Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Table S1

Current status of research on lignin Biotransformation Technology, Thermochemical Conversion Technology and Pretreatment Technology

Technology classification	Publish time	Processing method	Research Content
	2016	Bioenzyme degradation technology	Rahman et al. explored whether Dyp-type biotinase has peroxidase activity towards lignin and reported the kinetic characteristics of biotinase towards lignin substrates [1].
Biotransformation Technology	2020	Bacterial decomposition enzyme depolymerization	Prakram explored the improvement of lignin depolymerization by three bacterial ligninolytic enzymes and reviewed the bacterial sources, production conditions, enzyme properties, incentive structures, and industrial applications [2].
	2022	Pyrolysis technology	Fan et al. explored the free radical footprint of coke and bio-oil produced from industrial lignin during pyrolysis and elucidated the relationship between free radical concentration and pyrolysis products [3].
Thermochemical Conversion Technology	2023	Pyrolysis Technology and Catalysts	Wang et al. investigated the role of catalysts in assisting catalytic hydrolysis during pyrolysis by using the intermediate products formed by lignin pyrolysis together with Pd/C catalysts, aiming to elucidate the catalytic mechanism of catalysts on lignin pyrolysis process and the conversion path of lignin pyrolysis products [4].

2017	Hydrothermal carbonization technology	Emmanuel et al. performed hydrothermal carbonization of industrial lignin and physicochemical characterization of the obtained hydrothermal coke to determine the optimal hydrothermal carbonization temperature of industrial lignin [5].
2020	Fractionation process and hydrothermal carbonization	Renan et al. produced acidic sulfonated carbon from two Kraft lignins by a combination of fractionation process and hydrothermal carbonization and developed a simple and optimized method to obtain acidic sulfonated carbon [6].
2021	Hydrothermal carbonization technology	Li et al. used enzymatic lignin as a carbon source to prepare three-dimensional multistage porous carbon by hydrothermal carbonization and investigated the operating parameters of the hydrothermal carbonization process to enhance the specific capacitance performance of carbon materials [7].
2022	Hydrothermal carbonization technology	Tian et al. produced hydrochar by hydrothermal carbonization of amine-modified black liquor lignin and characterized its physicochemical properties using various analytical techniques, which revealed a significant effect of hydrochar on the adsorption of Cr from wastewater [8].
2022	Pyrolysis and hydrothermal carbonization technology	Lukas et al. hydrothermally carbonized Kraft lignin and pyrolyzed the obtained hydrothchar with the feedstock by mixing it with a eutectic salt mixture, aiming to investigate the effect of the eutectic salt mixture on the coke conversion and to reveal the typical characteristics of the material [9].

	2022	Hydrothermal carbonization technology	Lin et al. used bio-oil as a medium for hydrothermal carbonization of lignin, aiming to investigate the effect of organic matter in bio-oil on the properties of hydrochar, and found that bio-oil can effectively improve the combustion performance of hydrochar [10].
	2022	Hydrothermal carbonization technology	Kenneth et al. investigated the effect of hydrothermal carbonization temperature and holding time on the physicochemical properties of different extracted lignin, and found that the extraction conditions of lignin affected the physicochemical properties of hydrothchar [11].
	2019	Fenton oxidation and sulfonylation pretreatment	Ying et al. performed sequential Fenton oxidation with sulfomethylation pretreatment of lignin to reduce the negative effects of lignin during enzymatic saccharification, demonstrating that Fenton pretreatment as a pre-step followed by sulfomethylation pretreatment of lignin would help accelerate lignin depolymerization [12].
Pretreatment Technology	2020	ZnCl ₂ pretreatment and hydrothermal technology	Wu et al. obtained multistage porous carbon by hybrid hydrothermal carbonization of $ZnCl_2$ as an activator and catalyst with lignin, and found that the porous carbon material has excellent high electrochemical properties using various characterization techniques [13].
	2020	Alkali pretreatment and hydrothermal technology	Xue et al. used a combination of alkali pretreatment and hydrothermal pretreatment in their study for experiments on lignocellulosic organisms, and the results showed that the method accelerated the lignin depolymerization time [14].

2020	Fenton Pretreatment	Wu et al. investigated the structural changes of lignin during pyrolysis and the changes of methoxy content in pyrolysis by-products using different concentrations of Fenton's solution for pretreatment of lignin [15].
2022	Multi-phase Fenton catalysis	An et al. explored the extent of degradation of lignin pollutants by making composites of iron sulfide by a solvothermal method and then subjecting them to mixed Fenton catalysis with lignin model pollutants [16].
2023	Mechanical catalysis, photocatalysis and Fenton oxidation	Dominic et al. subjected lignin to mechanical pretreatment or Fenton pretreatment in combination with photocatalysis to depolymerize lignin into aromatic building blocks and explored the synergistic effect of both pretreatments with photocatalysis to enhance the degree of photocatalytic depolymerization of lignin [17].

