta = 8.35 (s, 1 H), 7.70 (d,** *J* **= 8.8 Hz, 1 H), 7.54 (d,** *J* **= 6.4 Hz, 1 H), 3.72 ppm (s, 3 H); ¹³C{¹H} NMR (101 MHz, CDCl₃): \delta = 155.6 (d, J_{C-F} = 248.5 Hz, 1 C), 154.6, 153.3, 124.0 (d, I_{C-F} = 20.2 Hz, 1 C)**

134.9 (d, $J_{C-F} = 10.1$ Hz, 1 C), 131.6, 117.4 (d, $J_{C-F} = 22.2$ Hz, 1 C), 117.0 (d, $J_{C-F} = 20.2$ Hz, 1 C), 115.6, 108.2 (d, $J_{C-F} = 2.0$ Hz, 1 C), 29.7 ppm; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -116.0$ ppm; HRMS (ESI-QTOF): m/z calcd for C₁₀H₇FN₃OS [M + H]⁺: 236.0294; found: 236.0287.

¹H (400 MHz, CDCl₃), ¹³C{¹H} (101 MHz, CDCl₃), and ¹⁹F (376 MHz, CDCl₃) NMR spectra of **4m**:

BMW-4-55B single pulse decoupled gated NOE

F NCS сн₁

SI-12-38: Analytical and spectral data of 4a-D General Procedure for the Synthesis of 4a-D

In an electrasyn undivided glass vial (10 mL) equipped with a stir bar, **1a** (64 mg, 0.4 mmol, 1.0 equiv), ammonium thiocyanate **2a** (152 mg, 2.0 mmol, 5.0 equiv), and 5.0 mL of dry CH₃CN/D₂O (4.8mL:0.2 mL) were added. The vial was equipped with graphite plate (5.0 cm x 0.8 cm x 0.2 cm, about 1.5 cm immersion depth in solution) as the anode and as well as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 18 mA under N₂ atmosphere at room temperature until complete consumption of **1a** (3.0 h). Therefore, supporting electrolyte ^{*n*}Bu₄NBF₄ (197 mg, 1.5 equiv) was added into the same reaction pot and electrolyzed at a constant current of 5 mA at room temperature for another 3.0 h. After completion of the reaction (TLC) and the usual work-up procedure, the crude reaction mixture was purified by flash column chromatography on silica gel (*n*-hexane/ethyl acetate) to obtain **4a-D**.

1-Methyl-7-thiocyanatoquinoxalin-2(1H)-one-3-d 4a-D: Prepared according to the general

procedure discussed above: overall reaction time = 6.0 h; R_f = 0.3; eluent, EtOAc/*n*-hexane (20%); white solid (70 mg, 80%); 70% deuterium (D) incorporation, determined by ¹H NMR spectroscopy; mp 144–146 °C. NMR of mixtures; ¹H NMR (400 MHz, CDCl₃): δ = 8.33 (s, 0.30 H), 7.93 (d, *J* = 8.4 Hz, 1 H), 7.43-7.46 (m, 2 H), 3.70 ppm (s, 3 H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ

= 154.6, 151.7, 134.6, 133.5, 132.2, 128.3, 123.8, 114.0, 109.2, 29.1 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₀H₇DN₃OS [*M* + H]⁺: 219.0451; found: 219.0460.

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (101 MHZ, CDCl₃) NMR spectra of **4a-D**:

SI-12-39: Analytical and spectral data of 4I-D

1,8-Dimethyl-7-thiocyanatoquinoxalin-2(1*H***)-one-3-***d* **4***l*-*D*: Prepared according to the general procedure discussed above: overall reaction time = 6.5 h; $R_f = 0.3$; eluent, EtOAc/*n*-hexane (20%); white solid (75 mg, 75%); 68% deuterium (D) incorporation, determined by ¹H NMR spectroscopy; mp 189–191 °C. NMR of mixtures; ¹H NMR (400 MHz, CDCl₃): δ = 8.31 (s, 0.32 H), 7.28-7.29 (m, 2 H), 3.67 (s, 3 H), 2.68 ppm (s, 3 H); ¹³C{¹H}NMR (101 MHz, CDCl₃): δ = 154.6, 149.8, 141.8, 134.6, 132.1, 127.7, 124.8, 111.9, 109.4, 29.1, 17.8 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₁H₉DN₃OS [*M* + H]⁺: 233.0607; found: 233.0611.

