
Dyes as efficient and reusable organocatalysts for the synthesis of cyclic carbonates from epoxides and CO₂

Jing Chen,^a Giulia Chiarioni,^a Gert-Jan W. Euverink,^b Paolo P. Pescarmona^{a,*}

- ^a Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- ^b Biotechnology and Applied Microbiology Group, Engineering and Technology Institute
- Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

*Corresponding author: E-mail: p.p.pescarmona@rug.nl

Supplementary information

Scheme S1. Proposed mechanism for the conversion of CO_2 and epoxides into cyclic carbonates catalysed by an organocatalyst, assisted by an HBD (based on refs. 8, 10, 12 in the main text).

					-	-	e organo vrene carb	-	ts in the	reaction
mixtu	MB		10013101	MB-Br		into sty	MB-I	Jonate		
BF	80 °C	AF	BF	80 °C	AF	BF	80 °C	AF	H ₂ O [g]	PC [ml]
									0	0
									0	0.5
									0	1.0
									0	2.0
									0.05	1.0
									0.05	0
	RhB			RhB-Br			RhB-I			
BF	80 °C	AF	BF	80 °C	AF	BF	80 °C	AF	H ₂ O [g]	PC [ml]
									0	0
									0.05	0
	Rh6G			Rh6G-Br			Rh6G-I			
BF	80 °C	AF	BF	80 °C	AF	BF	80 °C	AF	H ₂ O [g]	PC [ml]
									0	0
									0	0.5
									0	1.0
									0	2.0
									0.05	1.0
									0.05	0

Table S1. Visual evaluation of the sol	ubility of the dy	e organocatalysts in th	ne reaction
mixture used for the conversion of styre	ene oxide into sty	yrene carbonate at 80 °	C.

Solubility	Largely insoluble	Partially soluble	Soluble						
Colour indication									
The solubility of the organocatalysts in the reaction mixtures was determined visually									
before the catalytic test, either at room temperature after sonication for ca. 10 min (BF) or									
at the reaction tempe	erature (80 °C) and after	^r the catalytic test at ro	oom temperature (AF).						

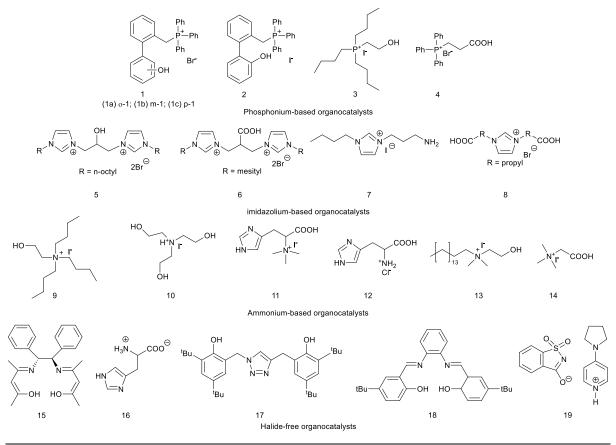
temper	ature (45	°C).								
	MB-I					Rh6G-I				
BF	45 °C	AF	H ₂ O [g]	O [g] PC [ml] BF 45 °C AF H ₂ O [g						
			0.05	0			0.05	0		
			0.05	3.9				0.05	2.0	
	RhB-I				F	RhB-EtOH	-1			
BF	45 °C	AF	H ₂ O [g]	PC [ml]	BF	45 °C	AF	H ₂ O [g]	PC [ml]	
			0.05	0				0	0	
	Solubility	,	Largely	insoluble	Par	tially solu	ıble	Solul	ble	
Colo	Colour indication									
	The solubility of the organocatalysts in the reaction mixtures was determined visually before the catalytic test, either at room temperature after sonication for ca. 10 min (BF) or									

at the reaction temperature (45 °C) and after the catalytic test at room temperature (AF).

Table S2. Visual evaluation of the solubility of the dye organocatalysts in the reaction mixture used for the conversion of styrene oxide into styrene carbonate at low reaction temperature (45 °C).

