Electronic Supplementary Information

Catalyst-Free Defluorinative Alkylation of Trifluoromethyls

Yan Huang,^a Yuan-Cui Wan,^a Yu Shao,^a Le-Wu Zhan,^a Jing Hou,^{*a} and Bin-Dong Li^{*a}

^a College of Chemical Engineering Nanjing University of Science and Technology, Nanjing, 210094,

China

*Corresponding Author(s): Jing Hou: chmhouj@njust.edu.cn; Bin-Dong Li: libindong@njust.edu.cn

Contents

1. General information	S2			
2. General procedures				
3. Investigation of the key reaction parameters	S5			
4. Computational studies	S6			
5. Mechanistic studies	S9			
5.1 Deuterium labeling experiments	S9			
5.2 Radical clock experiment	S12			
5.3 Radical-trapping experiment with TEMPO	S13			
5.4 UV-vis spectrum	S13			
5.5 Cyclic voltammetry studies	S14			
6. The application of the reaction				
7. Other substrates	S15			
8. Characterization data	S17			
9. Reference				
10 ¹ H, ¹³ C and ¹⁹ F NMR spectra				

1. General information

Unless otherwise noted, all the Chemicals and solvents were purchased from commercial suppliers and used as received. ¹H NMR, ¹³C NMR, ¹⁹F NMR spectra were recorded on a Bruker AVANCE III 500MHz spectrometer. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (CDCl₃: 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR; DMSO-*d*₆: 2.50 ppm ¹H NMR, 39.52 ppm ¹³C NMR). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), brs (broad singlet). All high-resolution mass spectra (HRMS) were obtained on an AB Sciex TripleTOF 4600 spectrometer. Cyclic voltammetry experiments were performed on a CH Instruments Electrochemical Analyzer. Blue LED (40 W, λ_{max} = 440 nm) purchased from Kessil was used for blue light irradiation. High pressure photoreactor purchased from WATTCAS was used for the reaction of ethylene. Reactions were monitored using thin layer chromatography (TLC) on aluminium backed plates and visualised by UV radiation at a wavelength of 254 nm.

Figure S1. Standard setup for reactions.

2. General procedures

General procedure A: An oven-dried Schlenk tube (10 mL) with a magnetic stir bar was added the substrate (0.1 mmol), HCOOK (Potassium formate, 0.4 mmol), vinylcyclohexane (0.6 mmol) and anhydrous DMSO (3 mL). Then the reaction was placed under a blue LED (wavelength 440 nm, 40 W) and irradiated for 12 hrs at 65 °C. The mixture was quenched with H_2O . Then extracted with EtOAc three times, the combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude product was purified by column chromatography isolation on silica gel

(eluent: PE/EA = 6/1 v/v) to give the pure desired product as white solid (2a, 72% yield, 20.3 mg).

General procedure B: An oven-dried Schlenk tube (10 mL) with a magnetic stir bar was added the substrate (0.1 mmol), HCOOK (0.4 mmol), vinylcyclohexane (0.6 mmol) and anhydrous DMSO (3 mL). Then the reaction was placed under a blue LED (wavelength 440 nm, 40 W) and irradiated for 12 hrs at 100 °C. The mixture was quenched with H₂O. Then extracted with EtOAc three times, the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography isolation on silica gel (eluent: PE/EA = 6/1 v/v) to give the pure desired product as white solid (**2o**, 79% yield, 20.1 mg).

General procedure C: A 25 mL vial tube equipped with a magnetic stir was charged with substrate (0.1 mmol), HCOOK (1.4 mmol), and anhydrous DMSO (3 mL). After filled with 4 bar of ethylene, the reaction mixture was then irradiated with a 10 W blue LED lamp with heating from circulating liquid (ethylene glycol: $H_2O = 1:1$) for 12 hrs at 80 °C. The mixture was quenched with H_2O . Then extracted with EtOAc three times, the combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude product was purified by column chromatography isolation on silica gel (eluent: PE/toluene = 1/2 v/v) to give the pure desired product as colorless oil (**2ah**, 89% yield, 15.2 mg).

Figure S2. Devices for the photocatalytic reactions with ethylene.

General procedure for the synthesis of trifluoro acetanilide derivatives ^[1] (**1a** – **1k**):

General procedure C: Substituted aniline (4.0 mmol) and triethylamine (6.0 mmol) were dissolved in anhydrous dichloromethane (12 mL), the mixture was cooled to 0 °C and added trifluoroacetic anhydride (4.2 mmol in 2 mL of dichloromethane). The reaction mixture was stirred at the same temperature for 60 min. After completion of the reaction monitored by TLC, dichloromethane (10 mL) was added, and the mixture was washed with saturated aqueous sodium bicarbonate (30 mL) and brine (30 mL), dried over MgSO₄ and the solvent was removed in vacuo. The crude product was purified by flash column chromatography on silica gel (eluent: PE/EA = 95/0.5 to 50/50 v/v) to give the corresponding trifluoro acetanilide derivative in 87-93% yield.

General procedure for the synthesis of (135,175)-3-methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17decahydro-6H-cyclopenta[a]phenanthren-17-yl 2-(4-(2,2,2-trifluoroacetamido)phenyl)acetate (1t)^[2]

To a solution of **1t-1** (0.54 g, 1.87 mmol), and 2-(4-(2,2,2-trifluoroacetamido)phenyl)acetic acid (**1t-2**) (0.46 g, 1.86 mmol) in CH_2Cl_2 (15 mL) was added 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.46 g, 2.39 mmol) and DMAP (35.8 mg, 0.29 mmol) at 0 °C. After addition, the mixture was stirred at room temperature until TLC indicating **1t-1** disappeared. The reaction was quenched with water and extracted three times with CH_2Cl_2 . The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and evaporated. The resulting crude material was purified by flash column

chromatography on silica gel (eluent: PE/EA = 10/1 v/v) to give desired product **1t**.

General procedure for the synthesis of **2,2,2-trifluoro-N-(4-((((1R,2S,5R)-2-isopropyl-5***methylcyclohexyl)oxy)methyl)phenyl)acetamide* (1u) ^[2]

To a solution of L-Menthol (1.78 g, 11.40 mmol), and 2-(4-(2,2,2-trifluoroacetamido)phenyl)acetic acid (**1t-2**) (2.83 g, 11.45 mmol) in CH_2CI_2 (30 mL) was added 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (2.72 g, 14.16 mmol) and DMAP (141.5 mg, 1.16 mmol) at 0 °C. After addition, the mixture was stirred at room temperature until TLC indicating L-Menthol disappeared. The reaction was quenched with water and extracted three times with CH_2CI_2 . The combined organic layer was washed with brine, dried over Na_2SO_4 , filtered and evaporated. The resulting crude material was purified by flash column chromatography on silica gel (eluent: PE/EA = 15/1 v/v) to give desired product (**1u**).

3. Investigation of the key reaction parameters

HN	$ \bigcirc CF_3 $	+	HCOOK (4 equiv) solvent, Air (sealed), 65 °C, 12 h 40 W blue LED (440 nm)	H F F 0
1a , 0.1 mr	mol	6 equiv		2a
-	Entry	Conditions		2a [%] ^b
	1	none		76
	2	DMF instead	of DMSO	N.D.
	3	NMP instead	of DMSO	N.D.
	5	2 mL DMSO i	nstead of 3 mL	43
	6	4 mL DMSO i	nstead of 3 mL	76
	7	3 mL DMSO (71	
-	8 DMF (with 1 equiv MeSH) instead of DMSO			N.D.
	9	NMP (with 1 e	equiv MeSH) instead of DMSO	N.D.

Table S1. Screening of solvents^a (General procedure A)

^a **1a** (0.1 mmol), HCOOK (0.4 mmol), cyclohexylethene (0.6 mmol),solvent (3 mL), air (sealed), 65 °C, 40 W blue LED (440 nm), 12 h. ^b Yields were determined by ¹H NMR spectroscopy using CH_2Br_2 as internal standard. ^c reduced pressure distillation at 65 °C

Table S2. Screening of formate salts^a (General procedure A)

^a **1a** (0.1 mmol), formate salts (0.4 mmol), cyclohexylethene (0.6 mmol),DMSO (3 mL), air (sealed), 65 $^{\circ}$ C, 40 W blue LED (440 nm), 12 h.^b Yields were determined by ¹H NMR spectroscopy using CH₂Br₂ as internal standard.

4. Computational studies

Table S3.Detail computational information of intermediate structure (at (u)m062x/6-311g+(d,p)/SMD(DMSO) level)

S8

- S 1.52152941 -0.50206620 -0.45143889 C -1.42577481 -0.08002262 0.12963285 H -0.17964326 -0.25831040 -0.11631546 O -2.11583605 -0.99339603 -0.29130946
- O -1.58659990 0.97919669 0.73014577

5. Mechanistic studies

5.1 Deuterium labeling experiments

10 equiv D₂O, 70% *d*-incorporation

4 equiv DCOOK + 10 equiv $D_2O + 3$ mL DMSO- d_6 , 95% d-incorporation

Figure S3. ¹H NMR (CDCl₃, 500 MHz) spectrum of *d*-incorporation product **2ap**. **5.2 Radical clock experiment** ^[2]

An oven-dried Schlenk tube (10 mL) with a magnetic stir bar was added the 2,2,2-trifluoro-*N*-phenylacetamide (0.1 mmol), HCOOK (0.4 mmol), beta-pinene (0.6 mmol) and anhydrous DMSO (3 mL). Then the reaction was placed under a blue LED (wavelength 440 nm, 40 W) and irradiated for 12 hrs at 65 °C. The mixture was quenched with H₂O. Then extracted with EtOAc three times, the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography isolation on silica gel (eluent: PE/EA = 6/1 v/v) to give the pure desired ring-open product as white solid (**2ar**, 42% yield, 12.9 mg).

