Supporting Information for

Integrated recycling of valuable elements from spent LiFePO₄

batteries: a green closed-loop process

Huixiang Zhou^a, Yun Zhang^a, Liqing Li^b, Zhanfang Cao^{a,*}

^a College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

^b Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000,

China

* Zhanfang Cao is the Corresponding author.

Corresponding author. Tel.: +86 731 88879616 (Zhanfang Cao)

E-mail address: zfcaocsu@163.com (Zhan-fang Cao)

process				
Content	Li	Fe	Р	Al
Concentration (mg/L)	3826	283	258	0.003

Table S1 Concentrations of the elements in the filtrate obtained by the leaching process

Table S2 Fitting parameters (R²) of leaching Li using different models

Temperature	Model a	Model b	Model c	Model d
(°C)	R ²	R ²	R ²	R ²
25	0.9441	0.9489	0.9959	0.9989
35	0.9460	0.9432	0.9945	0.9964
45	0.8067	0.7936	0.8988	0.9733
55	0.8222	0.8096	0.8579	0.9669

Fig. S1 Fitting results of Model a at various leaching temperatures for Li.

Fig. S2 Fitting results of the Model b at various leaching temperatures for Li.

Fig. S3 Fitting results of the Model c at various leaching temperatures for Li.

Reactions	E vs pH equations
$2H^{+} + 2e = H_{2}$	E =-0.0592 pH
$O_2 + 4e + 4H^+ = 2H_2O$	E = 1.229–0.0592 pH
$\mathrm{F}\mathrm{e}^{3+} + \mathrm{e} = \mathrm{F}\mathrm{e}^{2+}$	$E = 0.7696 - 0.0592 lg [Fe^{2+}]/[Fe^{3+}]$
$FePO_4 \cdot 2H_2O + 3H^+ = Fe^{3+} + H_3PO_4 + 2H_2O$	pH =-3.482-1/3 lg [Fe ³⁺][H ₃ PO ₄]
$FePO_4 \cdot 2H_2O + 3H^+ + e = Fe^{2+} + H_3PO_4 + 2H_2O$	E = 0.1515-0.0592 lg [Fe ²⁺][H ₃ PO ₄]-0.1775 pH
$Fe_{3}(PO_{4})_{2} \cdot nH_{2}O + 6H^{+} = 3Fe^{2+} + 2H_{3}PO_{4} + nH_{2}O$	$pH = 0.3654 - 1/3 lg [H_3PO_4] - 1/2 lg [Fe^{2+}]$
$3FePO_4 \cdot 2H_2O + 3e + 3H^+ =$ $Fe_3(PO_4)_2 \cdot nH_2O + H_3PO_4 + (6-n) H_2O$	E = 0.1083–0.0197 lg [H ₃ PO ₄]–0.0592 pH
$3LiFePO_4 + nH_2O + 3H^+ =$ Fe ₃ (PO ₄) ₂ ·nH ₂ O + 3Li ⁺ + H ₃ PO ₄	pH =1.1112–lg [Li ⁺]–1/3 lg [H ₃ PO ₄]
$LiFePO_4 + 3H^+ = Fe^{2+} + Li^+ + H_3PO_4$	pH =0.6137–1/3 lg [Li ⁺][Fe ²⁺][H ₃ PO ₄]
$FePO_4 \cdot 2H_2O + Li^+ + e = LiFePO_4 + 2H_2O$	$E = 0.0426 + 0.0592 lg [Li^+]$
$Li_{3}PO_{4} + Fe(OH)_{3} + 3H^{+} = FePO_{4} \cdot 2H_{2}O$ $+ 3Li^{+} + H_{2}O$	pH = 6.0831-lg [Li ⁺]
$Fe(OH)_3 + Li_3PO_4 + 3H^+ + e = LiFePO_4$ $+ 2Li^+ + 3H_2O$	E = 1.1224–0.1183 lg [Li ⁺]–0.1775 pH
$Fe(OH)_2 + Li_3PO_4 + 2H^+ = LiFePO_4 + 2H_2O + 2Li^+$	pH = 7.4167–lg [Li ⁺]
$Fe(OH)_3 + H^+ + e = Fe(OH)_2 + H_2O$	E = 0.2447–0.0592 pH
$Fe(OH)_3 + H^+ + e = Fe(OH)_2 + H_2O$	E = 0.2447–0.0592 pH
	Reactions $2H^+ + 2e = H_2$ $O_2 + 4e + 4H^+ = 2H_2O$ $Fe^{3+} + e = Fe^{2+}$ $FePO_4 \cdot 2H_2O + 3H^+ = Fe^{3+} + H_3PO_4 + 2H_2O$ $FePO_4 \cdot 2H_2O + 3H^+ + e = Fe^{2+} + H_3PO_4 + 2H_2O$ $Fe_3(PO_4)_2 \cdot nH_2O + 6H^+ = 3Fe^{2+} + 2H_3PO_4 + nH_2O$ $3FePO_4 \cdot 2H_2O + 3e + 3H^+ = Fe_3(PO_4)_2 \cdot nH_2O + H_3PO_4 + (6-n) H_2O$ $3LiFePO_4 + nH_2O + 3H^+ = Fe_3(PO_4)_2 \cdot nH_2O + 3Li^+ + H_3PO_4$ $LiFePO_4 + 3H^+ = Fe^{2+} + Li^+ + H_3PO_4$ $LiFePO_4 + 3H^+ = Fe^{2+} + Li^+ + H_3PO_4$ $FePO_4 \cdot 2H_2O + Li^+ + e = LiFePO_4 + 2H_2O$ $Li_3PO_4 + Fe(OH)_3 + 3H^+ = FePO_4 \cdot 2H_2O$ $+ 3Li^+ + H_2O$ $Fe(OH)_3 + Li_3PO_4 + 2H^+ = LiFePO_4 + 2H_2O + 2Li^+ + 3H_2O$ $Fe(OH)_2 + Li_3PO_4 + 2H^+ = LiFePO_4 + 2H_2O + 2Li^+$ $Fe(OH)_3 + H^+ + e = Fe(OH)_2 + H_2O$

