Supporting Information

Facet-dependent electrocatalytic oxidation activity of Co_3O_4 nanocrystals for 5-hydroxymethylfurfural

Zhenchuan Zhang,^a Zhaohui Yang,^a Chenyang Wei,^a Zhenghui Liu,^b and Tiancheng Mu^{*a}

^a Department of Chemistry, Renmin University of China, Beijing 100872, China, Email: tcmu@ruc.edu.cn

^b Department of Chemistry, Taizhou University, Taizhou 318000, Zhejiang, China.

1. Supplementary Figures

Fig. S1. SEM image of Co-R (a and a_1), Co-H (b and b_1), Co-L (c and c_1) and Co-P (d and d_1). XRD pattern (e) and XPS survey spectra (f) of synthesized catalysts.

Fig. S2. (a) Co 2p and (b) O 1s XPS spectra of synthesized catalysts.

Fig. S3. Cyclic voltammograms (CVs) obtained with Co-R (a), Co-H (c), Co-L (e) and Co-P (g) in 1.0 M KOH with 10 mM HMF at scan rates of 20, 40, 60, 80 and 100 mV, respectively. Change of current density plotted against scan rate for Co-R (b), Co-H (d), Co-L (f) and Co-P (h) in 1.0 M KOH with 10 mM HMF. (i) The LSV curves of Co_3O_4 NCs by ECSA normalization at a scan rate of 5 mV s⁻¹ in 1.0 M KOH with 10 mM HMF. The linear slope (b, d, f, and h) is equivalent to the double-layer capacitance Cdl. The corresponding ECSA value is calculated via the equation ECSA = Cdl/Cs, where the specific capacitance value (Cs) was 118 μ F cm⁻².

Fig. S4. The equivalent circuit image. R_s stands for solution resistance. CPE_1 represents doublelayer capacitance. R_{ct} has contact with the interfacial charge transfer reaction. CPE_2 and R_p are related to the dielectric properties and the resistance of the electrode film.

Fig. S5. In operando EIS. The corresponding Nyquist plots of Co-R (a), Co-H (b), Co-L (c) and Co-P (d) at various voltages in 1.0 M KOH with 50 mM HMF.

Fig. S6. In operando EIS. The corresponding Bode phase plots of Co-R (a), Co-H (b), Co-L (c) and Co-P (d) at various voltages in 1.0 M KOH with 50 mM HMF.

Fig. S7. (a) LSV curves obtained at different temperatures T on Co-R in 1.0 M KOH with 10 mM at a potential sweep rate of 5 mV s⁻¹. (b) The semilogarithmic plots of j vs. RHE obtained at different T on Co-R. (c) Arrhenius plots In j (A) versus 1/T (K⁻¹) for the HMFOR on the Co-R electrode at different potentials. The Ea values were calculated according to Arrhenius equation: $Inj = InA - (\frac{Ea}{R})\frac{1}{T}$, Where A is pre-exponential factor, Ea is activation energy, R is gas constant

and T is the temperature (kelvin).

Fig. S8. (a) LSV curves obtained at different T on Co-H in 1.0 M KOH with 10 mM at a potential sweep rate of 5 mV s⁻¹. (b) The semilogarithmic plots of j vs. RHE obtained at different T on Co-H. (c) Arrhenius plots In j (A) versus 1/T (K⁻¹) for the HMFOR on the Co-H electrode at different potentials.

Fig. S9. (a) LSV curves obtained at different T on Co-L in 1.0 M KOH with 10 mM at a potential sweep rate of 5 mV s⁻¹. (b) The semilogarithmic plots of j vs. RHE obtained at different T on Co-L. (c) Arrhenius plots ln j (A) versus 1/T (K⁻¹) for the HMFOR on the Co-L electrode at different potentials.

Fig. S10. (a) LSV curves obtained at different T on Co-P in 1.0 M KOH with 10 mM at a potential sweep rate of 5 mV s⁻¹. (b) The semilogarithmic plots of j vs. RHE obtained at different T on Co-P. (c) Arrhenius plots ln j (A) versus 1/T (K⁻¹) for the HMFOR on the Co-P electrode at different potentials.

Fig. S11. The LSV curves of Co_3O_4 NCs at a scan rate of 5 mV s⁻¹ in 1.0 M KOH with 10 mM (FF), (FA), (EtOH), (BzH) and (BnOH).

Fig. S12. The structures of (110) (a), (111) (b), (112) (c), and (114) (d) facets of Co_3O_4 . The blue and red spheres represent Co and O, respectively.

Fig. S13. Figures (a) to (d) show the optimal adsorption configuration and energy (E_{ads}) of HMF on Co-R, Co-H, Co-L and Co-P obtained by DFT calculations. The blue, red and white spheres represent Co, O and H, respectively.

Fig. S14. Figures (a) to (d) show the optimal adsorption configuration and energy (E_{ads}) of OH⁻ on Co-R, Co-H, Co-L and Co-P obtained by DFT calculations. The blue, red and white spheres represent Co, O and H, respectively.

Fig. S15. SEM and TEM image of 0.6wt% Cr-doped Co-P (a and b). (c and inset c) the corresponding high-resolution images and SAED patterns. $(d-d_3)$ Corresponding elemental mappings of 0.6wt% Cr-doped Co-P with Co (d_1) , Cr (d_2) and O (d_3) .

Fig. S16. SEM and TEM image of 2.1wt% Cr-doped Co-P (a and b). (c and inset c) the corresponding high-resolution images and SAED patterns. $(d-d_3)$ Corresponding elemental mappings of 2.1wt% Cr-doped Co-P with Co (d_1) , Cr (d_2) and O (d_3) .

Fig. S17. SEM images of (a) 4, (b) 6 and (c) 8wt% Cr-doped Co-P.

Fig. S18. XRD patterns of M% Cr-Co-P (PDF#42-1467).

Fig. S19. O 1s XPS spectra of M% Cr-Co-P

Fig. S20. Cyclic voltammograms (CVs) obtained with Co-P (a), 0.6% Cr-Co-P (c), 1.2% Cr-Co-P (e) and 2.1% Cr-Co-P (g) in 1.0 M KOH with 10 mM HMF at scan rates of 20, 40, 60, 80 and 100 mV, respectively. Change of current density plotted against scan rate for Co-P (b), 0.6% Cr-Co-P (d), 1.2% Cr-Co-P (f) and 2.1% Cr-Co-P (h) in 1.0 M KOH with 10 mM HMF. The linear slope (b, d, f and h) is equivalent to the double-layer capacitance Cdl. The corresponding ECSA value is calculated via the equation ECSA = Cdl/Cs, where the specific capacitance value (Cs) was 118 μ F cm⁻².

Fig. S21. Figures (a) to (c) show the optimal adsorption configuration and energy (E_{ads}) of HMF on 0.6% Cr-Co-P, 1.2% Cr-Co-P and 2.1% Cr-Co-P obtained by DFT calculations (Absorption site only on Co). The blue, green, red and white spheres represent Co, Cr, O and H, respectively. Using 1 Cr atom, 2 Cr atoms, and 3 Cr atoms to indicate the increase in doping concentration.

Fig. S22. Figures (a) to (c) show the optimal adsorption configuration and energy (E_{ads}) of OH⁻ on 0.6% Cr-Co-P, 1.2% Cr-Co-P and 2.1% Cr-Co-P obtained by DFT calculations (Absorption site only on Co). The blue, green, red and white spheres represent Co, Cr, O and H, respectively. Using 1 Cr atom, 2 Cr atoms, and 3 Cr atoms to indicate the increase in doping concentration.

Fig. S23. Figures (a) to (c) show the optimal adsorption configuration and energy (E_{ads}) of HMF on 0.6% Cr-Co-P, 1.2% Cr-Co-P and 2.1% Cr-Co-P obtained by DFT calculations (Absorption site on Cr). The blue, green, red and white spheres represent Co, Cr, O and H, respectively. Using 1 Cr atom, 2 Cr atoms, and 3 Cr atoms to indicate the increase in doping concentration.

Fig. S24. Figures (a) to (c) show the optimal adsorption configuration and energy (E_{ads}) of OH⁻ on 0.6% Cr-Co-P, 1.2% Cr-Co-P and 2.1% Cr-Co-P obtained by DFT calculations (Absorption site on Cr). The blue, green, red and white spheres represent Co, Cr, O and H, respectively. Using 1 Cr atom, 2 Cr atoms, and 3 Cr atoms to indicate the increase in doping concentration.

Fig. S25. Charge density difference on Cr-doped Co_3O_4 nanoparticle.

Fig. S26. (a) The LSV curves of M% Cr-Co-P by ECSA normalization at a scan rate of 5 mV s⁻¹ in 1.0 M KOH with 10 mM HMF. (b) The volcanic plot of HMF electrooxidation on M% Cr-Co-P after ECSA normalization.

Fig. S27. The OCP curves of Co_3O_4 NCs in 1.0 M KOH and 50 mM FF (a), FA (b), BzH (c), BnOH (d) and EtOH (e) was injected subsequently.

2. Supplementary Tables

Table S1	. XPS results	of Co ₃ O ₄ NCs.
----------	---------------	--

	binding energy(eV)					
sample	Co ³⁺ 2p _{3/2}	Co ²⁺ 2p _{3/2}	O _{Latt}	Ov	Co ³⁺ /Co ²⁺	O _V /O _{Latt}
Co-P	779.4 (48150.28)	780.62 (112399.65)	529.82 (71083.77)	530.98 (28329.64)	0.4284	0.3985
Co-L	779.57 (122853.3)	781.05 (145731.06)	529.92 (110091.87)	531.30 (43912.70)	0.8430	0.3988
Co-H	780.21 (143860.75)	781.47 (205559.47)	530.29 (174587.3)	531.76 (58041.17)	0.6998	0.3324
Co-R	779.77 (157237.98)	781.09 (189745.44)	529.92 (147989)	531.12 (53313.52)	0.8287	0.3603

sample number	sampling amount (g)	volume V₀ (mL)	test analyte	concentration of test solution analyte C₀ (mg/L)	dilution factor f	concentration of analyte C ₁ (mg/L) in digestion solution/raw sample solution	analyte content Cx (mg/kg) in sample	analyte content W (%) in sample
4	0.0505	25	Cr	2.551	5	12.755	6314.36	0.631
· ·	0.0505	25	Co	6.506	200	1301.200	644158.42	64.416
2	0.0533	25	Cr	5.282	5	26.410	12387.43	1.239
	0.0533	25	Co	6.774	200	1354.800	635459.66	63.546
3 -	0.0527	25	Cr	8.938	5	44.690	21200.19	2.120
	0.0527	25	Co	5.861	200	1172.200	556072.11	55.607

 Table S2.
 ICP-OES analysis in 0.6% Cr-Co-P, 1.2% Cr-Co-P and 2.1% Cr-Co-P, respectively.

sample	binding en	0./0		
campio	O _{Latt} O _V			
Co-P	529.75 (55793.5)	531.01 (33424.3)	0.40	
0.6% Cr-Co-P	529.87 (57533.37)	531.03 (31354.55)	0.55	
1.2% Cr-Co-P	529.72 (142896.61)	530.97 (77195.84)	0.54	
2.1% Cr-Co-P	529.82 (96239.47)	530.98 (62656.07)	0.65	

 Table S3. O 1s XPS spectra results of prepared catalysts.