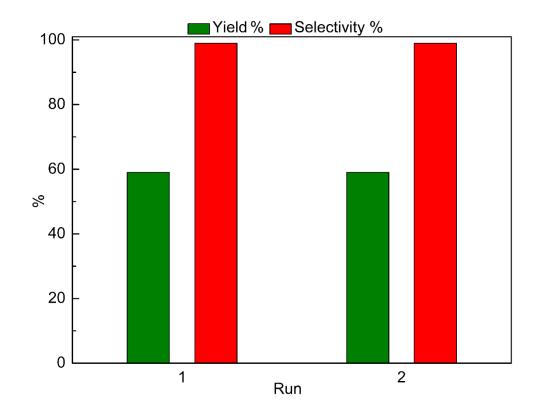
Table S3. Visual evaluation of the solubility of the dye organocatalysts in the reaction mixture used for the investigation of the conversion of different epoxides into the corresponding cyclic carbonates.

	Propylene oxide ^[a]					Epichlorohydrin				
BF 35 °C AF H ₂ O [g] P						BF	60 °C	AF	H ₂ O [g]	PC [ml]
RhB-I				0.05	0				0.05	0
Rh6G-I				0.05	0				0.05	1.0
RhB-EtOH-I				0.05	0				0.05	0


	Allyl	glycidyl	ether		Styrene oxide					
BF 60 °C AF H ₂ O [g]						BF	60 °C	AF	H ₂ O [g]	PC [ml]
RhB-I				0.05	0				0.05	0
Rh6G-I				0.05	0.5				0.05	0.5
RhB-EtOH-I				0.05	0				0.05	0.5

	1,2-	epoxyhe	xane		Cyclohexene oxide					
BF 80 °C AF H ₂ O [g] PC [ml							120 °C	AF	H ₂ O [g]	PC [ml]
RhB-I				0.05	1.0				0.05	0.5
Rh6G-I				0.05	0.7				0.05	0.5
RhB-EtOH-I ^[b]									0.05	0.5

Limonene oxide ^[a]
BF 110 °C AF H ₂ O [g] PC [ml]
RhB-I 0.05 0.5
Rh6G-I 0.05 0.5
RhB-EtOH-I 0.05 0.5


Solubility	Largely insoluble	Partially soluble	Soluble
Colour indication			

The solubility of the organocatalysts in the reaction mixtures was determined visually before the catalytic test, either at room temperature after sonication for ca. 10 min (BF) or at the reaction temperature (80 °C) and after the catalytic test at room temperature (AF). ^[a] In the case of propylene oxide and limonene oxide the solubility of the dyes was not tested at the reaction temperature (60 °C for propylene oxide, 120 °C for limonene oxide) but at the boiling point of this epoxide (34 °C for propylene oxide and 110 °C for limonene oxide). ^[b] The solubility of RhB-EtOH-I in 1,2-epoxyhexane was determined at 60 °C as this was the reaction temperature at which this organocatalyst was tested.

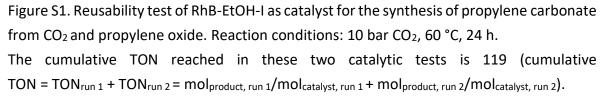


	Table S4. Cat	talytic activity of	selecte	ed organo	catalys	ts in the C	CO2 cycloadditi	on to sty	rene oxide	5
Entry	Catalyst	Catalyst loading [mol %]	T [°C]	P [MPa]	T [h]	Yield [%]	Selectivity [%]	TON ^[f]	TOF ^[g] [h ⁻¹]	Ref. ^[h]
1 ^[a]	RhB-EtOH-I	1	45	1	18	32	> 93	32	2	This
2 ^[b]	RhB-EtOH-I	1	60	1	24	54	≥ 99	54	2	work
3	1a	1	60	0.1	24	80	-	80	3	35
4	1b	1	60	0.1	24	41	-	41	2	35
5	1c	1	60	0.1	24	65	-	65	3	35
6	2	1	60	0.1	24	91	-	91	4	35
7	3	5	45	1	18	76	-	15	1	58
8	4	0.5	130	2.5	3	≥ 99	≥ 99	198	66	65
9	5	5	70	0.4	16	90	≥ 99	18	1	66
10	6	5	70	0.4	16	93	≥ 99	19	1	67
11	7	1	120	1.5	2	85	> 99	85	43	68
12	8	1	125	2	1	95	> 99	95	95	64
13	9	5	45	1	18	89	-	18	1	34
14	10	2	110	2	6	84	99	42	7	33
15	11	0.3	120	0.1	6	95	99	317	53	69
16	12	1	130	8	48	92	-	92	2	70
17 ^[c]	13	2	120	1.5	23	87	88	44	2	71
18	14	2	120	1.2	2	79	99	40	20	72
19	14	2.5	140	8	8	96	-	38	5	73
20	15	0.2	110	1	12	56	> 99	280	23	74
21 ^[d]	16	0.4	120	1.2	3	64	82	160	53	75
22	17	1	120	1	24	95	-	95	4	76
23 ^[e]	18	5	120	1	24	84	93	17	0.7	77
24	19	10	120	0.1	24	81	89	8	0.3	78

