Photoinduced, Additive- and Photosensitizer-free

Multi-component Synthesis of

Naphthoselenazol-2-amines With Air in Water

Hong-Tao Ji, Ke-Li Wang, Wen-Tao Ouyang, Qing-Xia Luo, Hong-Xia Li, Wei-Min He*

School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China

E-mail: weiminhe@usc.edu.cn

Table of Content

1. General Information	S2
2. Experimental Section	S4
3. Characterization Data of Products	S10
4. References	
5. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra of Products	S24

1. General Information

Unless otherwise noted, all reagents and solvents were obtained from commercial suppliers and used without further purification. GC yield was detected by Agilent GC-MS 8890/5977B. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel. ¹H NMR spectra were recorded at 500 MHz and ¹³C NMR spectra were recorded at 125 MHz by using a Bruker Avance 500 spectrometer. ¹⁹F NMR data were collected at 471 MHz with complete proton decoupling. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (¹H NMR: CDCl₃ 7.26 ppm, ¹³C NMR: CDCl₃ 77.16 ppm,), the chemical shifts (δ) were expressed in ppm and J values were given in Hz. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet, dd = doublet of doublets, br = broad. Mass spectra were performed on a spectrometer operating on ESI-TOF. UV/Vis spectra were recorded using a Shimadzu UV-2600 spectrophotometer. The crude products were purified by HPLC (LaboACE LC-5060, Japan Analytical Industry Co., Ltd., Japan) equipped with Jaigel 2.5 HR columns with dichloromethane as the eluent. Cyclic voltammetry was performed on a CHI 660E potentiostat, and the conditions are as follow: a glassy carbon disk working electrode (diameter, 3 mm), Pt disk and Ag/AgCl (0.3 M in MeCN) as counter and reference electrode. The fluorescence emission intensities were recorded on a Hitachi F-7100 fluorescence spectrophotometer.

Photographic depiction of the reaction setup:

Manufacturer: Beijing Rogertech Ltd.

Model: RLR-22CU

Value: 5836.430 µW/cm²/nm

Energy peak wavelength: 453 nm

Peak width at half-height: 22.1 nm

Material of the irradiation vessel: Schlenk flask

Not use any filters

Figure S1 LED spectrum test report

Figure S2 Photographic depiction of the reaction setup

2. Experimental Section

2.1 General Experimental Procedures for Compounds 4

To a 10 mL Schlenk flask equipped with a stirring bar were added 2-isocyanonaphthalene **1** (0.20 mmol), selenium powder **2** (0.24 mmol), amine **3** (0.24 mmol) and H₂O (2.0 mL). The reaction mixture was stirred and irradiatted by 10 W blue LEDs (455 nm) under room temperature for 12 hrs. After completion, the reaction mixture was extracted with 5 mL ethyl acetate, organic phase was dried and concentrated under reduced pressure. The pure products **4** were purified and obtained by flash chromatography on silica gel (elute: petroleum ether/ethyl acetate, 10:1 to 5:1).

2.2 Large Scale Synthesis of 4aa

To an Schlenk flask (50 mL) equipped with a stirring bar were added 2-isocyanonaphthalene **1a** (5.0 mmol), selenium powder **2** (6.0 mmol), *N*-methylaniline **3a** (6.0 mmol), and H₂O (30.0 mL). The reaction mixture was stirred and irradiatted by 10 W blue LEDs (455 nm) under room temperature. After completion, the reaction mixture was extracted with ethyl acetate, organic phase was dried and concentrated under reduced pressure. The pure products **4aa** were purified by HPLC in a yield of 81% (1.37 g).