An oven-dried Schlenk tube (10 mL) with a magnetic stir bar was added the 2-amino-6-(trifluoromethyl)pyridine (0.1 mmol), HCOOK (0.4 mmol), beta-pinene (0.6 mmol) and anhydrous DMSO (3 mL). Then the reaction was placed under a blue LED (wavelength 440 nm, 40 W) and irradiated for 12 hrs at 100 °C. The mixture was quenched with H₂O. Then extracted with EtOAc three times, the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography isolation on silica gel (eluent: PE/EA = 6/1 v/v) to give the pure desired ring-open product as white solid (**2as**, 91% yield, 25.6 mg).

5.3 Radical-trapping experiment with TEMPO

An oven-dried Schlenk tube (10 mL) with a magnetic stir bar was added the 2,2,2-trifluoro-*N*-phenylacetamide (0.1 mmol), HCOOK (0.4 mmol), TEMPO (0.3 mmol), vinylcyclohexane (0.6 mmol, 6 equiv) and anhydrous DMSO (3 mL). Then the reaction was placed under a blue LED (wavelength 440 nm, 40 W) and irradiated for 12 hrs at 65 °C. The mixture was quenched with H_2O . Then extracted with EtOAc three times, the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The corresponding product **2a** was not detected by ¹H NMR spectroscopy.

An oven-dried Schlenk tube (10 mL) with a magnetic stir bar was added the 2-amino-6-(trifluoromethyl)pyridine (0.1 mmol), HCOOK (0.4 mmol), TEMPO (0.3 mmol), vinylcyclohexane (0.6 mmol) and anhydrous DMSO (3 mL). Then the reaction was placed under a blue LED (wavelength 440 nm, 40 W) and irradiated for 12 hrs at 100 °C. The mixture was quenched with H_2O . Then extracted with EtOAc three times, the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The corresponding product **20** was not detected by ¹H NMR spectroscopy.

5.4 UV-vis spectrum

Sample 01: HCOOK in DMSO, Ar (sealed)

An oven-dried Schlenk tube (10 mL) with a magnetic stir bar was added the 0.4 mmol HCOOK and 3 mL anhydrous DMSO. The Schlenk tube was sealed and degassed via vacuum evacuation and subsequent backfilled with argon for three times. Then the reaction was placed in the dark for 3 hrs at 65 °C.

Sample 02: HCOOK in DMSO, Air (sealed)

An oven-dried Schlenk tube (10 mL) with a magnetic stir bar was added the 0.4 mmol HCOOK and 3 mL anhydrous DMSO. The Schlenk tube was sealed and the reaction was placed in the dark for 3 hrs at 65 °C.

Sample 03: HCOOK in DMSO, Air (sealed)

An oven-dried Schlenk tube (10 mL) with a magnetic stir bar was added the 0.4 mmol HCOOK and 3 mL anhydrous DMSO. The Schlenk tube was sealed and the reaction was irradiated with a blue LED (wavelength 440 nm, 40 W) for 3 hrs at 65 °C.

Sample 04: HCOOK in DMSO, Air (sealed)

An oven-dried Schlenk tube (10 mL) with a magnetic stir bar was added the 0.4 mmol HCOOK and 3 mL anhydrous DMSO. The Schlenk tube was sealed and the reaction was irradiated with a LED (wavelength 427 nm, 40 W) for 3 hrs at 65 °C.

Sample 05: HCOOK in DMSO, Air (sealed)

An oven-dried Schlenk tube (10 mL) with a magnetic stir bar was added the 0.4 mmol HCOOK and 3 mL anhydrous DMSO. The Schlenk tube was sealed and the reaction was placed in the dark for 3 hrs at 65

°C. After reaction, the mixture was irradiated with a blue LED (wavelength 440 nm, 40 W) for 30 minutes at 65 °C.

5.5 Cyclic voltammetry studies

Sample 5 mM and tetrabutylammonium tetrafluoroborate 0.1 M in DMSO were used for tests. Measurements were run using glassy carbon working electrode, platinum wire counter electrode, and $Hg-Hg_2Cl_2$ reference electrode in a scan rate of 0.1 V/s.

Figure S5. Cyclic voltammogram of HCOOCs in DMSO (room temperature). Scanned from -2.5 V to -2.5 V at 0.1 V/s.

6. The application of the reaction

Gram scale reaction: An oven-dried two-necked round bottom flask (500 mL) with a magnetic stir bar was added the **1a** (6 mmol, 1.135 g), HCOOK (2.4 mmol, 2.019 g), vinylcyclohexane (36 mmol, 4.928 mL) and anhydrous DMSO (150 mL). Then the reaction was placed under a water bath for 36 hrs at 65 °C. The mixture was quenched with H₂O. Then extracted with EtOAc three times, the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography isolation on silica gel (eluent: PE/EA = 6/1 v/v) to give the pure desired product (**2a**, 539.0 mg, 32% yield, white solid; **3a**, 68.2 mg, 7% yield, light-yellow oil).

7. Other substrates

The limitations of this work were shown as follows:

Figure S6. A summary of substrates that do not work in general condition.

8. Characterization data

4-cyclohexyl-2,2-difluoro-N-phenylbutanamide (2a) [3]

20.3 mg, 72% yield, white solid, Rf (PE/ EA 6/1 v/v): 0.73

¹H NMR (500 MHz, $CDCl_3$) δ 8.0 (s, 1H), 7.6 (d, *J* = 7.9 Hz, 2H), 7.4 (t, *J* = 7.7 Hz, 2H), 7.2 (t, *J* = 7.5 Hz, 1H), 2.2 – 2.1 (m, 2H), 1.7 – 1.6 (m, 5H), 1.4 (q, *J* = 7.3 Hz, 2H), 1.3 – 1.1 (m, 4H), 0.9 (q, *J* = 11.2, 10.4 Hz, 2H).

Me

4-cyclohexyl-2,2-difluoro-N-(p-tolyl)butanamide (2b)

19.8 mg, 67% yield, white solid, 84.8 – 90.3 °C (m.p.), Rf (PE/ EA 6/1 v/v): 0.75

¹H NMR (500 MHz, CDCl₃) δ 7.9 (s, 1H), 7.5 (d, *J* = 8.0 Hz, 2H), 7.2 (d, *J* = 8.0 Hz, 2H), 2.3 (s, 3H), 2.2 – 2.1 (m, 2H), 1.7 – 1.6 (m, 5H), 1.4 (q, *J* = 7.0 Hz, 2H), 1.3 – 1.1 (m, 4H), 0.9 – 0.8 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 162.2 (t, *J* = 29.1 Hz), 135.4, 133.7, 129.8, 120.4, 118.9 (m), 37.4, 33.1, 31.6 (t, *J* = 23.0 Hz), 28.9 (t, *J* = 4.0 Hz), 26.6, 26.3, 21.0.

¹⁹F NMR (470 MHz, CDCl₃) δ -105.7 (t, J = 17.3 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₇H₂₄F₂NO]⁺: 296.1826, found: 296.1824.

4-cyclohexyl-2,2-difluoro-N-(m-tolyl)butanamide (2c)

17.9 mg, 61% yield, light-yellow solid, 68.4 – 71.3 °C (m.p.), Rf (PE/ EA 6/1 v/v): 0.75

¹H NMR (500 MHz, CDCl₃) δ 8.0 (s, 1H), 7.5 (s, 1H), 7.4 (d, *J* = 8.2 Hz, 1H), 7.3 – 7.2 (m, 1H), 7.0 (d, *J* = 7.6 Hz, 1H), 2.4 (s, 3H), 2.2 – 2.1 (m, 2H), 1.7 – 1.6 (m, 5H), 1.4 – 1.3 (m, 2H), 1.3 – 1.1 (m, 4H), 1.1 - 0.9 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 162.5 – 162.1 (m), 139.4, 136.1, 129.1, 126.4, 120.9, 120.7-116.8 (m), 117.4, 37.4, 33.1, 31.6 (t, *J* = 23.2 Hz), 28.9, 26.6, 26.3, 21.6.

 ^{19}F NMR (470 MHz, CDCl_3) δ -105.5 - -105.6 (m).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₇H₂₄F₂NO]⁺: 296.1826, found: 296.1824.