[a] 50 mg H₂O as an HBD. [b] 50 mg H₂O as an HBD, 0.5 ml propylene carbonate as a solvent. [c] 40 ml benzonitrile as a solvent. [d] 0.1 g H₂O added as a co-catalyst. [e] 2-MeTHF as a solvent. [f] Turnover number, TON = $mol_{product}/mol_{catalyst}$. [g] Turnover frequency, TOF = TON/h. [h] The reference numbers are those used in the main text of the article.

Reusability test of RhB-EtOH-I catalyst for the synthesis of propylene carbonate

Nanofiltration samples

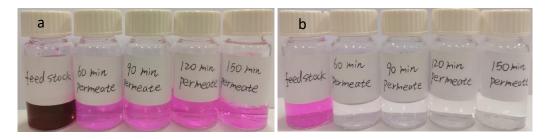


Figure S2. Samples obtained in the nanofiltration tests: feedstock (after having been recirculated for 15 min) and permeate. (a) First nanofiltration test, with the following feed composition: RhB: 0.51 g, propylene carbonate: 10.01 g, H₂O: 1 L; pressure: 1 barg, feed flow rate: 50 L h⁻¹. (b) Second nanofiltration test, with a feed composition mimicking that of the permeate of the first nanofiltration test: RhB: 0.005g, propylene carbonate: 0.14 g, H₂O: 1 L; pressure: 1 barg, feed flow rate: 50 L h⁻¹.

Photocatalytic tests with RhB-EtOH-I

Figure S3. Photoreactor used to test the catalytic activity of RhB-EtOH-I under visible light: (1) stirring plate; (2) oil bath; (3) visible LED light (400-700 nm).

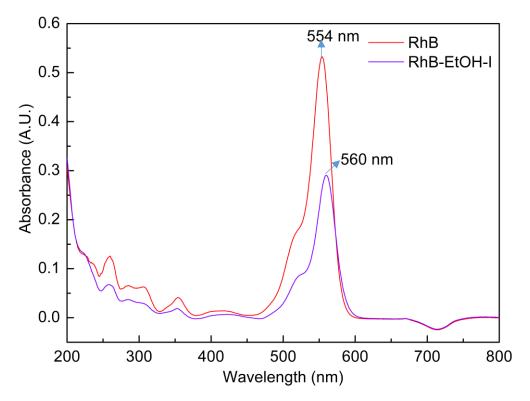


Figure S4. UV-Vis absorption spectra of RhB and RhB-EtOH-I.

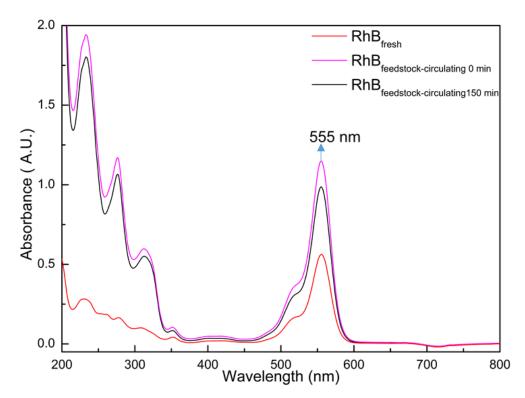


Figure S5. UV-Vis absorption spectra of RhB samples (in acetonitrile): freshly prepared solution and samples collected from the concentrated feedstock of the nanofiltration experiments [0.5 ml of a nanofiltration sample (data in Table 4) were taken and concentrated by freeze-drying. The dried sample was dissolved in 10 ml acetonitrile and measured by UV-Vis spectroscopy].