SI-12-40: Analytical and spectral data of 4n-D

134.4, 133.9, 133.8, 130.9, 114.3, 113.2, 109.2, 29.1 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₁₀H₆DBrN₃OS [*M* + H]⁺: 296.9556; found: 296.9561 and *m/z* calcd for C₁₀H₆DBrN₃OS [*M* + H]⁺: 298.9535; found: 298.9542.

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (101 MHz, CDCl₃) NMR spectra of **4n**-D:

3a (40 mg, 0.18 mmol, 1 equiv) was dissolved in toluene (2.0 mL), and 1 mol % of 1,8diazabicyclo (5.4.0)undec-7-ene (DBU, 30 μ L) and 1 equivalent of diphenyl phosphonate (35 μ L) were subsequently added into it. The reaction mixture was stirred at room temperature for 2.5 h. After completion of the reaction (TLC), saturated ammonium chloride solution was added, and the product was extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄ and filtered, and the filtrate was concentrated under reduced pressure to get a residue. The crude residue was passed through a short pad of silica gel column [230–400 mesh; eluent: ethyl acetate/*n*-hexane] to obtain **6a**. The reaction was carried out following the literature procedure⁴.

S-(4-methyl-3-oxo-1,2,3,4-tetrahydroquinoxalin-6-yl) diphenylphosphinothioate 6a:

Prepared according to the general procedure discussed above: reaction time = 2.5 h; R_f = 0.3; eluent, EtOAc/*n*-hexane (40%); colorless gum (30 mg, 38%). ¹H NMR (400 MHz, DMSO- d_6): δ = 7.45 (t, J = 8.0 Hz, 4 H), 7.24-7.30 (m, 6 H), 6.97 (dt, J = 8.0, 2.4 Hz, 1 H), 6.86 (t, J = 2.0 Hz, 1 H), 6.73 (d, J = 8.4 Hz, 1 H), 6.55 (s, 1 H), 3.87 (s, 2 H), 3.09 (s, 3 H); ¹³C{¹H}NMR (101

MHz, DMSO-*d*₆): δ = 165.0, 150.4 (d, *J*_{C-P} = 8.1 Hz, 2 C), 138.9 (d, *J*_{C-P} = 3.0 Hz, 1 C), 131.2 (d, *J*_{C-P} = 6.1 Hz, 1 C), 130.7 (3 CH), 129.3 (d, *J*_{C-P} = 3.0 Hz, 1 C), 126.3 (d, *J*_{C-P} = 2.0 Hz, 1 C), 121.5 (d, *J*_{C-P} = 4.0 Hz, 1 C), 120.7 (3 CH), 120.7 (3 CH), 114.6 (d, *J*_{C-P} = 3.0 Hz, 1 C), 109.7 (d, *J*_{C-P} = 8.1 Hz, 1 C), 46.5 (CH₂), 28.5 ppm; ³¹P NMR (162 MHz, DMSO-*d*₆): δ = 13.8 ppm; HRMS (ESI-QTOF): *m/z* calcd for C₂₁H₂₀N₂O₄PS [*M* + H]⁺: 427.0881; found: 427.0870.

⁴ P.-Y. Renard, H. Schwebel, P. Vayron, L. Josien, A. Valleix and C. Mioskowski, *Chem. Eur. J.*, 2002, **8**, 2910-2916.

¹H (400 MHz, DMSO- d_6), ¹³C{¹H} (101 MHz, DMSO- d_6), and ³¹P NMR (162 MHz, DMSO- d_6) NMR spectra of **6a**:

BMW-6-96B single pulse decoupled gated NOE

3a (60 mg, 0.27 mmol, 1 equiv) was dissolved in dry CH₃CN (2.0 mL), and cesium carbonate Cs_2CO_3 (178 mg, 2 equiv) and trifluoromethyltrimethylsilane TMSCF₃ (60 µL, 1.2 equiv) were sequentially added into it. The reaction mixture was stirred at room temperature for 12 h. After completion of the reaction (TLC), saturated ammonium chloride solution was added, and the product was extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄ and filtered, and the filtrate was concentrated under reduced pressure to get a residue. The crude residue was passed through a short pad of silica gel column [230–400 mesh; eluent: ethyl acetate/*n*-hexane] to obtain **6b**. The reaction was carried out following the literature procedure⁵.