Note on the depth of penetration of XPS and FTIR on samples.

The performance and penetration depth of XPS and FTIR are different. XPS penetrates to a depth of about 10 nm and is used to characterize the surface structure of the sample[18]; FTIR penetrates to a range of 0.5-5 μ m and is used to characterize the internal structure of the sample[19].

References

[1] R. Rahmanpour, D. Rea, S. Jamshidi, V. Fulop, T.D. Bugg, Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds, Archives of biochemistry and biophysics 594 (2016) 54-60. <u>https://doi.org/10.1016/j.abb.2016.02.019</u>.

[2] P.S. Chauhan, Role of various bacterial enzymes in complete depolymerization of lignin: A review, Biocatalysis and Agricultural Biotechnology 23 (2020) 101498. <u>https://doi.org/10.1016/j.bcab.2020.101498</u>.

[3] Y. Fan, Z. Zhang, Z. Wang, H. Yu, X. Kong, P. Li, M. Li, R. Xiao, C. Liu, Radical footprinting and regularity revealing during the pyrolysis of technical lignins, Bioresour Technol 360 (2022) 127648. <u>https://doi.org/10.1016/j.biortech.2022.127648</u>.

[4] J. Wang, E. Minami, H. Kawamoto, Role of pyrolysis in pyrolysis-assisted catalytic hydrogenolysis of lignin and mechanistic insights into catalytic conversion, Journal of Analytical and Applied Pyrolysis 170 (2023) 105930. <u>https://doi.org/10.1016/j.jaap.2023.105930</u>.

[5] E. Atta-Obeng, B. Dawson-Andoh, M.S. Seehra, U. Geddam, J. Poston, J. Leisen, Physico-chemical characterization of carbons produced from technical lignin by sub-critical hydrothermal carbonization, Biomass and Bioenergy 107 (2017) 172-181. https://doi.org/10.1016/j.biombioe.2017.09.023.

[6] R.S. Nunes, T.C. Tudino, L.M. Vieira, D. Mandelli, W.A. Carvalho, Rational production of highly acidic sulfonated carbons from kraft lignins employing a fractionation process combined with acid-assisted hydrothermal carbonization, Bioresour Technol 303 (2020) 122882. https://doi.org/10.1016/j.biortech.2020.122882.

[7] H. Li, F. Shi, Q. An, S. Zhai, K. Wang, Y. Tong, Three-dimensional hierarchical porous carbon derived from lignin for supercapacitors: Insight into the hydrothermal carbonization and activation, Int J Biol Macromol 166 (2021) 923-933. https://doi.org/10.1016/j.ijbiomac.2020.10.249.

[8] Y. Tian, Y. Yin, H. Liu, H. Zhou, One-step hydrothermal carbonization of amine modified black liquor and lignin for efficient Cr(VI) adsorption, Journal of Water Process Engineering 46 (2022) 102583. <u>https://doi.org/10.1016/j.jwpe.2022.102583</u>.

[9] L. Friederici, S.-M. Meščeriakovė, A. Neumann, E. Sermyagina, A. Meščeriakovas, A. Lähde, C. Grimmer, T. Streibel, C.P. Rüger, R. Zimmermann, Effect of hydrothermal carbonization and eutectic salt mixture (KCl/LiCl) on the pyrolysis of Kraft lignin as revealed by thermal analysis coupled to advanced high-resolution mass spectrometry, Journal of Analytical and Applied Pyrolysis 166 (2022) 105604. https://doi.org/10.1016/j.jaap.2022.105604.

[10] H. Lin, Q. Li, S. Zhang, L. Zhang, G. Hu, X. Hu, Involvement of the organics in aqueous phase of bio-oil in hydrothermal carbonization of lignin, Bioresour Technol 351 (2022) 127055. <u>https://doi.org/10.1016/j.biortech.2022.127055</u>.

[11] K.G. Latham, L. Matsakas, J. Figueira, I. Kozyatnyk, U. Rova, P. Christakopoulos, S. Jansson, Impact of temperature and residence time on the hydrothermal carbonization of organosolv lignin, Journal of Analytical and Applied Pyrolysis 166 (2022) 105623. https://doi.org/10.1016/j.jaap.2022.105623.

[12] W. Ying, G. Xu, H. Yang, Z. Shi, J. Yang, The sequential Fenton oxidation and sulfomethylation pretreatment for alleviating the negative effects of lignin in enzymatic saccharification of sugarcane bagasse, Bioresour Technol 286 (2019) 121392. https://doi.org/10.1016/j.biortech.2019.121392.