¹H NMR spectra of the reaction mixtures

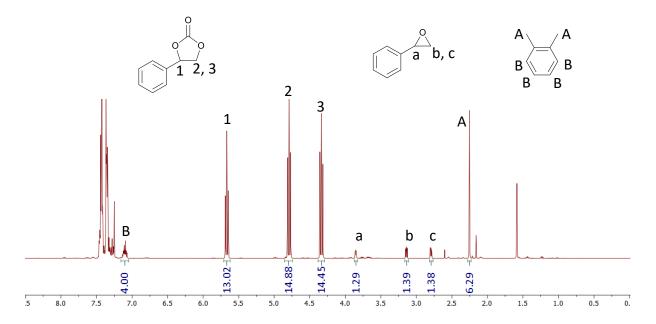


Figure S6. ¹H NMR spectrum of the reaction mixture for the cycloaddition of CO_2 to styrene oxide.

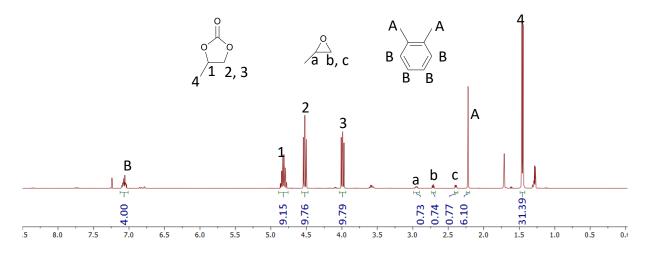


Figure S7. ¹H NMR spectrum of the reaction mixture for the cycloaddition of CO_2 to propylene oxide.

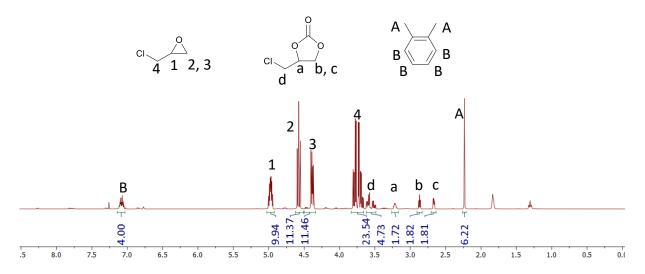


Figure S8. ¹H NMR spectrum of the reaction mixture for the cycloaddition of CO_2 to epichlorohydrin.

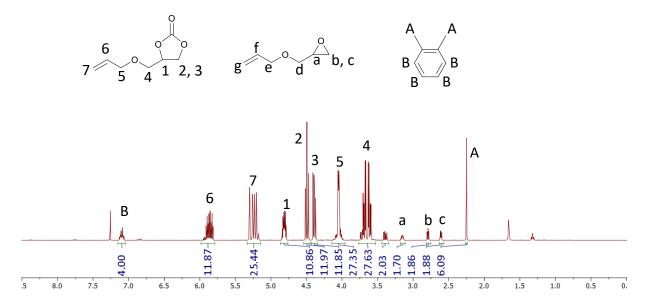


Figure S9. ¹H NMR spectrum of the reaction mixture for the cycloaddition of CO₂ to allyl glycidyl ether.

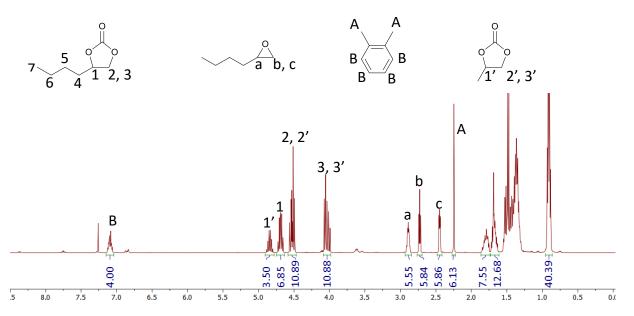


Figure S10. ¹H NMR spectrum of the reaction mixture for the cycloaddition of CO_2 to 1,2-epoxyhexane (PC as the solvent).

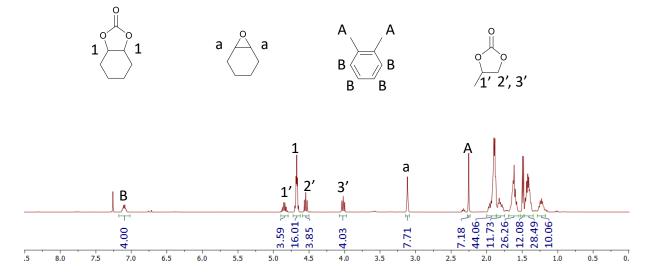


Figure S11. ¹H NMR spectrum of the reaction mixture for the cycloaddition of CO_2 to cyclohexene oxide (PC as the solvent).