Table S3. Equilibrium equations relative to the *E*-pH diagram of the Li-Fe-P-H₂O system at 298.15 K[1]

Fig. S4 (a) XRD pattern and (b) SEM image of the iron precipitation.

Content	FePO ₄	Fe	Li	Р	Al		
Composition (wt.%)	99.78	39.56	0.24	19.67	0.01		
Table S5. Purity analysis of the final product for Li_2CO_3 under the optimized process							
Content	Li ₂ CO ₃	Na	Fe	Р	Al		
Composition (wt.%)	99.63	0.0238	0.0001	0.0105	0.001		

Table S4. Composition analysis of leaching residue under the optimized process

Fig. S5 (a) SEM image of RLFP, (b) cyclic voltammogram of RLFP at 0.1 mv s⁻¹.

Fig. S6 (a) SEM and (b) XRD of RLFP cathode sheet after cycling.

	Chemical	Price	Dosage	Total		
	SLFP	6.823 \$/kg	1.0 kg	6.823 \$		
	H ₂ O ₂ (30 wt%) 0.138\$/L		0.4 L	0.055 \$		
	DL-H ₂ Ma 2.133 \$/kg		0.322 kg	0.687 \$		
Communica	NaOH	0.427\$/kg	0.004 kg	0.0017 \$		
Consumption	Na ₂ CO ₃	0.355\$/kg	0.284 kg	0.101 \$		
	Electricity	0.142 \$/kw·h ⁻¹	2.685 kw∙h	0.381 \$		
	Water	0.06 \$/t	0.3 t	0.018 \$		
	Labor	200 \$/t	0.001 t	0.2 \$		
Total	8.267\$					
	Chemical	Price	Dosage	Total		
Product	FePO ₄	2.133 \$/kg	0.730 kg	1.557 \$		
	Li ₃ PO ₄	4.976 \$/kg	0.022 kg	0.109 \$		
	Li ₂ CO ₃	42.651 \$/kg	0.195 kg	8.317 \$		
Total	9.983 \$					
Profit	1.716 \$					

Table S6. The cost and profit to dispose of 1 kg spent LiFePO₄ cathode power in China (exchange rate: 1 \$ = 7.0338 CNY, accessed June 12, 2023).

As listed in Table S8, based on 1.0 kg spent LiFePO₄ cathode powders, the total costs and profits in the laboratory-scale recycling process were calculated in detail. Chemicals such as H_2O_2 and DL-malic acid were consumed in the whole recycling process, and the costs of water, electricity, and labour treatment are also taken into account in the economic analysis. It is estimated that 730 g FePO₄, 22 g Li₃PO₄, and 195 g Li₂CO₃ could be obtained from the treatment of 1.0 kg waste LiFePO₄ cathode materials. Ultimately, the profit of recycling 1.0 kg spent LiFePO₄ cathode powders is \$1.716.

Oxidant	Condition	Leaching efficiency	Reagent cost	Energy and equipment cost	Characteristics	Ref.
n (DL-malic acid/Li) = 0.435, 4 vol.% H_2O_2	100 g/L, 25°C, 30 min	99.12% Li, 0.81% Fe, 1.42% P	Low	Low	High efficiency and green process	This work
$0.3 \text{ M H}_2\text{SO}_4, \text{n}$ (H ₂ O ₂ /Li) = 2.07	60°C, 2 h	97% Li, 0.027% Fe, 1.95% P	High	High	High selectivity while large reagent consumption	[2]
2.5 M H ₂ SO ₄ , High-Temperature Oxidation	60°C, 4 h, 100 g/L	97% Li, 0.027% Fe	High	High	High cost and harsh conditions	[3]
n (HCl /Li) = 0.8, n (NaClO/Li) = 1	60min, 50- 80°C, 1-4 g/mL	97% Li, < 2% Fe.	Low	High	High leaching efficiency while harsh conditions	[4]
n (Fe ₂ (SO ₄) ₃ /LFP =1:6), 0.6 mL/g H ₂ O ₂	400 g/L, 60°C, 30 min	96.5% Li	Low	Low	Selective leaching while low leaching efficiency	[5]
1.0 M HCOOH, 5 vol. % H ₂ O ₂	30 min, 10 g/L, 30°C	97.92 % Li, <0.5% Fe/P	High	High	High efficiency while high cost	[6]
100% Lemon juice, 6 vol% H ₂ O ₂	67 g/L, 60 min	94.83% Li, 4.05% Fe, 0.84% P	High	Low	Green process while low selectivity	[7]
4 M MSA, 18 vol. % H ₂ O ₂	80 g/L, room temperature, 90 min	94% Li, 95% Fe	High	Low	Mild reaction condition while non-selective leaching	[8]
0.8 M CH ₃ COOH, 6 vol% H ₂ O ₂	120 g/L, 50°C, 30 min	95.05% Li, 0.93% Fe	Low	Low	Mild reaction condition while low leaching efficiency	[9]
Air (flow rate of $600 \text{ mL} \cdot \text{min}^{-1}$)	pH=3.5, 25 °C, 10 mL ⋅ g ⁻¹ , 5 h	99.3% Li, 0.02% Fe/P	Low	High	High selectivity while complex operation	[1]
15 vol. % H ₂ O ₂	30 min, 50 °C, 10 g/L	97.6% Li	Low	High	High efficiency while high cost	[10]
$n (Na_2S_2O_8/LFP) = 1.05$	300 g/L, 25°C, 20 min	99% of Li	Low	Low	High efficiency and low cost	[11]

 Table S7. A comparison of different recovery processes for SLFP.

n $((NH_4)_2S_2O_8/LFP)$ $= 1.4$	30 min, 30°C, 50 g/L	98.1% Li, <1% Fe/ Al	High	Low	High efficiency while high cost	[12]
- 1.4						

References:

- 1 H. Jin, J. Zhang, D. Wang, Q. Jing, Y. Chen and C. Wang, *Green Chem.*, 2022, 24, 152-162.
- 2 H. Li, S. Xing, Y. Liu, F. Li, H. Guo and G. Kuang, ACS Sustainable Chem. Eng., 2017, 5, 8017-8024.
- 3 R. Zheng, L. Zhao, W. Wang, Y. Liu, Q. Ma, D. Mu, R. Li and C. Dai, *RSC Adv.*, 2016, 6, 43613-43625.
- 4 T. Yan, S. Zhong, M. Zhou, X. Guo, J. Hu, F. Wang, F. Zeng and S. Zuo, *Nanotechnol. Rev.*, 2020, **9**, 1586-1593.
- 5 Y. Dai, Z. Xu, D. Hua, H. Gu and N. Wang, J. Hazard. Mater., 2020, 396, 122707.
- 6 H. Mahandra and A. Ghahreman, Resour., Conserv. Recycl., 2021, 175, 105883.
- 7 J. Kumar, X. Shen, B. Li, H. Liu and J. Zhao, Waste Manage., 2020, 113, 32-40.
- 8 P. Yadav, C.J. Jie, S. Tan and M. Srinivasan, J. Hazard. Mater., 2020, 399, 123068.
- 9 Y. Yang, X. Meng, H. Cao, X. Lin, C. Liu, Y. Sun, Y. Zhang and Z. Sun, *Green Chem.*, 2018, 20, 3121-3133.
- 10 X. Qiu, B. Zhang, Y. Xu, J. Hu, W. Deng, G. Zou, H. Hou, Y. Yang, W. Sun, Y. Hu, X. Cao and X. Ji, *Green Chem.*, 2022, 24, 2506-2515.
- 11 J. Zhang, J. Hu, Y. Liu, Q. Jing, C. Yang, Y. Chen and C. Wang, *ACS Sustainable Chem. Eng.*, 2019, **7**, 5626-5631.
- 12 D. Peng, J. Zhang, J. Zou, G. Ji, L. Ye, D. Li, B. Zhang and X. Ou, J. Clean Prod., 2021, **316**, 128098.
- 13 https://www.100ppi.com/DL-malic acid-prices-update, (accessed June 12, 2023).
- 14 https://www.100ppi.com/hydrogen peroxide-prices-update, (accessed June 12, 2023).
- 15 https://www.100ppi.com/sodium hydroxide-prices-update, (accessed June 12, 2023).
- 16 https://www. 100ppi. com/sodium carbonate-prices-update, (accessed June 12, 2023).
- 17 https://www.100ppi.com/iron phosphate-prices-update, (accessed June 12, 2023).
- 18 https://www.100ppi.com/lithium phosphate-prices-update, (accessed June 12, 2023).
- 19 https://www.100ppi.com/lithium carbonate-prices-update, (accessed June 12, 2023).