4-cyclohexyl-2,2-difluoro-N-(o-tolyl)butanamide (2d)

20.9 mg, 71% yield, light-yellow oil, Rf (PE/ EA 6/1 v/v): 0.73

¹H NMR (500 MHz, CDCl₃) δ 7.9 – 7.8 (m, 2H), 7.3 – 7.2 (m, 2H), 7.1 (t, *J* = 7.9 Hz, 1H), 2.3 (s, 3H), 2.3 – 2.1 (m, 2H), 1.7 – 1.6 (m, 5H), 1.4 – 1.4 (m, 2H), 1.3 – 1.1 (m, 4H), 1.0 – 0.9 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 162.4 (t, J = 28.7 Hz), 134.0, 130.8, 129.4, 127.1, 126.3, 123.0, 120.1 (t, J =

253.2 Hz), 37.4, 33.1, 31.6 (t, J = 23.1 Hz), 29.0 (t, J = 3.7 Hz), 26.6, 26.3, 17.6.

 ^{19}F NMR (470 MHz, CDCl_3) δ -105.4 - -105.5 (m).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₇H₂₄F₂NO]⁺: 296.1826, found: 296.1827.

4-cyclohexyl-2,2-difluoro-*N*-(4-methoxyphenyl)butanamide (2e)

16.5 mg, 53% yield, light-yellow solid, 109.3 – 112.9 °C (m.p.), Rf (PE/ EA 6/1 v/v): 0.60

¹H NMR (500 MHz, CDCl₃) δ 7.9 (s, 1H), 7.5 (d, *J* = 8.9 Hz, 2H), 6.9 (d, *J* = 9.0 Hz, 2H), 3.8 (s, 3H), 2.2 – 2.1 (m, 2H), 1.7 – 1.6 (m, 5H), 1.4 – 1.3 (m, 2H), 1.2 – 1.1 (m, 4H), 0.9 – 0.8 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.2 (t, *J* = 28.4 Hz), 157.4, 129.2, 122.1, 119.9 (t, *J* = 253.3 Hz), 114.5, 55.6, 37.4, 33.1, 31.6 (t, *J* = 23.0 Hz), 28.9 (t, *J* = 3.6 Hz), 26.6, 26.3.

¹⁹F NMR (470 MHz, CDCl₃) δ -105.6 - -105.7 (m).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₇H₂₄F₂NO₂]⁺: 312.1775, found: 312.1772.

4-cyclohexyl-2,2-difluoro-N-(4-(methylthio)phenyl)butanamide (2f)

23.6 mg, 72% yield, white solid, 87.9 - 93.7 °C (m.p.), Rf (PE/ EA 6/1 v/v): 0.67

¹H NMR (500 MHz, CDCl₃) δ 7.9 (s, 1H), 7.5 (d, *J* = 8.7 Hz, 2H), 7.3 (d, *J* = 8.7 Hz, 2H), 2.5 (s, 3H), 2.2 – 2.1 (m, 2H), 1.7 – 1.6 (m, 5H), 1.4 – 1.3 (m, 2H), 1.2 – 1.1 (m, 4H), 0.9 – 0.8 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.5 – 162.0 (m), 135.6, 133.6, 127.8, 120.9, 120.9 – 116.8 (m), 37.4, 33.1,

31.6 (t, J = 23.0 Hz), 28.9 (t, J = 3.7 Hz), 26.6, 26.3, 16.5.

¹⁹F NMR (470 MHz, CDCl₃) δ -105.6 (t, *J* = 17.4 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₇H₂₄F₂NOS]⁺: 328.1547, found: 328.1548.

4-cyclohexyl-2,2-difluoro-N-(3-(methylthio)phenyl)butanamide (2g)

22.2 mg, 68% yield, white solid, 65.3 – 69.6 °C (m.p.), Rf (PE/ EA 6/1 v/v): 0.66 ¹H NMR (500 MHz, CDCl₃) δ 7.9 (s, 1H), 7.6 (s, 1H), 7.3 – 7.2 (m, 2H), 7.1 – 7.0 (m, 1H), 2.5 (s, 3H), 2.2 – 2.1 (m, 2H), 1.7 – 1.6 (m, 5H), 1.4 – 1.3 (m, 2H), 1.3 – 1.1 (m, 4H), 0.9 – 0.8 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 162.4 (t, *J* = 29.3 Hz), 140.3, 136.8, 129.6, 123.6, 119.8 (t, *J* = 253.5 Hz), 117.8, 116.7, 37.4, 33.1, 31.5 (t, *J* = 23.0 Hz), 28.9 (t, *J* = 3.6 Hz), 26.6, 26.3, 15.7. ¹⁹F NMR (470 MHz, CDCl₃) δ -105.5 (t, *J* = 17.4 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₇H₂₄F₂NOS]⁺: 328.1547, found: 328.1543.

4-cyclohexyl-2,2-difluoro-N-(2-(methylthio)phenyl)butanamide (2h)

19.0 mg, 58% yield, white solid, Rf (PE/ EA 6/1 v/v): 0.72

¹H NMR (500 MHz, $CDCl_3$) δ 9.2 (s, 1H), 8.3 – 8.2 (m, 1H), 7.5 – 7.4 (m, 1H), 7.4 – 7.3 (m, 1H), 7.2 – 7.1 (m, 1H), 2.4 (s, 3H), 2.3 – 2.1 (m, 2H), 1.8 – 1.6 (m, 5H), 1.4 – 1.4 (m, 2H), 1.3 – 1.1 (m, 4H), 0.9 – 0.9 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 162.6 (t, J = 28.3 Hz), 137.6 – 136.4 (m), 133.4, 129.2, 126.6, 125.7, 120.8, 117.9 (t, J = 253.6 Hz), 37.4, 33.1, 31.7 (t, J = 23.1 Hz), 29.0 (t, J = 3.7 Hz), 26.6, 26.3, 19.1.
¹⁹F NMR (470 MHz, CDCl₃) δ -105.8 (t, J = 17.2 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₇H₂₄F₂NOS]⁺: 328.1547, found: 328.1547.

4-cyclohexyl-2,2-difluoro-N-(4-fluorophenyl)butanamide (2i)

18.7 mg, 63% yield, white solid, 63.0 – 67.1 °C (m.p.), Rf (PE/ EA 6/1 v/v): 0.72

¹H NMR (500 MHz, CDCl₃) δ 8.0 (s, 1H), 7.6 – 7.5 (m, 2H), 7.1 (t, *J* = 8.4 Hz, 2H), 2.2 – 2.1 (m, 2H), 1.7 – 1.6 (m, 5H), 1.4 – 1.3 (m, 2H), 1.3 – 1.1 (m, 4H), 0.9 – 0.8 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 162.4 (t, *J* = 29.0 Hz), 160.2 (d, *J* = 245.3 Hz), 132.2, 128.7 (d, *J* = 171.2 Hz), 126.1, 122.2 (d, *J* = 7.9 Hz), 118.8 (t, *J* = 253.3 Hz), 116.1 (d, *J* = 22.7 Hz), 37.4, 33.1, 31.5 (t, *J* = 23.0 Hz), 28.9 (t, *J* = 3.8 Hz), 26.6, 26.3.

¹⁹F NMR (470 MHz, CDCl₃) δ -105.6 (t, J = 17.4 Hz), -116.0 – -116.1 (m).

HRMS (ESI+TOF): calculated m/z $[M+H]^+$ for $[C_{16}H_{21}F_3NO]^+$: 300.1575, found: 300.1576.

N-(4-chlorophenyl)-4-cyclohexyl-2,2-difluorobutanamide (2j)

18.6 mg, 59% yield, white solid, 69.6 – 73.6 °C (m.p.), Rf (PE/ EA 6/1 v/v): 0.72 ¹H NMR (500 MHz, CDCl₃) δ 8.0 (s, 1H), 7.5 (d, *J* = 8.4 Hz, 2H), 7.3 (d, *J* = 8.4 Hz, 2H), 2.2 – 2.1 (m, 2H), 1.7 – 1.6 (m, 5H), 1.4 – 1.3 (m, 2H), 1.3 – 1.1 (m, 4H), 0.9 – 0.8 (m, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -105.5 - -105.6 (m). HDMS (ESL TOF): colorable of m (EM1411) for [C, 14, CI5 NO11, 216 1280, found: 216 1276)

HRMS (ESI+TOF): calculated m/z $[M+H]^+$ for $[C_{16}H_{21}CIF_2NO]^+$: 316.1280, found: 316.1276.

4-cyclohexyl-2,2-difluoro-N-(pyridin-2-yl)butanamide (2k)

15.9 mg, 56% yield, white solid, Rf (PE/ EA 4/1 v/v): 0.44

¹H NMR (500 MHz, CDCl₃) δ 8.7 (s, 1H), 8.4 – 8.3 (m, 1H), 8.2 (d, *J* = 8.4 Hz, 1H), 7.8 – 7.7 (m, 1H), 7.2 – 7.1 (m, 1H), 2.2 – 2.1 (m, 2H), 1.7 – 1.6 (m, 5H), 1.4 – 1.4 (m, 2H), 1.3 – 1.1 (m, 4H), 0.9 – 0.8 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 163.1 – 162.6 (m), 150.0, 148.4, 138.8, 121.1, 120.5 – 116.5 (m), 114.4, 37.4, 33.1, 31.6 (t, *J* = 23.0 Hz), 28.9, 26.6, 26.3.