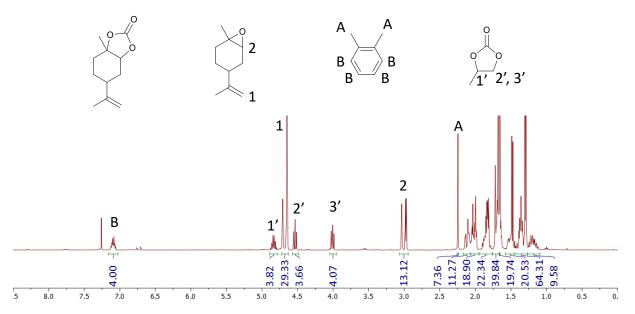


Figure S12. ¹H NMR spectrum of the reaction mixture for the cycloaddition of CO_2 to limonene oxide (PC as the solvent).

NMR spectra of RhB-EtOH-Br

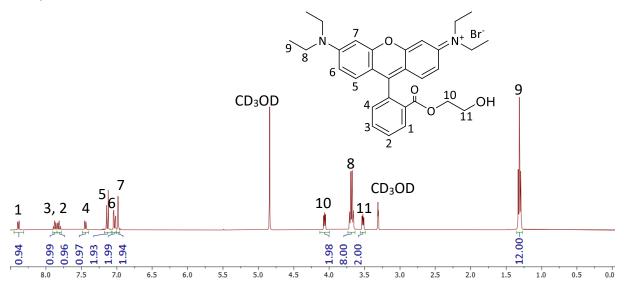


Figure S13. ¹H NMR spectrum of RhB-EtOH-Br.

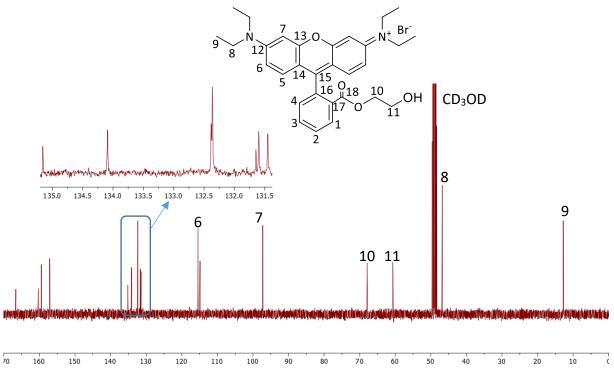


Figure S14. ¹³C NMR spectrum of RhB-EtOH-Br.

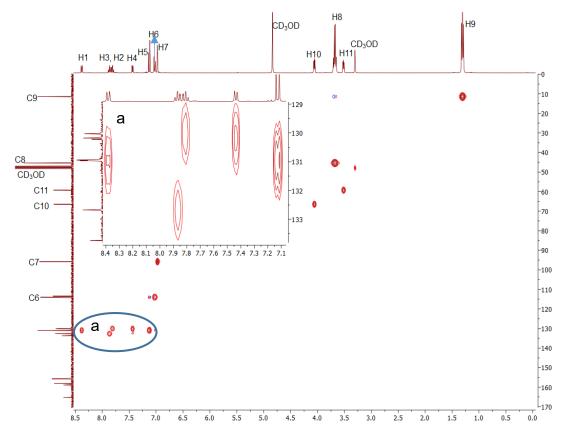


Figure S15. ¹H-¹³C HSQC NMR spectrum of RhB-EtOH-Br.

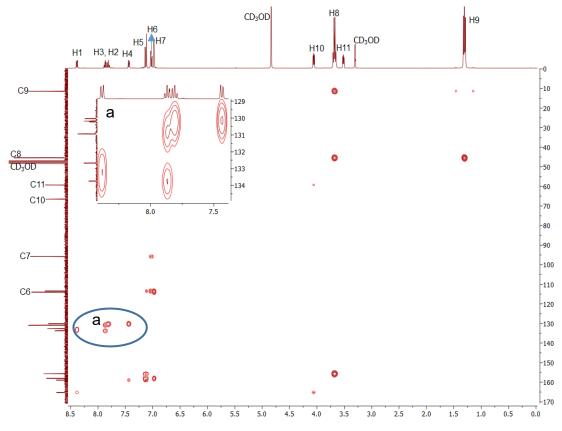


Figure S16. ¹H-¹³C HMBC NMR spectrum of RhB-EtOH-Br.