[13] Y. Wu, J.-P. Cao, X.-Y. Zhao, Q.-Q. Zhuang, Z. Zhou, Y. Huang, X.-Y. Wei, High-performance electrode material for electric double-layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2, Applied Surface Science 508 (2020) 144536. https://doi.org/10.1016/j.apsusc.2019.144536.

[14] Y. Xue, Q. Li, Y. Gu, H. Yu, Y. Zhang, X. Zhou, Improving biodegradability and biogas production of miscanthus using a combination of hydrothermal and alkaline pretreatment, Industrial Crops and Products 144 (2020) 111985. <u>https://doi.org/10.1016/j.indcrop.2019.111985</u>.

[15] H. Wu, K. Wu, H.-y. Zhang, Fenton pretreatment of lignin to remove methoxy in pyrolytic bio-oil, Journal of Fuel Chemistry and Technology 48 (2020) 1186-1192. <u>https://doi.org/10.1016/s1872-5813(20)30080-3</u>.

[16] J. An, S. Wang, M. Huang, J. Zhang, P. Wang, Removal of water-soluble lignin model pollutants with graphene oxide loaded ironic sulfide

as an efficient adsorbent and heterogeneous Fenton catalyst, Arabian Journal of Chemistry 15 (2022) 104338. https://doi.org/10.1016/j.arabjc.2022.104338.

[17] D. Aboagye, F. Medina, S. Contreras, Toward a facile depolymerization of alkaline lignin into high-value platform chemicals via the synergetic combination of mechanocatalysis with photocatalysis or Fenton process, Catalysis Today 413-415 (2023) 113969. https://doi.org/10.1016/j.cattod.2022.11.030.

[18] R. Murakami, Y. Harada, Y. Sonobayashi, H. Oji, H. Makino, H. Tanaka, H. Taguchi, T. Sakamoto, H. Morita, A. Wakamori, N. Kibe, S. Nishida, K. Nagata, H. Shinotsuka, H. Shouno, H. Yoshikawa, Correlation analysis with measurement conditions and peak structures in XPS spectral round-robin tests on MnO powder sample, Journal of Electron Spectroscopy and Related Phenomena 264 (2023) 147298. https://doi.org/10.1016/j.elspec.2023.147298.

[19] N. Wittner, J. Slezsák, W. Broos, J. Geerts, S. Gergely, S.E. Vlaeminck, I. Cornet, Rapid lignin quantification for fungal wood pretreatment by ATR-FTIR spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 285 (2023) 121912. https://doi.org/10.1016/j.saa.2022.121912.

Table S2

	1-FHL	2-FHL	3-FHL	1-FDAL	2-FDAL	3-FDAL
Initial mass (g)	10.00	10.00	10.00	10.00	10.00	10.00
Final mass (g)	5.89	6.22	6.94	6.08	6.91	7.45

The yield data of three sets of parallel experimental samples of HL and DAL after Fenton pretreatment.

Table S3

The yield data of three parallel sets of experimental samples for the formation of hydrochar by HL, FHL, DAL and FDAL.

	1-HL-H	2-HL-H	3-HL-H	1-FHL-H	2-FHL-H	3-FHL-H	1-DAL-H	2-DAL-H	3-DAL-H	1-FDAL-H	2-FDAL-H	3-FDAL-H
Initial mass (g)	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Final mass (g)	0.97	1.02	1.28	1.32	1.36	1.55	1.02	1.11	1.38	1.49	1.54	1.71

Table S4

Experimental sample group 1: Elemental analysis, Sample yield, HHV and Energy recovery efficiency of two lignin feedstocks and their hydrochars at various stages of treatment.

Sample group 1	Ultima	te analysis	(wt%, dry	v basis)	I V(0/.)a	LIV (0/)b		FD (0/)d
Sample group 1 -	С	Н	Fe	Ash	- L1(70)*	ПІ (70) ²	nnv (MJ/Kg)	EK (70)*
1-HL	56.92	4.31	-	0.69	-	-	20.33	-
1-HL-H	71.76	4.15	-	0.44	-	32.33	25.73	40.92
1-FHL	68.44	4.03	0.33	0.72	69.40	-	25.06	-
1-FHL-H	83.99	3.86	-	0.51	-	44.00	29.71	52.16
1-DAL	56.07	4.86	-	0.66	-	-	20.46	-
1-DAL-H	79.83	4.61	-	0.34	-	34.00	27.84	46.26
1-FDAL	72.88	4.03	0.19	0.72	69.10	-	25.54	-
1-FDAL-H	88.76	3.04	-	0.43	-	49.67	31.65	61.55

^a LY, lignin yield after Fenton pretreatment.