¹⁹F NMR (470 MHz, CDCl₃) δ -106.0 (t, *J* = 17.0 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₅H₂₁F₂N₂O]⁺: 283.1622, found: 283.1623.

$$\overset{H^{F_3C}}{\underset{O}{\overset{F}{\longrightarrow}}} c_y$$

4-cyclohexyl-2-fluoro-N-phenyl-2-(trifluoromethyl)butanamide (2I)^[4]

14.6 mg, 44% yield, white solid, Rf (PE/ EA 4/1 v/v): 0.63

¹H NMR (500 MHz, $CDCl_3$) δ 8.0 (s, 1H), 7.6 (d, J = 7.9 Hz, 2H), 7.4 (t, J = 7.9 Hz, 2H), 7.2 (t, J = 7.7 Hz, 1H), 2.4 – 2.2 (m, 2H), 2.1 – 2.0 (m, 1H), 1.7 – 1.6 (m, 5H), 1.4 – 1.3 (m, 1H), 1.2 – 1.1 (m, 4H), 0.9 – 0.8 (m, 2H).

¹⁹F NMR (470 MHz, CDCl₃) δ -78.2 (d, J = 5.2 Hz), -176.7 (d, J = 38.5 Hz).

ethyl 4-cyclohexyl-2,2-difluorobutanoate (2m)

15.2 mg, 65% yield, Rf (PE/ EA 4/1 v/v): 0.72

¹H NMR (500 MHz, CDCl₃) δ 4.3 (q, *J* = 7.2 Hz, 2H), 2.1 – 2.0 (m, 2H), 1.7 – 1.5 (m, 5H), 1.4 - 1.3 (m, 4H), 1.3 - 1.2 (m, 4H), 0.9 – 0.8 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 164.6, 120.2 – 114.2 (m), 62.8, 37.3, 33.1, 32.2 (t, *J* = 23.1 Hz), 28.8 (t, *J* = 3.7 Hz), 26.6, 26.3, 14.1.

¹⁹F NMR (470 MHz, DMSO) δ -106.7 (t, *J* = 16.7 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₂H₂₁F₂O₂]⁺: 235.1510, found: 235.1504.

isopropyl 4-cyclohexyl-2,2-difluorobutanoate (2n)

13.5 mg, 54% yield, Rf (PE/ EA 4/1 v/v): 0.75

¹H NMR (500 MHz, CDCl₃) δ 5.2 - 5.1 (m, 1H), 2.1 – 2.0 (m, 2H), 1.7 - 1.6 (m, 5H), 1.3 (d, *J* = 6.3 Hz, 6H), 1.3 – 1.1 (m, 6H), 0.9 – 0.8 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 164.5 – 163.7 (m), 116.8 (t, *J* = 249.5 Hz), 71.0, 37.3, 33.1, 32.2 (t, *J* = 23.2 Hz), 28.9 (t, *J* = 3.8 Hz), 26.6, 26.3, 21.7.

¹⁹F NMR (470 MHz, CDCl₃) δ -106.2 (t, *J* = 16.7 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₃H₂₃F₂O₂]⁺: 249.1666, found: 249.1666.

6-(3-cyclohexyl-1,1-difluoropropyl)pyridin-2-amine (2o) [3]

20.1 mg, 79% yield, white solid, Rf (PE/ EA 4/1 v/v): 0.33 ¹H NMR (500 MHz, CDCl₃) δ 7.5 (t, *J* = 7.8 Hz, 1H), 6.9 (d, *J* = 7.4 Hz, 1H), 6.5 (d, *J* = 8.2 Hz, 1H), 4.6 (s, 2H), 2.3 – 2.2 (m, 2H), 1.7 – 1.6 (m, 5H), 1.3 – 1.2 (m, 2H), 1.2 – 1.0 (m, 4H), 0.9 – 0.8 (m, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -100.5 (t, *J* = 16.8 Hz).

2-(3-cyclohexyl-1,1-difluoropropyl)pyridine (2p)

12.2 mg, 51% yield, brown oil, Rf (PE/ EA 4/1 v/v): 0.78 ¹H NMR (500 MHz, CDCl₃) δ 8.7 (d, *J* = 4.3 Hz, 1H), 7.8 (t, *J* = 7.7 Hz, 1H), 7.6 (d, *J* = 7.9 Hz, 1H), 7.4 – 7.3 (m, 1H), 2.4 – 2.2 (m, 2H), 1.7 – 1.6 (m, 5H), 1.3 – 1.3 (m, 2H), 1.2 – 1.1 (m, 4H), 0.9 – 0.8 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 155.3 (t, *J* = 29.4 Hz), 149.5, 137.0, 124.6, 122.2 (t, *J* = 241.8 Hz), 120.0 (t, *J* = 4.6 Hz), 37.5, 34.1 (t, *J* = 25.2 Hz), 33.2, 29.5 (t, *J* = 3.8 Hz), 26.7, 26.4. ¹⁹F NMR (470 MHz, CDCl₃) δ -99.4 (t, *J* = 16.9 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₄H₂₀F₂N]⁺: 240.1564, found: 240.1565.

2-(3-cyclohexyl-1,1-difluoropropyl)-6-methylpyridine (2q)

13.8 mg, 55% yield, orange oil, Rf (PE/ EA 4/1 v/v): 0.80 ¹H NMR (500 MHz, CDCl₃) δ 7.6 (t, J = 7.7 Hz, 1H), 7.4 (d, J = 7.8 Hz, 1H), 7.2 (d, J = 7.7 Hz, 1H), 2.6 (s, 3H), 2.4 – 2.2 (m, 2H), 1.7 – 1.6 (m, 5H), 1.3 – 1.2 (m, 2H), 1.2 – 1.1 (m, 4H), 0.9 – 0.8 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 158.6, 154.9 – 154.4 (m), 137.1, 124.2, 122.3, 116.9 (t, *J* = 4.9 Hz), 37.5, 34.2 (t, *J* = 25.4 Hz), 33.2, 29.5 (t, *J* = 3.7 Hz), 26.7, 26.4, 24.6. ¹⁹F NMR (470 MHz, CDCl₃) δ -99.7 (t, *J* = 16.9 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₅H₂₂F₂N]⁺: 254.1720, found: 254.1719.

3-(3-cyclohexyl-1,1-difluoropropyl)-2-methoxypyridine (2r)

15.2 mg, 57% yield, light-yellow oil, Rf (PE/ EA 4/1 v/v): 0.83

¹H NMR (500 MHz, $CDCl_3$) δ 8.2 (d, J = 4.5 Hz, 1H), 7.8 (d, J = 7.2 Hz, 1H), 7.0 - 6.9 (m, 1H), 4.0 (s, 3H), 2.4 - 2.2 (m, 2H), 1.7 - 1.6 (m, 5H), 1.2 - 1.1 (m, 5H), 0.9 - 0.8 (m, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 160.6 (t, *J* = 4.1 Hz), 148.3, 136.0 (t, *J* = 8.2 Hz), 121.4 (t, *J* = 242.3 Hz), 119.7 (t, *J* = 27.7 Hz), 116.5, 53.8, 37.4, 34.0 (t, *J* = 25.8 Hz), 33.2, 30.1 (t, *J* = 3.7 Hz), 26.7, 26.4. ¹⁹F NMR (470 MHz, CDCl₃) δ -96.0 (t, *J* = 16.9 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₅H₂₂F₂NO]⁺: 270.1669, found: 270.1669.

5-(3-cyclohexyl-1,1-difluoropropyl)-2-methoxypyridine (2s)

18.3 mg, 68% yield, yellow oil, Rf (PE/ EA 4/1 v/v): 0.85

¹H NMR (500 MHz, CDCl₃) δ 8.3 (s, 1H), 7.7 - 7.6 (m, 1H), 6.8 (d, *J* = 8.7 Hz, 1H), 4.0 (s, 3H), 2.2 – 2.0 (m, 2H), 1.7 – 1.6 (m, 5H), 1.3 – 1.3 (m, 2H), 1.2 – 1.1 (m, 4H), 0.9 – 0.8 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 165.0, 144.4 (t, *J* = 7.1 Hz), 135.9 (t, *J* = 5.6 Hz), 126.5 (t, *J* = 28.1 Hz), 123.0 (t, *J* = 241.4 Hz), 110.8, 53.8, 37.4, 36.6 (t, *J* = 27.3 Hz), 33.2, 29.9 (t, *J* = 3.8 Hz), 26.6, 26.3.

¹⁹F NMR (470 MHz, CDCl₃) δ -93.9 (t, J = 16.0 Hz).

MeO

(8*R*,9*S*,13*S*,14*S*,17*S*)-3-methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*cyclopenta[*a*]phenanthren-17-yl 2-(4-(4-cyclohexyl-2,2-difluorobutanamido)phenyl)acetate (2t) 43.1 mg, 71% yield, white solid, Rf (PE/ EA 2/1 v/v): 0.65

¹H NMR (500 MHz, CDCl₃) δ 8.0 (s, 1H), 7.5 (d, *J* = 8.5 Hz, 2H), 7.3 (d, *J* = 8.5 Hz, 2H), 7.2 (d, *J* = 8.6 Hz, 1H), 6.7 (dd, *J* = 8.6, 2.8 Hz, 1H), 6.6 (d, *J* = 2.8 Hz, 1H), 4.7 (t, *J* = 8.4 Hz, 1H), 3.8 (s, 3H), 3.6 (s, 2H), 2.9 – 2.8 (m, 2H), 2.3 – 2.1 (m, 5H), 1.9 – 1.8 (m, 1H), 1.8 (dt, *J* = 12.5, 3.2 Hz, 1H), 1.7 – 1.7 (m, 4H), 1.6 (d, *J* = 14.0 Hz, 1H), 1.5 – 1.4 (m, 1H), 1.4 – 1.3 (m, 6H), 1.3 – 1.1 (m, 7H), 0.9 – 0.8 (m, 2H), 0.8 (s, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -105.6 (t, *J* = 17.4 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₃₇H₄₈F₂NO₄]⁺: 608.3551, found: 608.3547.

(1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl 2-(4-(4-cyclohexyl-2,2-difluorobutanamido)phenyl) acetate (2u)

36.2 mg, 76% yield, colorless solid, Rf (PE/ EA 6/1 v/v): 0.44

¹H NMR (500 MHz, CDCl₃) δ 7.9 (s, 1H), 7.5 (d, *J* = 8.5 Hz, 2H), 7.3 (d, *J* = 8.6 Hz, 2H), 4.7 (m, 1H), 3.6 (s, 2H), 2.2 – 2.1 (m, 2H), 1.9 – 1.8 (m, 1H), 1.8 – 1.6 (m, 8H), 1.5 (m, 1H), 1.4 – 1.3 (m, 3H), 1.3 – 1.1 (m, 6H), 1.1 – 1.0 (m, 1H), 1.0 – 0.9 (m, 2H), 0.9 (d, *J* = 6.5 Hz, 3H), 0.8 (d, *J* = 7.1 Hz, 3H), 0.7 (d, *J* = 7.0 Hz, 3H).

¹⁹F NMR (470 MHz, CDCl₃) δ -105.6 (t, *J* = 17.4 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₂₈H₄₂F₂NO₃]⁺: 478.3133, found: 478.3127.

2,2-difluoro-N,6-diphenylhexanamide (2v) [3]

15.5 mg, 51% yield, white solid, Rf (PE/ EA 6/1 v/v): 0.57

¹H NMR (500 MHz, $CDCl_3$) δ 8.0 (s, 1H), 7.6 (d, *J* = 7.9 Hz, 2H), 7.4 (t, *J* = 7.8 Hz, 2H), 7.3 (d, *J* = 6.9 Hz, 2H), 7.2 (t, *J* = 10.8 Hz, 4H), 2.7 (t, *J* = 7.8 Hz, 2H), 2.3 – 2.2 (m, 2H), 1.8 (p, *J* = 7.5 Hz, 2H), 1.7 - 1.6 (m, 2H).

 ^{19}F NMR (470 MHz, CDCl_3) δ -105.5 (m).

3-(3,3-dimethylbicyclo[2.2.1]heptan-2-yl)-2,2-difluoro-N-phenylpropanamide (2w)

14.5 mg, 47% yield, white solid, Rf (PE/ EA 6/1 v/v): 0.53

¹H NMR (500 MHz, $CDCl_3$) δ 8.0 (s, 1H), 7.6 (d, J = 7.6 Hz, 2H), 7.4 (t, J = 8.0 Hz, 2H), 7.2 (t, J = 7.4 Hz, 1H), 2.2 – 2.1 (m, 3H), 1.8 (s, 1H), 1.7 – 1.6 (m, 2H), 1.4 – 1.3 (m, 5H), 1.2 – 1.1 (m, 1H), 1.0 (s, 3H), 0.8 (s, 3H).

¹⁹F NMR (470 MHz, CDCl₃) δ -103.3 – -105.3 (m).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₈H₂₄F₂NO]⁺: 308.1826, found: 308.1824.

2,2-difluoro-4-(4-methylcyclohex-3-en-1-yl)-N-phenylpentanamide (2x)

20.5 mg, 67% yield, light-yellow oil, Rf (PE/ EA 6/1 v/v): 0.48

¹H NMR (500 MHz, $CDCl_3$) δ 8.0 (s, 1H), 7.6 (d, *J* = 7.5 Hz, 2H), 7.4 (t, *J* = 7.4 Hz, 2H), 7.2 (t, *J* = 7.1 Hz, 1H), 5.4 (s, 1H), 2.3 (q, *J* = 17.3 Hz, 1H), 2.0 – 1.9 (m, 4H), 1.8 – 1.7 (m, 2H), 1.7 – 1.6 (m, 1H), 1.6 (s, 3H), 1.3 – 1.2 (m, 1H), 1.0 (d, *J* = 6.5 Hz, 3H).

¹⁹F NMR (470 MHz, CDCl₃) δ -101.9 – -104.8 (m).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₈H₂₄F₂NO]⁺: 308.1826, found: 308.1821.

$$H$$
 F C_5H_{11}

2,2-difluoro-3-methyl-N-phenylnonanamide (2y)

15.8 mg, 56% yield, colorless oil, Rf (PE/ EA 6/1 v/v): 0.56 ¹H NMR (500 MHz, CDCl₃) δ 8.0 (s, 1H), 7.6 (d, *J* = 8.0 Hz, 2H), 7.4 (t, *J* = 7.8 Hz, 2H), 7.2 (t, *J* = 7.7 Hz, 1H), 2.5 – 2.2 (m, 1H), 1.7 - 1.6 (m, 1H), 1.6 (s, 2H), 1.5 - 1.4 (m, 2H), 1.3 – 1.2 (m, 6H), 1.1 (d, *J* = 7.0 Hz, 1H), 1.0 (t, *J* = 7.5 Hz, 1H), 0.9 (t, *J* = 7.5 Hz, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -109.8 - 112.9 (m).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₆H₂₄F₂NO]⁺: 284.1826, found: 284.1826.

4-butoxy-2,2-difluoro-N-phenylbutanamide (2z) [2]

15.2 mg, 56% yield, yellow oil, Rf (PE/ toluene 1/2 v/v): 0.26

¹H NMR (500 MHz, CDCl₃) δ 8.0 (s, 1H), 7.6 (d, *J* = 7.8 Hz, 2H), 7.4 (t, *J* = 8.0 Hz, 2H), 7.2 (t, *J* = 7.4 Hz, 1H), 3.6 (t, *J* = 6.3 Hz, 2H), 3.4 (t, *J* = 6.6 Hz, 2H), 2.6 – 2.4 (m, 2H), 1.5 – 1.4 (m, 2H), 1.3 – 1.2 (m, 2H), 0.8 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.9 – 161.0 (m), 136.4, 129.3, 125.5, 120.2, 119.5 - 115.5 (m), 71.2, 64.0 (t, *J* = 6.1 Hz), 34.4 (t, *J* = 23.3 Hz), 31.7, 19.4, 13.9.

¹⁹F NMR (470 MHz, CDCl₃) δ -104.3 (m).

6-(1,1-difluoroheptyl)pyridin-2-amine (2aa)

15.9 mg, 70% yield, yellow oil, Rf (PE/ EA 4/1 v/v): 0.52 ¹H NMR (500 MHz, CDCl₃) δ 7.5 (t, *J* = 7.8 Hz, 1H), 6.9 (d, *J* = 7.4 Hz, 1H), 6.5 (d, *J* = 8.2 Hz, 1H), 4.6 (s, 2H), 2.3 - 2.1 (m, 2H), 1.4 - 1.3 (m, 2H), 1.3 - 1.2 (m, 6H), 0.9 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 158.3, 153.6 (t, J = 29.7 Hz), 138.5, 121.9 (t, J = 242.2 Hz), 109.9 (t, J = 5.2 Hz), 109.8, 36.7 (t, J = 25.5 Hz), 31.7, 29.1, 22.6, 22.2 (t, J = 4.0 Hz), 14.2.

¹⁹F NMR (470 MHz, CDCl₃) δ -100.3 (t, *J* = 16.9 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₂H₁₉F₂N₂]⁺: 229.1516, found: 229.1516.

6-(cyclohexyldifluoromethyl)pyridin-2-amine (2ab)

6.4 mg, 28% yield, white solid, Rf (PE/ EA 4/1 v/v): 0.31

¹H NMR (500 MHz, $CDCl_3$) δ 7.5 (t, J = 7.8 Hz, 1H), 6.9 (d, J = 7.4 Hz, 1H), 6.5 (d, J = 8.2 Hz, 1H), 4.6 (s, 2H), 2.4 - 2.2 (m, 1H), 1.8 - 1.6 (m, 5H), 1.3 - 1.1 (m, 5H).

¹³C NMR (126 MHz, CDCl₃) δ 158.2, 153.3, 138.2, 122.4, 110.7 (t, *J* = 5.6 Hz), 109.6, 43.5 (t, *J* = 24.2 Hz), 26.2, 25.8, 25.5 (t, *J* = 3.9 Hz).

¹⁹F NMR (470 MHz, CDCl₃) δ -109.2 (d, *J* = 14.9 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₂H₁₇F₂N₂]⁺: 227.1360, found: 227.1353.

6-(2-(3,3-dimethylbicyclo[2.2.1]heptan-2-yl)-1,1-difluoroethyl)pyridin-2-amine (2ac)

14.1 mg, 51% yield, brown oil, Rf (PE/ EA 6/1 v/v): 0.40

¹H NMR (500 MHz, CDCl₃) δ 7.5 (t, *J* = 7.8 Hz, 1H), 6.9 (d, *J* = 7.4 Hz, 1H), 6.5 (d, *J* = 8.2 Hz, 1H), 4.6 (s, 2H), 2.3 - 2.2 (m, 2H), 2.1 (s, 1H), 1.7 (s, 1H), 1.6 (s, 1H), 1.6 - 1.5 (m, 2H), 1.4 - 1.3 (m, 1H), 1.3 - 1.2

(m, 2H), 1.1 (d, J = 9.6 Hz, 1H), 0.9 (s, 3H), 0.8 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 158.2, 154.0 (t, J = 28.4 Hz), 138.5, 122.4 (t, J = 242.3 Hz), 109.8 (t, J = 5.3 Hz), 109.7, 48.8, 44.3, 42.3, 37.4, 37.2, 33.3 (t, J = 24.9 Hz), 31.9, 24.8, 22.3, 20.4.
¹⁹F NMR (470 MHz, CDCl₃) δ -98.1 - -99.7 (m).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₆H₂₃F₂N₂]⁺: 281.1829, found: 281.1823.

6-(1,1-difluoro-3-(4-methylcyclohex-3-en-1-yl)butyl)pyridin-2-amine (2ad)

12.5 mg, 45% yield, colorless oil, Rf (PE/ EA 4/1 v/v): 0.33

¹H NMR (500 MHz, $CDCl_3$) δ 1H NMR (500 MHz, $CDCl_3$) δ 7.5 (t, J = 7.8 Hz, 1H), 6.9 (d, J = 7.4 Hz, 1H), 6.5 (d, J = 8.2 Hz, 1H), 5.3 (s, 1H), 4.6 (s, 2H), 2.4 – 2.3 (m, 1H), 2.0 – 1.8 (m, 4H), 1.7 – 1.6 (m, 3H), 1.6 (s, 3H), 1.5 - 1.4 (m, 1H), 1.3 – 1.2 (m, 1H), 0.9 (d, J = 6.8 Hz, 3H).

¹⁹F NMR (470 MHz, CDCl₃) δ -95.7 – -96.7 (m), -100.4 – -100.6(m).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₆H₂₃F₂N₂]⁺: 281.1829, found: 281.1827.

6-(3-(cyclohexyloxy)-1-fluoropropyl)pyridin-2-amine (2ae)

16.0 mg, 59% yield, light-yellow oil, Rf (PE/ EA 4/1 v/v): 0.15

¹H NMR (500 MHz, $CDCl_3$) δ 7.5 (t, J = 7.8 Hz, 1H), 6.9 (d, J = 7.4 Hz, 1H), 6.5 (d, J = 8.2 Hz, 1H), 4.6 (s, 2H), 3.6 (t, J = 7.2 Hz, 2H), 3.2 – 3.1 (m, 1H), 2.6 – 2.5 (m, 2H), 1.8 – 1.7 (m, 2H), 1.7 – 1.6 (m, 3H), 1.5 – 1.4 (m, 1H), 1.2 – 1.1 (m, 4H).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₄H₂₁F₂N₂O]⁺: 271.1622, found: 271.1623.

6-(3-butoxy-1,1-difluoropropyl)pyridin-2-amine (2af)^[5]

15.3 mg, 63% yield, light-yellow oil, Rf (PE/ EA 4/1 v/v): 0.15

¹H NMR (500 MHz, $CDCl_3$) δ 7.5 (t, *J* = 7.9 Hz, 1H), 6.9 (t, *J* = 6.9 Hz, 1H), 6.5 (d, *J* = 8.2 Hz, 1H), 4.6 (s, 2H), 3.6 (t, *J* = 7.1 Hz, 2H), 3.4 (t, *J* = 6.6 Hz, 3H), 2.6 - 2.5 (m, 2H), 1.5 - 1.4 (m, 2H), 1.3 - 1.2 (m, 2H), 0.9 (t, *J* = 7.2 Hz, 3H).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₂H₁₉F₂N₂O]⁺: 245.1465, found: 245.1468.

6-(3-(dimethyl(phenyl)silyl)-1,1-difluoropropyl)pyridin-2-amine (2ag) [3]

27.7 mg, 91% yield, colorless oil, Rf (PE/ EA 6/1 v/v): 0.62 ¹H NMR (500 MHz, CDCl₃) δ 7.5 – 7.4 (m, 2H), 7.4 – 7.3 (m, 4H), 6.9 – 6.8 (m, 1H), 6.5 – 6.4 (m, 1H), 4.7 (s, 2H), 2.2 – 2.1 (m, 2H), 0.9 – 0.8 (m, 2H), 0.3 (s, 6H).

6-(1,1-difluoropropyl)pyridin-2-amine (2ah)^[6]

15.2 mg, 89% yield, colorless oil, Rf (PE/ toluene 1/2 v/v): 0.28

¹H NMR (500 MHz, CDCl₃) δ 7.5 (t, *J* = 7.8 Hz, 1H), 6.9 (d, *J* = 7.4 Hz, 1H), 6.5 (d, *J* = 8.2 Hz, 1H), 4.6 (s, 2H), 2.3 - 2.1 (m, 2H), 1.0 (t, *J* = 7.5 Hz, 3H).

¹⁹F NMR (470 MHz, CDCl₃) δ -102.3 (t, *J* = 16.6 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₈H₁₁F₂N₂]⁺: 173.0890, found: 173.0890.

5-(1,1-difluoropropyl)-2-methoxypyridine (2ai)

10.3 mg, 55% yield, colorless oil, Rf (PE/ toluene 1/2 v/v): 0.43

¹H NMR (500 MHz, CDCl₃) δ 8.3 (s, 1H), 7.7 - 7.6 (m, 1H), 6.8 (d, *J* = 8.7 Hz, 1H), 4.0 (s, 3H), 2.2 – 2.1 (m, 2H), 1.0 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 165.1, 144.4 (t, *J* = 7.0 Hz), 135.9 (t, *J* = 5.5 Hz), 126.2 (t, *J* = 27.6 Hz), 125.0 - 120.9 (m), 110.8, 53.8, 32.3 (t, *J* = 28.4 Hz), 6.9 (t, *J* = 5.0 Hz).

¹⁹F NMR (470 MHz, CDCl₃) δ -96.2 (t, J = 16.0 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₉H₁₂F₂NO]⁺: 188.0887, found: 188.0883.

2,2-difluoro-N-phenylbutanamide (2aj)

9.4 mg, 47% yield, colorless oil, Rf (PE/ EA 4/1 v/v): 0.54

¹H NMR (500 MHz, CDCl₃) δ 8.0 (s, 1H), 7.6 (d, *J* = 7.7 Hz, 2H), 7.4 (t, *J* = 8.0 Hz, 2H), 7.2 (t, *J* = 7.4 Hz, 1H), 2.3 – 2.1 (m, 2H), 1.1 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 165.1 – 160.4 (m), 136.2, 129.4, 125.7, 120.3, 118.8, 27.4 (t, J = 24.0 Hz), 6.0 (t, J = 5.5 Hz).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₀H₁₂F₂NO]⁺: 200.0887, found: 200.0885.

2,2-difluoro-N-(4-fluorophenyl)butanamide (2ak)

8.1 mg, 37% yield, light-yellow oil, Rf (PE/ toluene 1/2 v/v): 0.65

¹H NMR (500 MHz, CDCl₃) δ 8.0 (s, 1H), 7.5 (dd, *J* = 9.0, 4.6 Hz, 2H), 7.1 (t, *J* = 8.6 Hz, 2H), 2.3 – 2.1 (m, 2H), 1.1 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.7 – 161.7 (m), 160.2 (d, *J* = 245.5 Hz), 132.2, 122.3 (d, *J* = 8.1 Hz), 118.8 (t, *J* = 253.1 Hz), 116.1 (d, *J* = 22.7 Hz), 27.4 (t, *J* = 24.0 Hz), 6.0 (t, *J* = 5.3 Hz).

 ^{19}F NMR (470 MHz, CDCl3) δ -107.4 (t, J = 17.4 Hz), -116.0 - -116.1 (m).

4-(cyclohexyloxy)-2,2-difluoro-N-(3-(methylthio)phenyl)butanamide (2al)

24.4 mg, 71% yield, white solid, Rf (PE/ EA 4/1 v/v): 0.43

¹H NMR (500 MHz, CDCl₃) δ 8.1 (s, 1H), 7.6 (s, 1H), 7.3 (d, *J* = 5.2 Hz, 2H), 7.1 (d, *J* = 5.8 Hz, 1H), 3.7 – 3.6 (m, 1H), 3.3 – 3.2 (m, 1H), 2.6 – 2.4 (m, 5H), 1.9 – 1.8 (m, 2H), 1.7 – 1.6 (m, 2H), 1.5 – 1.4 (m, 1H), 1.3 – 1.1 (m, 5H).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₇H₂₃DF₂NO₂S]⁺: 345.1559, found: 345.1553.

4-(cyclohexyloxy)-2,2-difluoro-N-(4-(methylthio)phenyl)butanamide (2am)

18.9 mg, 55% yield, white solid, Rf (PE/ EA 4/1 v/v): 0.48

¹H NMR (500 MHz, CDCl₃) δ 8.0 (s, 1H), 7.5 (d, *J* = 8.7 Hz, 2H), 7.3 (d, *J* = 1.9 Hz, 2H), 3.7 - 3.6 (m, 1H), 3.3 - 3.2 (m, 1H), 2.6 - 2.4 (m, 5H), 1.9 - 1.8 (m, 2H), 1.7 - 1.6 (m, 2H), 1.5 - 1.4 (m, 1H), 1.2 - 1.1 (m, 5H).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₇H₂₃DF₂NO₂S]⁺: 345.1559, found: 345.1551.

4-butoxy-2,2-difluoro-N-(4-(methylthio)phenyl)butanamide (2an)

18.7 mg, 59% yield, white solid, Rf (PE/ EA 4/1 v/v): 0.45

¹H NMR (500 MHz, CDCl₃) δ 8.0 (s, 1H), 7.5 (d, *J* = 8.6 Hz, 2H), 7.3 (d, *J* = 3.5 Hz, 2H), 3.7 – 3.6 (m, 1H), 3.4 (t, *J* = 6.6 Hz, 2H), 2.6 – 2.4 (m, 5H), 1.5 – 1.4 (m, 2H), 1.3 – 1.2 (m, 2H), 0.8 (t, *J* = 7.4 Hz, 3H). HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₅H₂₁DF₂NO₂S]⁺: 319.1402, found: 319.1395.

6-(3-(cyclohexyloxy)-1-fluoropropyl)pyridin-2-amine (2ao)

14.3 mg, 53% yield, light-yellow oil, Rf (PE/ EA 4/1 v/v): 0.15

¹H NMR (500 MHz, $CDCI_3$) δ 7.5 (t, J = 7.9 Hz, 1H), 6.9 (d, J = 7.5 Hz, 1H), 6.5 (d, J = 8.2 Hz, 1H), 4.6 (s, 2H), 3.6 – 3.5 (m, 1H), 3.2 – 3.1 (m, 1H), 2.6 – 2.5 (m, 2H), 1.9 – 1.8 (m, 2H), 1.7 – 1.6 (m, 3H), 1.5 – 1.4 (m, 1H), 1.2 – 1.1 (m, 4H).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₄H₂₀DF₂N₂O]⁺: 272.1685, found: 272.1678.

6-(3-butoxy-1,1-difluoropropyl)pyridin-2-amine (2ap)

8.8 mg, 36% yield, light-yellow oil, Rf (PE/ EA 4/1 v/v): 0.15

¹H NMR (500 MHz, CDCl₃) δ 7.5 (t, *J* = 7.9 Hz, 1H), 6.9 (d, *J* = 7.3 Hz, 1H), 6.5 (d, *J* = 8.3 Hz, 1H), 4.6 (s, 2H), 3.6 – 3.5 (m, 1H), 3.4 (t, *J* = 6.7 Hz, 2H), 2.6 – 2.5 (m, 2H), 1.5 – 1.4 (m, 2H), 1.3 – 1.2 (m, 2H), 0.9 (t, *J* = 7.5 Hz, 3H).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₁₂H₁₈DF₂N₂O]⁺: 246.1528, found: 246.1522.

6-(1,1-difluoropropyl-3-d)pyridin-2-amine (2aq)

14.6 mg, 84% yield, light-yellow oil, Rf (PE/ toluene 1/2 v/v): 0.28

¹H NMR (500 MHz, $CDCl_3$) δ 7.5 (t, J = 7.8 Hz, 1H), 6.9 (d, J = 7.3 Hz, 1H), 6.5 (d, J = 8.2 Hz, 1H), 4.6 (s, 2H), 2.3 - 2.1 (m, 2H), 1.0 (t, J = 7.5 Hz, 2H).

HRMS (ESI+TOF): calculated m/z [M+H]⁺ for [C₈H₁₀DF₂N₂]⁺: 174.0953, found: 174.0942.

α, α -difluoro-4-(1-methylethyl)-*N*-phenyl-1-cyclohexene-1-propanamide (2ar)^[2]

13.0 mg, 42% yield, colorless oil, Rf (PE/ EA 6/1 v/v): 0.37

¹H NMR (500 MHz, CDCl₃) δ 7.9 (s, 1H), 7.5 (d, *J* = 8.2 Hz, 2H), 7.4 (t, *J* = 7.7 Hz, 2H), 7.2 (t, *J* = 7.3 Hz, 1H), 5.7 (s, 1H), 2.8 (t, *J* = 17.5 Hz, 2H), 2.1 - 2.0 (m, 2H), 1.8 – 1.7 (m, 2H), 1.5 - 1.4 (m, 1H), 1.3 – 1.1 (m, 3H), 0.8 (t, *J* = 7.3 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 162.3 (t, *J* = 169.5 Hz), 136.2, 129.4, 129.3, 128.2 (t, *J* = 4.0 Hz), 125.7, 120.4, 117.9, 41.8 (t, *J* = 23.2 Hz), 39.7, 32.2, 30.3, 29.3, 26.5, 20.0, 19.7. ¹⁹F NMR (470 MHz, CDCl₃) δ -104.0 (t, *J* = 17.5 Hz).

6-(1,1-difluoro-2-(4-isopropylcyclohex-1-en-1-yl)ethyl)pyridin-2-amine (2as)^[2]

25.4 mg, 91% yield, light-yellow oil, Rf (PE/ EA 4/1 v/v): 0.32

¹H NMR (500 MHz, $CDCl_3$) δ 7.5 (t, J = 7.8 Hz, 1H), 6.9 (d, J = 7.4 Hz, 1H), 6.5 (d, J = 8.2 Hz, 1H), 5.5 (s, 1H), 4.7 (s, 2H), 2.8 (t, J = 17.2 Hz, 2H), 2.0 – 1.9 (m, 2H), 1.7 – 1.6 (m, 2H), 1.5 – 1.3 (m, 1H), 1.3 – 1.0 (m, 3H), 0.8 (t, J = 6.9 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 158.2, 153.7 (t, *J* = 28.9 Hz), 138.3, 129.9 (t, *J* = 3.1 Hz), 127.9, 121.1, 109.9 (t, *J* = 5.3 Hz), 109.7, 44.7 (t, *J* = 26.0 Hz), 39.7, 32.3, 30.3, 29.3, 26.6, 20.1, 19.8.
¹⁹F NMR (470 MHz, CDCl₃) δ -98.9 (t, *J* = 17.3 Hz).

9. Reference

- [1] D. R. Motati, D. Uredi, A. G. Burra, J. P. Bowen, F. R. Fronczek, C. R. Smitha, E. B. Watkins, Org. Chem. Front. 2020, 7, 1095-1106.
- [2] Y. J. Yu, F. L. Zhang, T. Y. Peng, C. L. Wang, J. Cheng, C. Chen, K. N. Houk, Y. F. Wang, Science, 2021, 371, 1232-1240.
- [3] C. Liu, K. Li, R. Shang, ACS Catal. 2022, **12(7)**, 4103-4109.

[4] J. H. Ye, P. Bellotti, C. Heusel, F. Glorius, Angew. Chem.Int. Ed. 2022, 61, e2021154.

- [5] P. Xu, X. Y. Wang, Z. J. Wang, J. J. Zhao, X. D. Cao, X. C. Xiong, Y. C. Yuan, S. L. Zhu, D. Guo, X. Zhu, Org. Lett. 2022, 24(22), 4075-4080.
- [6] N. Philippe, E. Omri, B. Simone, G. Andreas, US2022305010A1.

10 ¹H, ¹³C and ¹⁹F NMR spectra

¹⁹F NMR of **4-cyclohexyl-2,2-difluoro-***N***-(***m***-tolyl)butanamide (2c)** (470 MHz, CDCl₃)

7.0

4.0 f1 (ppm) 3.5 3.0 -2.0

¹³C NMR of 4-cyclohexyl-2,2-difluoro-N-(o-tolyl)butanamide (2d) (126 MHz, CDCl₃)

-110

-130

-140

-120

-160

-150

-170 -180 -190

0

-10 -20

-40

-30

-50

-60

-70

-80

-90 -100 fl (ppm) -200

¹H NMR of 4-cyclohexyl-2,2-difluoro-*N*-(4-methoxyphenyl)butanamide (2e) (500 MHz, CDCl₃)

90 80 70 f1 (ppm) 60 50 40 30 20 10

-20

-10

200

190 180 170 160

140 130 120 110 100

150

¹⁹F NMR of 4-cyclohexyl-2,2-difluoro-N-(4-methoxyphenyl)butanamide (2e) (470 MHz, CDCl₃)

¹³C NMR of 4-cyclohexyl-2,2-difluoro-N-(4-(methylthio)phenyl)butanamide (2f) (126 MHz, CDCl₃)

¹H NMR of 4-cyclohexyl-2,2-difluoro-N-(3-(methylthio)phenyl)butanamide (2g) (500 MHz, CDCl₃)

80 70

60 50

40 30 20 10

-10 -20

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 <th1</th>
¹⁹F NMR of 4-cyclohexyl-2,2-difluoro-N-(3-(methylthio)phenyl)butanamide (2g) (470 MHz, CDCl₃)

¹³C NMR of 4-cyclohexyl-2,2-difluoro-N-(2-(methylthio)phenyl)butanamide (2h) (126 MHz, CDCl₃)

¹⁹F NMR of 4-cyclohexyl-2,2-difluoro-N-(2-(methylthio)phenyl)butanamide (2h) (470 MHz, CDCl₃)

70 60 50 40 30 20

-20

-10

10

0

200

190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

¹H NMR of 4-cyclohexyl-2,2-difluoro-N-(4-fluorophenyl)butanamide (2i) (500 MHz, CDCl₃)

100 90 80 70 60 50 f1 (ppm) 40 30

20 10

180

170 160

200 190

150 140 130 120 110

-20

-10

¹⁹F NMR of *N*-(4-chlorophenyl)-4-cyclohexyl-2,2-difluorobutanamide (2j) (470 MHz, CDCl₃)

¹³C NMR of 4-cyclohexyl-2,2-difluoro-N-(pyridin-2-yl)butanamide (2k) (126 MHz, CDCl₃)

¹⁹F NMR of 4-cyclohexyl-2,2-difluoro-N-(pyridin-2-yl)butanamide (2k) (470 MHz, CDCl₃)

110 100 90 80 70 60 50 f1 (ppm)

130 120

-10 -20

. . .

40 30

20 10

200

190 180 170 160

150 140

¹H NMR of ethyl 4-cyclohexyl-2,2-difluorobutanoate (2m) (500 MHz, CDCl₃)

¹H NMR of isopropyl 4-cyclohexyl-2,2-difluorobutanoate (2n) (500 MHz, CDCl₃)

¹⁹F NMR of isopropyl 4-cyclohexyl-2,2-difluorobutanoate (2n) (470 MHz, CDCl₃)

¹H NMR of 6-(3-cyclohexyl-1,1-difluoropropyl)pyridin-2-amine (20) (500 MHz, CDCl₃)

70 60 50 40 30 20

-10 -20

10 0

¹³C NMR of **2-(3-cyclohexyl-1,1-difluoropropyl)pyridine (2p)** (126 MHz, CDCl₃)

¹⁹F NMR of **2-(3-cyclohexyl-1,1-difluoropropyl)pyridine** (**2p**) (470 MHz, CDCl₃)

100 90 80 f1 (ppm)

190 180 170 160 150 140 130 120 110

200

¹H NMR of 2-(3-cyclohexyl-1,1-difluoropropyl)-6-methylpyridine (2q) (500 MHz, CDCl₃)

¹³C NMR of 2-(3-cyclohexyl-1,1-difluoropropyl)-6-methylpyridine (2q) (126 MHz, CDCl₃)

¹⁹F NMR of **2-(3-cyclohexyl-1,1-difluoropropyl)-6-methylpyridine** (**2q**) (470 MHz, CDCl₃)

¹³C NMR of **3-(3-cyclohexyl-1,1-difluoropropyl)-2-methoxypyridine (2r)** (126 MHz, CDCl₃)

fl (ppm)

 -10 -21

¹H NMR of 5-(3-cyclohexyl-1,1-difluoropropyl)-2-methoxypyridine (2s) (500 MHz, CDCl₃)

-60

-70 -80

10

0 -10

-20 -30 -40 -50

¹H NMR of (8*R*,9*S*,13*S*,14*S*,17*S*)-3-methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*cyclopenta[*a*]phenanthren-17-yl 2-(4-(4-cyclohexyl-2,2-difluorobutanamido)phenyl)acetate (2t) (500 MHz, CDCl₃)

-90 -100 f1 (ppm) -120 -130

-110

-140 -150 -160

-170 -180

-190 -200

¹⁹F NMR of (8*R*,9*S*,13*S*,14*S*,17*S*)-3-methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-17-yl 2-(4-(4-cyclohexyl-2,2-difluorobutanamido)phenyl)acetate (2t) (470 MHz, CDCl₃)

¹⁹F NMR of (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 2-(4-(4-cyclohexyl-2,2difluorobutanamido)phenyl) acetate (2u) (470 MHz, CDCl₃)

-50

-60

-10

-20

-30

-40

-70 -80 ¹H NMR of **2,2-difluoro-N,6-diphenylhexanamide** (2v) (500 MHz, CDCl₃)

-90

-100 -110 f1 (ppm)

-200

-190

-180

-120 -130 -140 -150 -160 -170

¹H NMR of **3-(3,3-dimethylbicyclo[2.2.1]heptan-2-yl)-2,2-difluoro-***N***-phenylpropanamide (2w)** (500 MHz, CDCl₃)

¹H NMR of 2,2-difluoro-4-(4-methylcyclohex-3-en-1-yl)-N-phenylpentanamide (2x) (500 MHz, CDCl₃)

4.0 3.5 f1 (ppm)

5.0 4.5 2.5 2.0

6.5 6.0 5.5

7.0

¹⁹F NMR of **2,2-difluoro-3-methyl-N-phenylnonanamide (2y)** (470 MHz, CDCl₃)

¹³C NMR of 4-butoxy-2,2-difluoro-N-phenylbutanamide (2z) (126 MHz, CDCl₃)

4.5 fl (ppm)

4.0 3.5 3.0 2.5 -0.5

1.0 0.5

7.0

8.0

6.0 5.5

10.0

¹³C NMR of **6-(1,1-difluoroheptyl)pyridin-2-amine (2aa)** (126 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl(pps)

¹⁹F NMR of 6-(1,1-difluoroheptyl)pyridin-2-amine (2aa) (470 MHz, CDCl₃)

¹⁹F NMR of **6-(cyclohexyldifluoromethyl)pyridin-2-amine (2ab)** (470 MHz, CDCl₃)

¹H NMR of **6-(2-(3,3-dimethylbicyclo[2.2.1]heptan-2-yl)-1,1-difluoroethyl)pyridin-2-amine (2ac)** (500 MHz, CDCl₃)

¹⁹F NMR of **6-(2-(3,3-dimethylbicyclo[2.2.1]heptan-2-yl)-1,1-difluoroethyl)pyridin-2-amine (2ac)** (470 MHz, CDCl₃)

¹H NMR of 6-(3-(cyclohexyloxy)-1-fluoropropyl)pyridin-2-amine (2ae) (500 MHz, CDCl₃)

¹H NMR of 6-(3-butoxy-1,1-difluoropropyl)pyridin-2-amine (2af) (500 MHz, CDCl₃)

¹⁹F NMR of **5-(1,1-difluoropropyl)-2-methoxypyridine (2ai)** (470 MHz, CDCl₃)

¹³C NMR of **2,2-difluoro-***N***-(4-fluorophenyl)butanamide (2ak)** (126 MHz, CDCl₃)

130 120 f1 (ppm) 90 80 70 60 50 40 30

¹⁹F NMR of 2,2-difluoro-N-(4-fluorophenyl)butanamide(2ak) (470 MHz, CDCl₃)

--107.34 --107.37 --107.37 -116.03 -116.04 -116.05 -116.05

¹H NMR of **4-(cyclohexyloxy)-2,2-difluoro-***N***-(3-(methylthio)phenyl)butanamide (2al)** (500 MHz, CDCl₃)

¹H NMR of **4-(cyclohexyloxy)-2,2-difluoro**-*N*-(**4-(methylthio)phenyl)butanamide (2am)** (500 MHz, CDCl₃)

¹H NMR of 4-butoxy-2,2-difluoro-*N*-(4-(methylthio)phenyl)butanamide (2an) (500 MHz, CDCl₃)

2.00-I

F00:2

1.12. 1.00<u>-</u> 2.00 £ 3.03 £ 1.00 £ 4.21 £

1.5

1.0 0.5 0.0

-0.5 -1.0

-1.5 -2.0 -2.5 -3.0

F00-1

6.0 5.5

1.00H

1.00-I

10.0

9.0 8.5 8.0

9.5

¹H NMR of α, α -difluoro-4-(1-methylethyl)-*N*-phenyl-1-cyclohexene-1-propanamide (2ar) (500 MHz, CDCl₃)

¹³C NMR of α, α -difluoro-4-(1-methylethyl)-*N*-phenyl-1-cyclohexene-1-propanamide (2ar) (126 MHz, CDCl₃)

¹⁹F NMR of α, α -difluoro-4-(1-methylethyl)-*N*-phenyl-1-cyclohexene-1-propanamide (2ar) (470 MHz, CDCl₃)

¹H NMR of **6-(1,1-difluoro-2-(4-isopropylcyclohex-1-en-1-yl)ethyl)pyridin-2-amine (2as)** (500 MHz, CDCl₃)

¹⁹F NMR of **6-(1,1-difluoro-2-(4-isopropylcyclohex-1-en-1-yl)ethyl)pyridin-2-amine (2as)** (470 MHz, CDCl₃)

-100 -110 -120 -130 -140 -150 -160 -170 -180 f1 (span)

-190 -20

-50 -60 -70 -80

-90

0

-10

-20

-30

-40