NMR spectra of RhB-EtOH-I

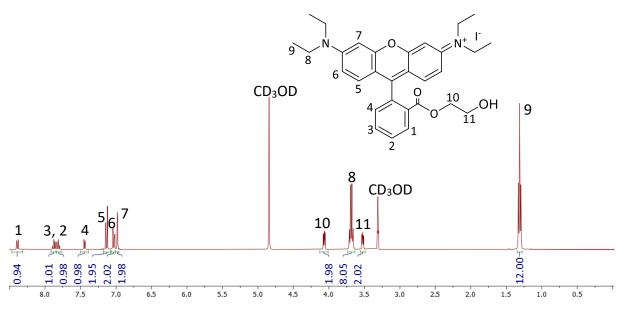


Figure S17. ¹H NMR spectrum of RhB-EtOH-I.

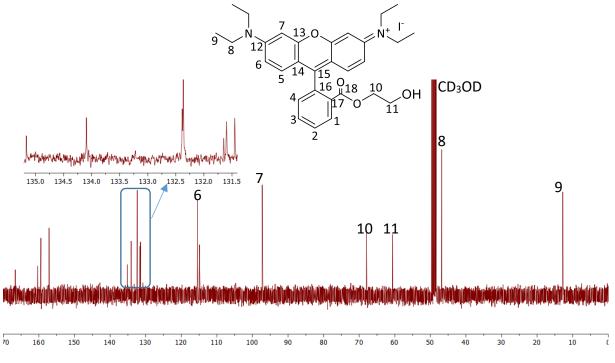


Figure S18. ¹³C NMR spectrum of RhB-EtOH-I.

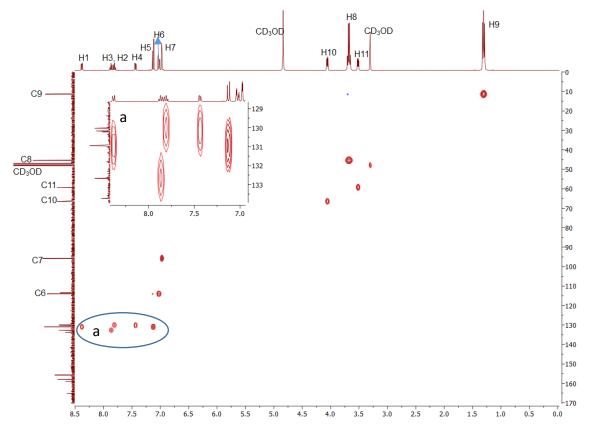


Figure S19. ¹H-¹³C HSQC NMR spectrum of RhB-EtOH-I.

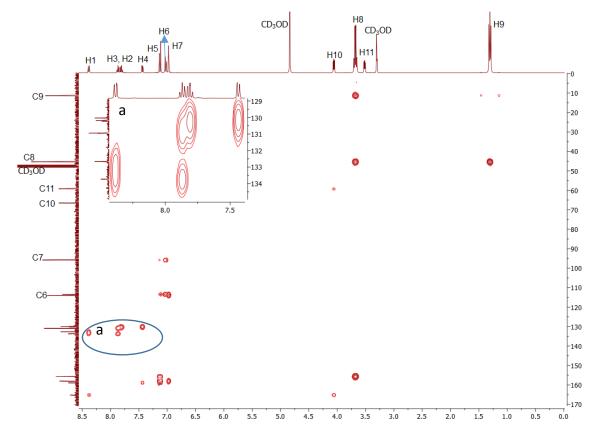


Figure S20. ¹H-¹³C HMBC NMR spectrum of RhB-EtOH-I.

NMR spectra of purified styrene carbonate

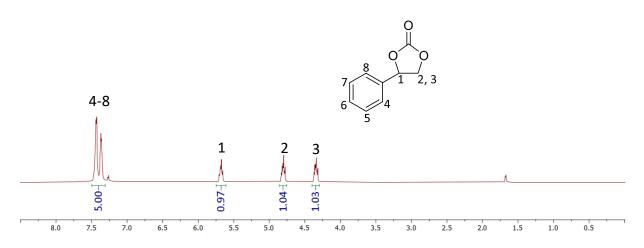


Figure S21. ¹H NMR spectrum of purified styrene carbonate.