1-Methyl-7-((trifluoromethyl)thio)-3,4-dihydroquinoxalin-2(1*H***)-one 6b:** Prepared according to the general procedure discussed above: reaction time = 12 h; $R_f = 0.3$; eluent,

EtOAc/*n*-hexane (30%); grey solid (30 mg, 41%); mp 108–110 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.20 (dd, *J* = 8.0, 1.6 Hz, 1 H), 7.16 (d, *J* = 2.0 Hz, 1 H), 6.67 (d, J = 8.0 Hz, 1 H), 4.05 (s, 2 H), 3.37 (s, 3 H); – NH peak in ¹H NMR is absent; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 164.8, 138.1, 132.6, 129.4, 122.9, 114.3, 112.9 (m, 1 C), 47.1, 28.9 ppm; One carbon peak is missing probably due to C-F coupling; ¹⁹F

NMR (376 MHz, CDCl₃): δ = -44.0 ppm; HRMS (ESI-QTOF): m/z calcd for C₁₀H₁₀N₂F₃OS [M + H]⁺: 263.0466; found: 263.0467.

⁵ K. Jouvin, C. Matheis and L. J. Goossen, *Chem. Eur. J.*, 2015, **21**, 14324–14327.

¹H (400 MHz, CDCl₃), ¹³C{¹H} (101 MHz, CDCl₃), and ¹⁹F (376 MHz, CDCl₃) NMR spectra of **6b**:

RM-6-69B single pulse decoupled gated NOE

SI-12-43: Analytical and spectral data of 6c

To Pd(OAc)₂ (3 mg, 0.013 mmol, 10 mol%), Xantphos (15 mg, 0.026 mmol, 20 mol%), and CsF (66 mg, 0.42 mmol, 3.3 equiv) were added acetonitrile (3 mL) saturated with oxygen and prestirred for 2-3 min. After that corresponding thiocyanate compound **4a** (30 mg, 0.13 mmol, 1 equiv) was added into it and stirred for 2 min. Then, aryne precursor 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (46 μ L, 0.19 mmol, 1.4 equiv) was added and the reaction mixture was heated at 40 °C for 24 hours. After completion of the reaction (TLC), solvent was removed under reduce pressure and the crude residue was passed through a short pad of silica gel column [230–400 mesh; eluent: ethyl acetate/*n*-hexane] to obtain **6c**. The reaction was carried out following the literature procedure⁶.

2-((4-Methyl-3-oxo-3,4-dihydroquinoxalin-6-yl)thio)benzonitrile 6c: Prepared according to

the general procedure discussed above: reaction time = 24 h; $R_{\rm f}$ = 0.3; eluent, EtOAc/*n*-hexane (30%); yellow solid (25 mg, 61%); mp 135–137 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.28 (s, 1 H), 7.80 (d, J = 8.4 Hz, 1 H), 7.75 (dd, J = 7.6, 1.2 Hz, 1 H), 7.57 (td, J = 8.0, 1.6 Hz, 1 H), 7.43-7.51 (m, 2 H), 7.36 (d, J =

1.6 Hz, 1 H), 7.19 (dd, J = 8.4, 2.0 Hz, 1 H), 3.62 ppm (s, 3 H); ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃): $\delta = 154.9$, 150.6, 138.4, 138.3, 134.4, 134.1, 133.6, 133.5, 132.8, 131.5, 128.8, 125.9, 116.8, 116.2, 115.9, 28.9 ppm; HRMS (ESI-QTOF): m/z calcd for C₁₆H₁₂N₃OS [M + H]⁺: 294.0701; found: 294.0687.

⁶ M. Pawliczek, L. K. B. Garve and D. B. Werz, *Org. Lett.*, 2015, **17**, 1716–1719.

