Novel Elastic Rubbers from CO₂-based Polycarbonates

Giulia Chiarioni,¹ Martin van Duin^{1,2} and Paolo P. Pescarmona^{1,*}

¹ Chemical Engineering group, Engineering and Technology institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

² ARLANXEO Performance Elastomers, Innovation, P.O. Box 1130, 6160 BC Geleen, The Netherlands

* Corresponding author. E-mail: p.p.pescarmona@rug.nl

Supporting Information

Figure S1. Proposed reaction mechanism for the coupling reaction between carbon dioxide and epoxides.

High-throughput reactor

Figure S2. High-throughput unit used to perform the reactions with CO₂.

Duplicate and triplicate tests for the copolymerisation and terpolymerisation reactions

Entry	Long alkyl chain epoxide	Unsaturated	Epoxides	Conv % ^a	Sel % ^b	PC:EL
		epoxide	ratio			
1	1,2-epoxyhexane		100:0	95	93	82:18
2	1,2-epoxyhexane		100:0	96	89	73:27
3	1,2-epoxyoctane		100:0	99	81	89:11
4	1,2-epoxydecane		100:0	83	93	86:14
5	1,2-epoxydodecane		100:0	93	85	86:14
6	1,2-epoxydodecane	AGE	95:5	95/>99	96	92:8
7	1,2-epoxydodecane	AGE	80:20	90/95	97	95:5
8	1,2-epoxydodecane	AGE	80:20	98/99	98	92:8
	1,2-epoxydodecane	AGE	80:20	98/>99	98	89:11
9	1,2-epoxydodecane	AGE	50:50	99/>99	99	90:10
10		AGE	0:100	99	99	>99:00
11		AGE	0:100	99	99	>99:00
12	1,2-epoxydecane	AGE	95:05	97/>99	98	93:7
13	1,2-epoxydecane	AGE	95:5	94/>99	97	94:6
14	1,2-epoxydecane	AGE	80:20	93/97	96	93:7
15	1,2-epoxydecane	AGE	80:20	93/98	99	90:10
	1,2-epoxydecane	AGE	80:20	95/99	98	88:12
	1,2-epoxydecane	AGE	80:20	>99/>99	>99	93:7
16	1,2-epoxydecane	AGE	50:50	97/95	>99	85:15
17	1,2-epoxydecane	AGE	95:05	97/>99	98	93:7
18	1,2-epoxyoctane	AGE	80:20	98/>99	97	91:9
	1,2-epoxyoctane	AGE	80:20	>99/>99	99	93:7
19	1,2-epoxyoctane	AGE	95:5	>99/>99	98	93:7
20	1,2-epoxyoctane	AGE	50:50	>99/99	>99	88:12
21	1,2-epoxyhexane	AGE	80:20	99/>99	97	94:6
22	1,2-epoxyhexane	AGE	95:5	>99/>99	97	93:7
23	1,2-epoxyhexane	AGE	50:50	>99/>99	>99	92:8

Table S1. Repeated copolymerisation and terpolymerisation tests showing the degree of reproducibility.

All the tests were performed by adding 30 mmol of epoxide(s), 3 mmol of mesitylene (IS), 0.5 mol % of Al complex and 0.25 mol % of PPNCI (2:1 ratio). The reactions were all performed at 80 bar, 45 °C for 24h. ^a Conversion of the epoxide. ^b Selectivity of the reaction towards the synthesis of PC over CC.

NMR and FT-IR characterisation of the products of the copolymerisations and terpolymerisations involving AGE and 1,2-epoxyhexane

Figure S3. ¹H NMR spectrum of the crude mixture after the copolymerisation of 1,2-epoxyhexane with CO_2 (top) and of the purified polycarbonate (bottom).

Figure S4. FT-IR spectrum of the crude mixture after the copolymerisation of 1,2-epoxyhexane with CO_2 (top) and of the purified polycarbonate (bottom).

Figure S5. ¹H NMR spectrum of the crude mixture after the copolymerisation of AGE with CO₂ (top) and of the purified polycarbonate (bottom).

Figure S6. FT-IR spectrum of the crude mixture after the copolymerisation of AGE with CO_2 (top) and of the purified polycarbonate (bottom).

Figure S7. ¹H NMR spectrum of the crude mixture after the terpolymerisation of 1,2-epoxyhexane and AGE (95:5) with CO_2 (top) and of the purified polycarbonate (bottom).

Figure S8. FT-IR spectrum of the crude mixture after the terpolymerisation of 1,2-epoxyhexane and AGE (95:5) with CO_2 (top) and of the purified polycarbonate (bottom).

Figure S9. ¹H NMR spectrum of the crude mixture after the terpolymerisation of 1,2-epoxyhexane and AGE (80:20) with CO_2 (top) and of the purified polycarbonate (bottom).

Figure S10. FT-IR spectrum of the crude mixture after the terpolymerisation of 1,2-epoxyhexane and AGE (80:20) with CO_2 (top) and of the purified polycarbonate (bottom).

Figure S11. ¹H NMR spectrum of the crude mixture after the terpolymerisation of 1,2-epoxyhexane and AGE (50:50) with CO_2 (top) and of the purified polycarbonate (bottom).

Figure S12. FT-IR spectrum of the crude mixture after the terpolymerisation of 1,2-epoxyhexane and AGE (50:50) with CO_2 (top)andofthepurifiedpolycarbonate(bottom).

Figure S13. ¹³C NMR spectra of: (A) polycarbonate copolymer of 1,2-epoxyhexane, in blue; (B) polycarbonate terpolymer of 1,2-epoxyhexane:AGE = 50:50, in green; and (C) polycarbonate copolymer of AGE, in red. The region of the signals of PC carbonyls is highlighted in burgundy red. On the left: zoom-in of the carbonate signals of the three samples; no preferantial polymerisation regiochemistry was observed in the terpolymerisation (random terpolymer, in green).

DSC analysis

Figure S14. DSC curve of AGE polycarbonate (copolymer). T_a determined from the heating branch (top).

Figure S15. DSC curve of 1,2-epoxyhexane polycarbonate (copolymer). T_g determined from the heating branch (bottom).

Figure S16. DSC curve of 1,2-epoxyoctane polycarbonate (copolymer). T_q determined from the heating branch (top).

Figure S17. DSC curve of 1,2-epoxydecane polycarbonate (copolymer). T_q determined from the heating branch (bottom).

Figure S18. DSC curve of 1,2-epoxydodecane polycarbonate (copolymer). T_m determined from the heating branch (bottom).

Figure S19. DSC curve of 1,2-epoxyhexane:AGE = 95:5 polycarbonate (terpolymer). T_g determined from the heating branch (bottom).

Figure S20. DSC curve of 1,2-epoxyhexane:AGE = 80:20 polycarbonate (terpolymer). T_a determined from the heating branch (top).

Figure S21. DSC curve of 1,2-epoxyhexane:AGE = 50:50 polycarbonate (terpolymer).

T_a determined from the heating branch (bottom).

Figure S22. DSC curve of 1,2-epoxyoctane:AGE = 95:5 polycarbonate (terpolymer). T_a determined from the heating branch (bottom).

Figure S23. DSC curve of 1,2-epoxyoctane:AGE = 80:20 polycarbonate (terpolymer). T_q determined from the heating branch (bottom).

Figure S24. DSC curve of 1,2-epoxyoctane:AGE = 50:50 polycarbonate (terpolymer). T_q determined from the heating branch (top).

Figure S25. DSC curve of 1,2-epoxydecane:AGE = 95:5 polycarbonate (terpolymer). T_q determined from the heating branch (top).

Figure S26. DSC curve of 1,2-epoxydecane:AGE = 80:20 polycarbonate (terpolymer). T_a determined from the heating branch (top).

Figure S27. DSC curve of 1,2-epoxydecane:AGE = 50:50 polycarbonate (terpolymer). T_q determined from the heating branch (top).

Figure S28. DSC curve of 1,2-epoxydodecane:AGE = 95:5 polycarbonate (terpolymer). T_m determined from the heating branch (bottom).

Figure S29. DSC curve of 1,2-epoxydodecane:AGE = 80:20 polycarbonate (terpolymer). T_m determined from the heating branch (bottom).

Figure S30. DSC curve of 1,2-epoxydodecane:AGE = 50:50 polycarbonate (terpolymer). T_a determined from the heating branch (bottom).

Figure S31. DSC curve of AGE polycarbonate (copolymer) prepared on large scale. T_a determined from the heating branch (bottom).

The vast majority of the examined polycarbonates showed a small and smooth change in the heat flow, which is consistent with a T_g peak.

DSC curves of polycarbonates synthesised from 1,2-epoxydodecane showed a T_m when [AGE] < 50. No T_g was detected in the analysed temperature range for these samples.

Molecular weight curves measured by GPC/SEC

Figure S32. Examples of the monomodal GPC eluograms of the prepared copolymers: 1,2-epoxydodecane-based copolymer in black; 1,2-epoxydecane-based copolymer in blue; 1,2-epoxyoctane-based copolymer in red.

Figure S33. Examples of the monomodal GPC eluograms of the prepared terpolymers: 1,2-epoxydodecane:VCHO (80:20) terpolymer in black; 1,2-epoxyhexane:AGE (80:20) terpolymer in blue; 1,2-epoxydecane:AGE (80:20) terpolymer in red.

TGA

Figure S34. TGA of 1,2-epoxydecane:AGE = 80:20 polycarbonate (terpolymer). The temperature of the onset of the degradation was calculated as the intersection of the two tangents to the curve.

Peroxide curing: relationship between curing temperature and curing time

Table S2. DCP half degradation time and complete curing depending on the cross-linking temperature.

T (°C)	t _{1/2} (min)	Full curing (min.) = 10 * $t_{1/2}$
130	75	750
140	25	250
150	8.8	88
160	3.2	32
170	1.23	12.3

Cross-linking setup

Figure S35. Cross-linking in a moulding press: (A) liquid polycarbonates before cross-linking; (B) a closed-bottom Teflon moulding plate to avoid polymers loss (the polycarbonates before cross-linking are low-viscosity fluids); (C) moulding press set-up; and (D) final cross-linked polycarbonates (solid).