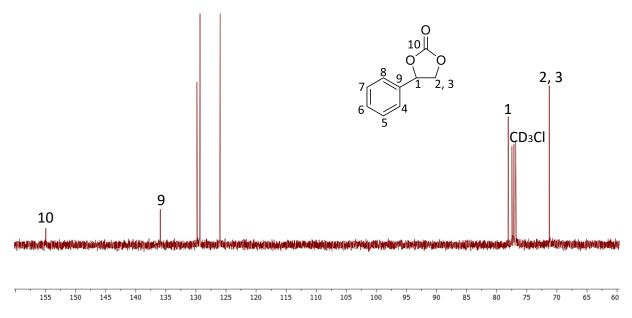


Figure S22. ¹³C NMR spectrum of purified styrene carbonate.

NMR spectra of the fresh and recovered RhB-EtOH-I (in CDCl₃)

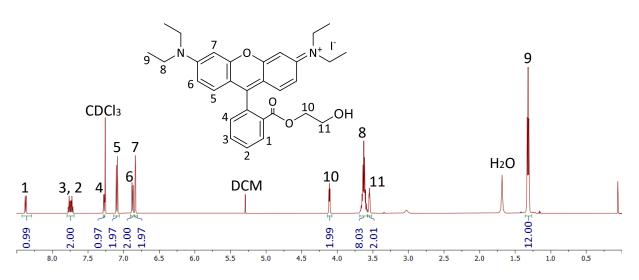


Figure S23. ¹H NMR spectrum (in CDCl₃) of the fresh RhB-EtOH-I organocatalyst.

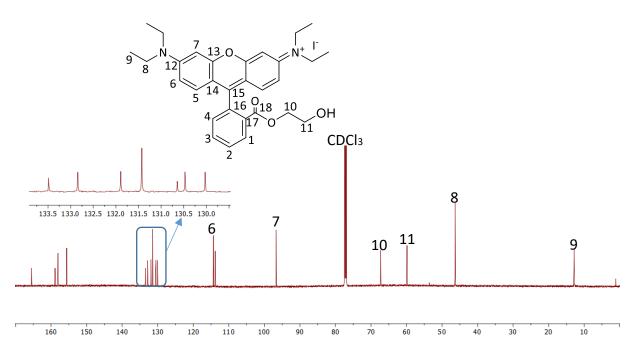


Figure S24. ¹³C NMR spectrum (in CDCl₃) of the fresh RhB-EtOH-I organocatalyst.

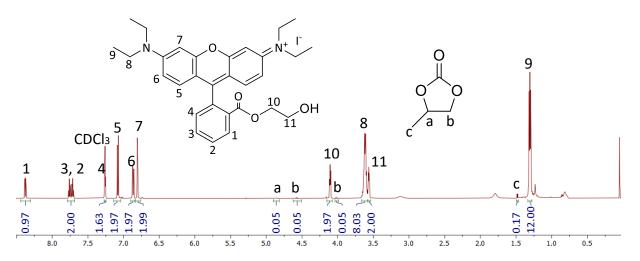


Figure S25. ¹H NMR spectrum (in CDCl₃) of the recovered RhB-EtOH-I organocatalyst.

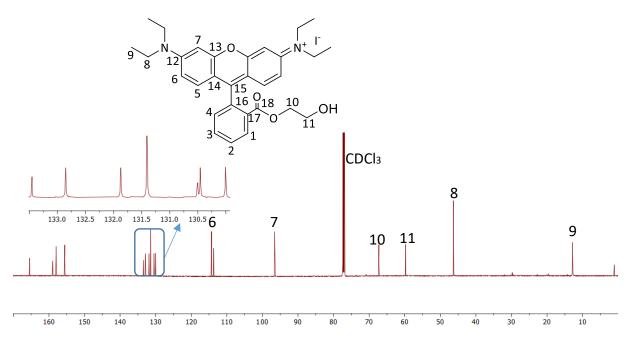


Figure S26. ¹³C NMR spectrum (in CDCl₃) of the recovered RhB-EtOH-I organocatalyst.