^b HY, hydrochar yield.

^c HHV, high heating value.

^d ER, energetic recovery efficiency.

Experimental sample group 2: Elemental analysis, Sample yield, HHV and Energy recovery efficiency of two lignin feedstocks and their hydrochars at various stages of treatment.

Sampla group 2 _	Ultimate analysis (wt%, dry basis)		I V(0/_) a	UV (0/.)b		FD (0/)d			
Sample group 2 -	С	Н	Fe	Ash	- L1(/0)*	111 (70)*	IIII V (WIJ/Kg)*	LIX (70)	
2-HL	57.44	4.25	-	0.83	-	-	20.50	-	
2-HL-H	72.13	4.03	-	0.63	-	34.00	27.88	46.24	
2-FHL	69.47	4.12	0.24	0.84	58.90	-	25.32	-	
2-FHL-H	84.40	3.92	-	0.74	-	45.33	30.60	54.78	
2-DAL	57.11	4.74	-	0.85	-	-	20.63	-	
2-DAL-H	79.88	4.57	-	0.51	-	37.00	28.36	50.86	
2-FDAL	73.21	4.14	0.16	0.55	60.80	-	25.83	-	
2-FDAL-H	89.43	2.96	-	0.57	-	51.33	31.99	63.57	

^aLY, lignin yield after Fenton pretreatment.

^b HY, hydrochar yield.

^c HHV, high heating value.

^d ER, energetic recovery efficiency.

Experimental sample group 3: Elemental analysis, Sample yield, HHV and Energy recovery efficiency of two lignin feedstocks and their hydrochars at various stages of treatment.

Sampla group 3 _	Ultima	ite analysis	(wt%, dry	basis)	I V(0/_) a	UV (0/.)b	%)b HHV (MI/kg)c Fl		
Sample group 5 -	С	Н	Fe	Ash	- L1(/0)*	111 (70)*	IIII V (WIJ/Kg)*	ER (70)	
3-HL	59.13	4.07	-	1.27	-	-	22.95	-	
3-HL-H	72.32	4.09	-	0.91	-	42.67	28.29	52.60	
3-FHL	70.62	3.88	0.39	0.87	62.20	-	27.14	-	
3-FHL-H	85.02	3.80	-	0.52	-	51.67	32.51	61.89	
3-DAL	55.27	4.89	-	0.65	-	-	21.07	-	
3-DAL-H	80.01	4.50	-	0.89	-	46.00	29.15	63.64	
3-FDAL	73.39	4.34	0.22	0.53	74.50	-	27.02	-	
3-FDAL-H	90.10	2.76	-	0.41	-	57.00	32.87	69.34	

^aLY, lignin yield after Fenton pretreatment.

^b HY, hydrochar yield.

^c HHV, high heating value.

^d ER, energetic recovery efficiency.

Table S5

Sample	Alkly (0-50ppm)	Methoxy (50-60ppm)	Aliphatic hydroxyl (70-75ppm)	O-Alkly (50-95ppm)	Aromatic (95-135ppm)	phenolic hydroxyl (150-158ppm)	O-Aromatic (135-165ppm)	Carbonyl (165-185ppm)
HL	9.41	6.94	3.37	22.39	28.65	2.41	17.77	3.84
HL-H	12.82	5.21	2.14	20.22	31.83	1.94	24.48	3.08
FHL	12.60	6.17	2.88	20.10	28.94	2.20	17.40	3.21
FHL-H	14.48	4.64	1.93	18.31	32.57	1.75	25.22	2.81
DAL	7.93	5.03	3.01	14.94	40.33	2.03	18.64	6.66
DAL-H	10.22	4.09	1.99	10.79	46.71	1.66	34.47	3.34
FDAL	8.07	4.88	2.54	12.57	44.18	1.83	16.31	4.39
FDAL-H	11.73	3.35	1.83	12.44	49.12	1.37	36.92	3.70

The additional basic information for comparing samples before and after the treatment of FP and HTC.

Fig. 1 The XPS spectra of four types of lignin and their hydrochars for the quantitative analysis of elemental Fe.

Fig. 2 The untreated lignin and its hydrochar FTIR spectra.

Abbreviations								
FP	Fenton pretreatment	HTC	hydrothermal carbonization					
FP-HTC	first FP of lignin followed by HTC	G	guaiacyl unit					
S	syringyl unit	Н	p-hydroxyphenyl unit					
HL	herbal lignin	HL-H	hydrochar of HL					
FHL	Fenton pretreated HL	FHL-H	hydrochar of FHL					
DAL	de-alkalized lignin	DAL-H	hydrochar of DAL					
FDAL	Fenton pretreated DAL	FDAL-H	hydrochar of FDAL					