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (101 MHz, CDCl₃) NMR spectra of **6c**:

SI-12-44: Analytical and spectral data of 6d

4a (44 mg, 0.2 mmol, 1 equiv) was dissolved in a mixture of 1,4-dioxane/H₂O (1.5 mL:0.5 mL) solvents, and iodobenzene (22 µL, 0.2 mmol, 1.0 mmol), CuCl₂•H₂O (3 mg, 0.02 mmol, 10 mol%), 1,10-phenanthroline (4 mg, 0.02 mmol, 10 mol%), Cs₂CO₃ (130 mg, 0.4 mmol, 2 equiv), and "Bu₄NF (5 mg, 0.02 mmol, 10 mol%) were sequentially added into it, and the reaction mixture was refluxed for 24 h. After completion (TLC) of the reaction, the solvent (1,4-dioxane) was removed under reduce pressure and was diluted with DCM. The organic layer was washed with brine and dried over anhydrous Na₂SO₄ and filtered, and the filtrate was concentrated under reduced pressure to get a residue. The crude residue was passed through a silica gel column [230–400 mesh; eluent: ethyl acetate/n-hexane] to obtain the desired **6d**. The reaction was carried out following the literature procedure⁷.

1-Methyl-7-(phenylthio)quinoxalin-2(1H)-one 6d: Prepared according to the general

procedure discussed above: reaction time = 24 h; R_f = 0.3; eluent, EtOAc/n-hexane (20%); yellow solid (32 mg, 61%); mp 143–145 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.21 (s, 1 H), 7.72 (d, J = 8.4 Hz, 1 H), 7.51-7.54 (m, 2 H), 7.40-7.46 (m, 3 H), 7.10-7.13 (m, 2 H), 3.54 ppm (s, 3 H); ¹³C{¹H} NMR (101 MHz,

CDCl₃): *δ* = 155.1, 149.3, 142.9, 133.9 (2 CH), 132.3, 131.8, 130.9, 129.9 (2 CH), 129.1, 123.6, 112.6, 28.7 ppm; HRMS (ESI-QTOF): m/z calcd for $C_{15}H_{13}N_2OS [M + H]^+$: 269.0748; found: 269.0742.

⁷ F. Ke, Y. Qu, Z. Jiang, Z. Li, D. Wu and X. Zhou, *Org. Lett.*, 2011, **13**, 454–457.

¹H (400 MHz, CDCl₃) and ¹³C{¹H} (101 MHz, CDCl₃) NMR spectra of **6d**:

SI-12-45: Analytical and spectral data of 6e

Compound **3a** (60 mg, 0.27 mmol, 1 equiv) was dissolved in DMF solvent (2 mL) in a twoneck round bottle flask and Eosin Y (4 mg, 2 mol%) was added into it, and the reaction mixture was irradiated under blue LEDs. After complete consumption of **3a**, acetone (1 mL) and proline (7 mg, 20 mol%) were subsequently added and stirred under dark conditions for 72 h. After completion of the reaction (TLC), a saturated ammonium chloride solution was added, and the product was extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄ and filtered, and the filtrate was concentrated under reduced pressure to get a residue. The crude residue was passed through a short pad of silica gel column [230–400 mesh; eluent: ethyl acetate/*n*-hexane] to obtain **6e.** The reaction was carried out following the literature procedure⁸.

(Z)-1-methyl-3-(2-oxopropylidene)-7-thiocyanato-3,4-dihydroquinoxalin-2(1H)-one 6e:

Prepared according to the general procedure discussed above: $R_{\rm f}$ = 0.3; eluent, EtOAc/*n*-hexane (20%); yellow solid (41 mg, 55%); mp 144–146 °C. ¹H NMR (400 MHz, CDCl₃): δ = 13.19 (s, 1 H), 7.32-7.34 (m, 2 H), 7.14 (dd, *J* = 7.6, 0.8 Hz, 1 H), 6.32 (s, 1 H), 3.63 (s, 3 H), 2.29 ppm (s, 3 H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ = 199.9, 156.0, 141.7, 129.4, 127.4, 127.2, 117.5, 117.4, 117.3, 110.6, 96.4, 30.4, 30.0 ppm; HRMS

(ESI-QTOF): m/z calcd for C₁₃H₁₂N₃O₂S [M + H]⁺: 274.0650; found: 274.0653.

⁸ J. Rostoll-Berenguer, G. Blay, M. C. Muñoz, J. R. Pedro and C. Vila, *Org. Lett.*, 2019, **21**, 6011-6015.

^1H (400 MHz, CDCl_3) and $^{13}\text{C}\{^1\text{H}\}$ (101 MHz, CDCl_3) NMR spectra of 6e:

