Precious metal catalyst recycling through photocatalytic dissolution

Yao Chen^{a,b}, Huan He^a, Shuyang Xu^a, Zhengxi Zou^a, Weiming Hua^a, Zhenfeng Bian^{b*}, Hexing Li^{b*}and Yinghong Yue^{a*}

^a Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China

^b MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China

Table of contents

1.	M	aterials and Methods	S3			
1	.1 0	Chemicals and materials	S3			
1	.2	Catalyst characterization	S3			
1	.3	Preparation of CeO ₂ nanorods	S4			
1	.4	Preparation of TiO ₂ carrier	S4			
1	.5	Preparation of Au/CeO ₂ , Au/TiO ₂ and Pt/CeO ₂	S4			
1	.6	Recycling of PM catalysts	S5			
1	.7	Catalytic testing	S5			
2.	2. Supplementary Figures					
3.	3. Supplementary Tables					
4.	. Reference					

1. Materials and Methods

1.1 Chemicals and materials

Titanium oxide (TiO₂, commercial sample of Degussa P-25), cerium(III) nitrate hexahydrate (Ce(NO₃)₃·6H₂O, AR, 99% trace metals basis), titanium butoxide (C₁₆H₃₆O₄Ti, AR, \geq 99.0%), sodium citrate (C₆H₅O₇Na₃, AR, 98%), sodium hydroxide (NaOH, AR, 97%), hydrogen tetrachloroaurate(III) trihydrate (HAuCl₄·3H₂O, AR, \geq 99.9%), and chloroplatinic acid hexahydrate (H₂PtCl₆·6H₂O, AR, Pt \geq 37.5%) were purchased from Aladdin (Shanghai, China). Ammonium hydroxide (NH₃·H₂O, AR, 25-28%), nitric acid (HNO₃, AR, 65-68%), acetonitrile (CH₃CN, HPLC, 99.9%), dichloromethane (CH₂Cl₂, HPLC, 99.9%), and ethanol (C₂H₅OH, HPLC, 99.8%) were purchased from Adamas-beta (Shanghai, China). Ethane (C₂H₆, 99.9%) was purchased from Youjiali Liquid Helium Co., Ltd (Shanghai, China). Hydrogen (H₂, 5% in argon) was purchased from Pujiang Special Gas Co., Ltd (Shanghai, China). Nitrogen (N₂, 99.9%), argon (Ar, 99.9%), and carbon dioxide (CO₂, 99.9%) were purchased from Dumao Ai Purification Gas Co., Ltd (Shanghai, China). All chemicals were used as received.

1.2 Catalyst characterization

The morphology of the materials was observed using a Japanese HITACHI S4800 field emission scanning electron microscope (SEM) as well as a Czech republic Tecnai G2 Spirit transmission electron microscope (TEM). The crystal structure of the samples was analyzed using an Ultima IV X-ray diffractometer (XRD) made by Science Corporation (Japan) with Cu K_a radiation as the spectral emission line (λ =1.54 Å). A Thermo Scientific K-Alpha X-ray photoelectron spectrometer (XPS) was employed for the binding energy analysis with Al K_a (1486.6 eV) as the excitation source at high voltage of 12.0 kV. The light absorption of the samples was tested on a UV-2600 UV-Vis spectrophotometer from Shimadzu, Japan, using high-purity barium sulfate as a standard reagent. Raman spectra were measured using a Jobin Yvon XploRA spectrometer from HORIBA with an excitation wavelength of 532 nm. Atom Scan 2000 inductively coupled plasma (ICP) emission spectrometer from Jarrell-Ash, Inc. was used to perform the content testing of the catalyst samples. The amount of carbon deposition of the catalyst after the reaction was analyzed by thermogravimetric (TG) analysis on a TA TGA 550 thermal analyzer from room temperature to 900 °C under an air atmosphere.

1.3 Preparation of CeO₂ nanorods

CeO₂ nanorods were synthesized according to a typical hydrothermal method.¹ Briefly, 3.472 g of Ce(NO₃)₃·6H₂O was dissolved in 20 mL of deionized water as solution A, and 38.4 g of NaOH was dissolved in 140 mL of deionized water as solution B. Solution A was added dropwise to solution B under stirring for 30 min to form a milky suspension. The suspension was then transferred to a polytetrafluoroethylene-lined autoclave and crystallized at 100 °C for 24 h. The obtained precipitate was washed by filtration with 3 L of water, dried in an oven at 100 °C overnight and finally calcined in a muffle furnace at 450 °C for 3 h under an air atmosphere.

1.4 Preparation of TiO₂ carrier²

The 17 mL of *n*-butyl titanate measured in a constant pressure separatory funnel was added dropwise to 50 mL of 2 mol/L nitric acid (HNO₃) solution over 30 min with continuous stirring at room temperature for 1 h. The hydrolysis product was transferred to a PTFE lined reactor and hydrothermally treated at 140°C for 10 h. After the reactor had cooled to room temperature, it was filtered and washed with 2 L of anhydrous ethanol. The resulting white solid was dried overnight at 100°C, ground to a powder state and calcined in a muffle furnace with air at 500°C for 4 h to obtain a white powdered solid titanium dioxide (TiO₂).

1.5 Preparation of Au/CeO₂, Au/TiO₂ and Pt/CeO₂

Deposition-precipitation (DP) method was used to prepare PM catalysts.³ The precious metal salt was dissolved in deionized water. An appropriate amount of CeO₂ (or TiO₂) was then added and ammonia (pH=12) was added drop by drop until the overall pH was 7.5. This suspension was then stirred for 1 h and aged for 24 h. The precipitate was washed with deionized water and dried at 100 °C before calcined in a muffle furnace at 650 °C for 6 h. The theoretical Au loading in this work is 1.0 wt%.

1.6 Recycling of PM catalysts

The deactivated Au/CeO₂ was added to 20 ml of a mixture of acetonitrile and dichloromethane.⁴ The mixed solution was placed under a 365 nm LED lamp for 6 h without any other photocatalyst addition. The reaction was kept at 25°C using a thermostatic water bath. At the end of the reaction, the solid and solution were separated by centrifugation and the obtained solid were washed with ethanol and water. The precious metal salt was then precipitated from the remaining solution using a low-temperature rotary evaporator. The solvent after removal of the precious metal salts is ready for next recycling. The obtained precious metal salt and the recovered CeO₂ were further used to produce fresh Au/CeO₂ catalysts according to the deposition-precipitation method. The same preparation is for the recycling of Pt/CeO₂ and Au/TiO₂.

1.7 Catalytic testing

Ethane dehydrogenation was carried out in a fixed-bed flow microreactor at under atmospheric pressure at 650 °C. The catalyst was loaded with 200 mg whose particle size was 40-60 mesh. They were activated in N₂ flow at 650 °C for 2 h before testing. For the direct dehydrogenation, the feed gas consisted of 3 vol% C₂H₆ and the balance nitrogen; while for the dehydrogenation in the presence of CO₂, the feed gas consisted of 3 vol% C₂H₆, 15 vol% CO₂ and the balance nitrogen at a total gas flow rate of 30 mL/min.

The reaction products were detected by on-line gas chromatography and the light hydrocarbons such as CH₄, C₂H₆, and C₂H₄ were separated on a 6 m Porapak Q-packed column and detected by FID. N₂, H₂, CO, and CO₂ were separated on a 2 m 601 carbon molecular sieve packed column, and detected by TCD. The ethane conversion, ethylene selectivity, and carbon balance were calculated using the following equations:

$$C_{2}H_{6} conversion = \frac{\sum C_{x}H_{y out} - C_{2}H_{6 out}}{\sum C_{x}H_{y out}} \times 100\%$$

$$C_{2}H_{4} selectivity = \frac{C_{2}H_{4 out}}{\sum C_{x}H_{y out} - C_{2}H_{6 out}} \times 100\%$$

$$Carbon \ balance = \frac{\sum C_{x}H_{y out}}{C_{2}H_{6 in}} \times 100\%$$

S5

2. Supplementary Figures

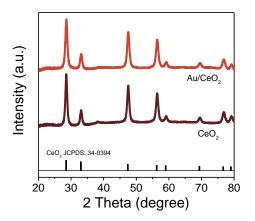


Fig. S1. XRD pattern of CeO₂ nanorods and Au/CeO₂ catalyst.

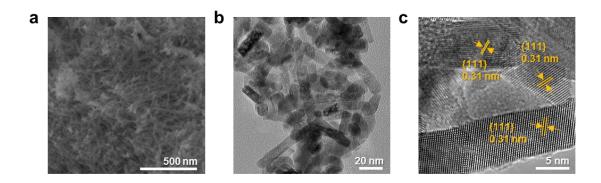


Fig. S2. (a) SEM, (b) TEM and (c) HRTEM of CeO₂ nanorods.

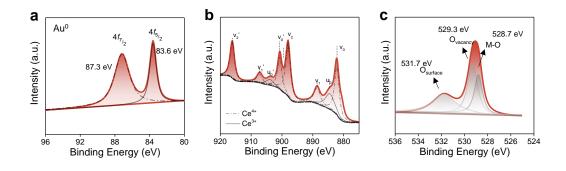
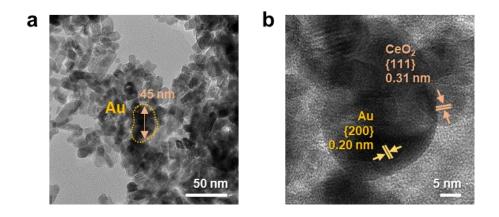
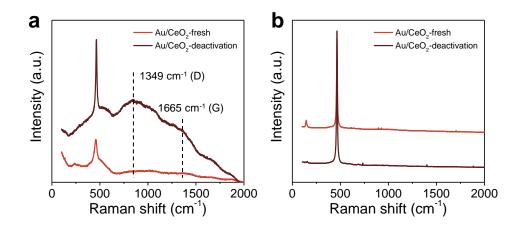




Fig. S3. (a) Au 4f7, (b) Ce 3d and (c) O 1s XPS spectra of Au/CeO₂-fresh catalyst.

Fig. S4. (a) TEM image and (b) HRTEM image of deactivated Au/CeO₂ catalyst under N₂ atmosphere.

Fig. S5. Raman spectra of Au/CeO₂ catalyst before and after deactivation: (a) Reaction under N₂ atmosphere. (b) Reaction under CO₂ atmosphere.

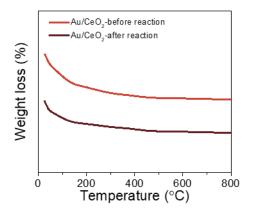


Fig. S6. TG spectra of Au/CeO $_2$ catalyst before and after reaction under CO $_2$ atmosphere.

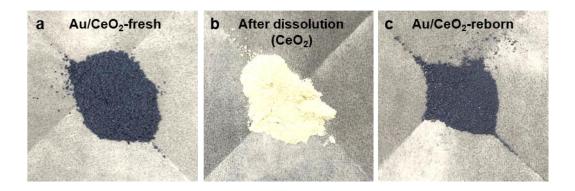


Fig. S7. Pictures of Au/CeO₂ catalyst before and after recycling.

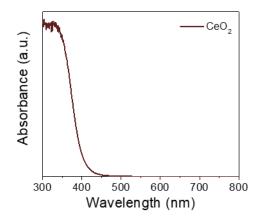


Fig. S8. UV-vis absorption spectra of CeO₂ nanorods.

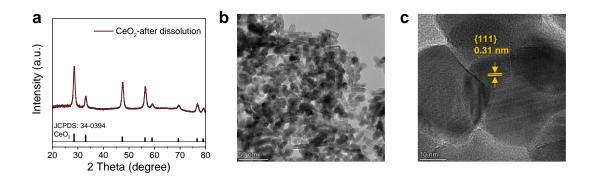


Fig. S9. (a) XRD pattern, (b) TEM and (c) HRTEM image of recovered CeO₂ nanorods.

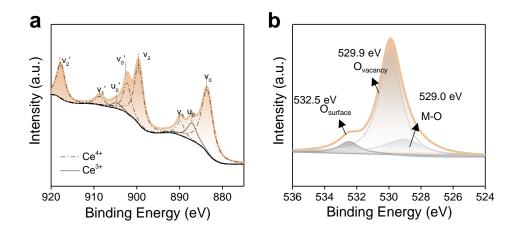


Fig. S10. (a) Ce 3d and (b) O 1s XPS spectra of recovered CeO₂.

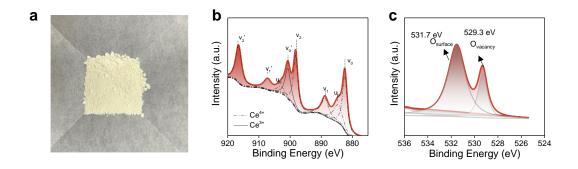


Fig. S11. (a) Photographs of CeO₂ nanorods before reaction. (b) Ce 3d and (c) O 1s XPS spectra of CeO₂ nanorods.

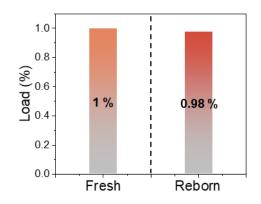


Fig. S12. Loading of Au on Au/CeO₂ before and after recycling.

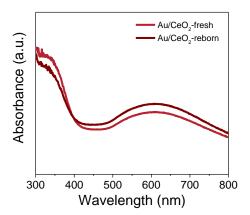


Fig. S13. UV-vis absorption spectra of Au/CeO₂-fresh and Au/CeO₂-reborn catalyst.

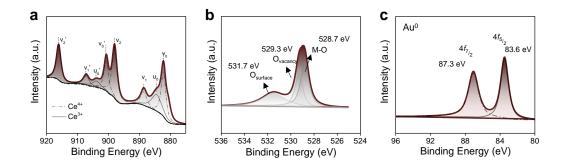


Fig. S14. (a) Ce 3d, (b) O 1s and (c) Au 4f7 XPS spectra of Au/CeO₂-reborn catalyst.

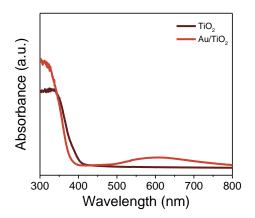


Fig. S15. UV-vis absorption spectra of TiO_2 and Au/TiO_2 .

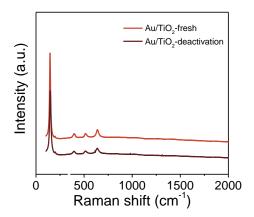


Fig. S16. Raman spectra of Au/TiO_2 catalyst before and after reaction.

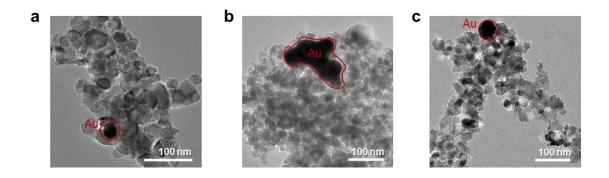


Fig. S17. TEM image of (a) Au/TiO₂-fresh, (b) deactivated Au/TiO₂ and (c) Au/TiO₂-reborn.

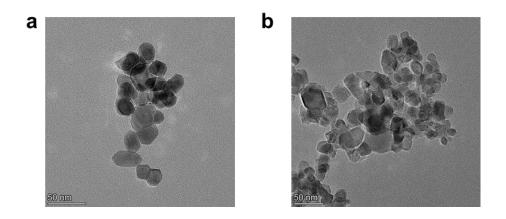


Fig. S18. TEM image of TiO_2 nanoparticle (a) before and (b) after regeneration.

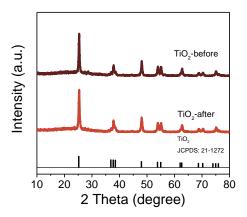


Fig. S19. XRD pattern of TiO_2 before and after regeneration.

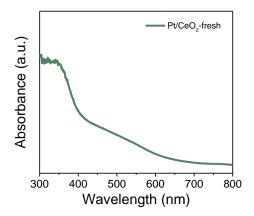


Fig. S20. UV-vis absorption spectra of Pt/CeO_2 -fresh catalyst.

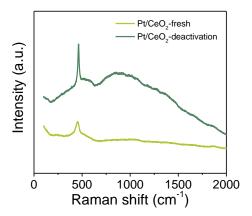


Fig. S21. Raman spectra of Pt/CeO₂ catalyst before and after reaction.

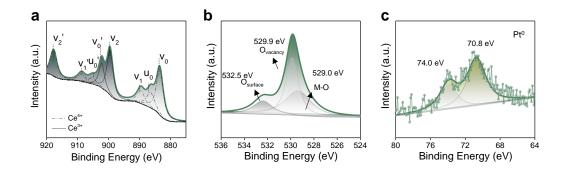


Fig. S22. (a) Ce 3d, (b) O 1s and (c) Pt 4f XPS spectra of Pt/CeO₂-fresh.

3. Supplementary Tables

Catalysts	Conversion (%) ^a	Selectivity (%) ^a		C2H4 yield (%) ^a	Carbon balance	Coke (%)
		CH4	C ₂ H ₄			
Au/CeO ₂ - fresh	17.3 (2.5)	0.5 (5.7)	99.5 (94.3)	17.2 (2.3)	95.0	n.d.
Au/CeO ₂ - reborn	21.9 (3.4)	0.5 (5.6)	99.5 (94.4)	21.8 (3.2)	95.3	n.d.

Table S1. Reaction data for different Au/CeO_2 in ethane dehydrogenation under N_2 atmosphere.

Sample	Precious metal content (wt%)
Au/CeO ₂ -fresh	1
Au/CeO ₂ -reborn	0.98
Au/TiO ₂ -fresh	1
Au/TiO ₂ -reborn	0.97
Pt/CeO ₂ -fresh	1
Pt/CeO ₂ -reborn	0.95

Table S2. Actual loadings of precious metal in the samples

Catalysts	Conversion (%) ^a	Selectivity (%) ^a		C ₂ H ₄ yield (%) ^a	Carbon balance	Coke (%)
		CH4	C ₂ H ₄			
Au/CeO2- fresh	17.0 (17.4)	2.1 (1.7)	97.9 (98.3)	16.7 (17.1)	96.6	n.d.
Au/CeO2- reborn	16.7 (17.4)	1.8 (1.5)	98.2 (98.5)	16.4 (17.1)	97.5	n.d.

Table S3. Activity of ethane dehydrogenation in different Au/CeO₂ samples under CO₂ atmosphere.

Catalysts	Conversion (%) ^a	Selectivity (%) ^a		C2H4 yield (%) ^a	Carbon balance	Coke (%)
		CH4	C ₂ H ₄			
Au/TiO2- fresh	9.7 (6.5)	4.0 (5.6)	96.0 (94.4)	9.3 (6.1)	95.4	n.d.
Au/TiO2- reborn	9.3 (6.8)	3.4 (5.0)	96.6 (95.0)	9.0 (6.5)	96.6	n.d.

Table S4. Activity of ethane dehydrogenation in different Au/TiO₂ samples under N_2 atmosphere.

Catalysts	Conversion (%) ^a	Selectivity (%) ^a		C ₂ H ₄ yield (%) ^a	Carbon balance	Coke (%)
		CH4	C ₂ H ₄	_		
Pt/CeO2- fresh	28.7 (1.0)	9.5 (3.7)	90.5 (96.3)	26.0	92.3	n.d.
Pt/CeO ₂ - reborn	26.9 (1.3)	0.5 (4.4)	99.5 (95.6)	26.8	93.4	n.d.

Table S5. Activity of ethane dehydrogenation in different Pt/CeO_2 samples under N_2 atmosphere.

4. Reference

1. H.X. Mai, L.D. Sun, Y.W. Zhang, R. Si, W. Feng, H-P. Zhang, H.C. Liu, C.H. Yan, Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes, J. Phys. Chem. B, 109 (2005) 24380-24385.

2. C. Han, P. Majumdar, E. Mrinero, A. Aguilar-Tapia, R. Zanella, J. Greeley, V. Ortalan. Highly stable bimetallic AuIr/TiO₂ catalysts: Physical origins of the intrinsic high stability against sintering, Nano Lett., 15 (2015) 8141-8147.

3. T. Lei, C. Miao, W. Hua, Y. Yue, Z. Gao, Oxidative dehydrogenation of ethane with CO₂ over Au/CeO₂ nanorod catalysts, Catal. Lett., 148 (2018) 1634-1642.

4. Y. Chen, M. Xu, J. Wen, Y. Wan, Q. Zhao, X. Cao, Y. Ding, Z.L. Wang, H. Li,

Z. Bian, Selective recovery of precious metals through photocatalysis, Nat. Sustain., 4 (2021) 618–626.