Figure S3 Photographic depiction of Gram-scale synthesis

- (a) Under the standard conditions, the intermediate 5aa was added to 2 mL H₂O, the reaction was monitored by TLC. Upon completion, the reaction mixture was analyzed by GC and a 98% GC yield of 4aa was detected.
- (b) To a 10.0 mL Schlenk flask equipped with a magnetic stirring bar were added 2-isocyanonaphthalene 1a (0.2 mmol), selenium powder 2 (0.24 mmol), and N-methylaniline 3a (0.24 mmol), radical scavengers (TEMPO, 0.4 mmol) and H₂O (2.0 mL). Then the reaction mixture was stirred and irradiated by 10 W blue LEDs at ambient temperature for 12 hrs. The reaction mixture was analyzed by GC and a 72% GC yield of 4aa was detected.

- (c) To a 10.0 mL Schlenk flask equipped with a magnetic stirring bar were added 2-isocyanonaphthalene 1a (0.2 mmol), selenium powder 2 (0.24 mmol), and N-methylaniline 3a (0.24 mmol), radical scavengers (BHT, 0.4 mmol) and H₂O (2.0 mL). Then the reaction mixture was stirred and irradiated by 10 W blue LEDs at ambient temperature for 12 hrs. The reaction mixture was analyzed by GC and a 69% GC yield of 4aa was detected.
- (d) To a 10.0 mL Schlenk flask equipped with a magnetic stirring bar were added 2-isocyanonaphthalene 1a (0.2 mmol), selenium powder 2 (0.24 mmol), and N-methylaniline 3a (0.24 mmol), scavengers (DBACO, 0.4 mmol) and H₂O (2.0 mL). Then the reaction mixture was stirred and irradiated by 10 W blue LEDs at ambient temperature for 12 hrs. The reaction mixture was analyzed by GC and a 94% GC yield of 4aa was detected.
- (e) To a 10.0 mL Schlenk flask equipped with a magnetic stirring bar were added 2-isocyanonaphthalene 1a (0.2 mmol), selenium powder 2 (0.24 mmol), and N-methylaniline 3a (0.24 mmol), scavengers (benzoquinone, 1 mmol) and H₂O (2.0 mL). Then the reaction mixture was stirred and irradiated by 10 W blue LEDs at ambient temperature for 12 hrs. The reaction mixture was analyzed by GC and a trace amount of 4aa was detected.
- (f) To a 10.0 mL Schlenk flask equipped with a magnetic stirring bar were added 2-isocyanonaphthalene 1a (0.2 mmol), selenium powder 2 (0.24 mmol), and N-methylaniline 3a (0.24 mmol), scavengers (K₂S₂O₈, 0.4 mmol) and H₂O (2.0 mL). Then the reaction mixture was stirred and irradiated by 10 W blue LEDs at ambient temperature for 12 hrs. The reaction mixture was analyzed by GC and a trace amount of 4aa was detected.

2.4 Effect of Visible Light Irradiation

The reaction between 1a (0.2 mmol), 2 (0.24 mmol) and 3a (0.24 mmol) was conducted under the standard conditions on a 0.2 mmol scale. The mixture was subjected to sequential periods of stirring under visible light irradiation (10 W blue LEDs) under an air atmosphere at room temperature with 3 hrs and followed by stirring in the absence of light with 3 hrs. At each time point, one reaction system was suspended and the yield was detected by GC.

Figure S4 Visible light irradiation on/off experiments

2.5 UV/Vis Absorption Experiment

Figure S5 UV/Vis spectroscopic measurements

The UV/Vis absorption spectra of **1a**, **4aa** and selenourea **5aa** were recorded in 1 cm path quartz cuvettes in a concentration of 0.003 M by using a Shimadzu UV-2600 spectrophotometer, respectively.

2.6 Fluorescence Quenching Experiments

The fluorescence emission intensities were measured using a Hitachi F-7100 fluorescence spectrophotometer at an excitation wavelength of 385 nm. The samples consisted of **4aa** (1 mM), the in-situ-formed complex (a mixture of **4aa** and **5aa**) dissolved in THF. The resulting emission intensity data were collected.

Figure S6 Fluorescence quenching experiments

2.7 Cyclic voltammetry studies

CV measurements were performed on a CHI 660E potentiostat, and the conditions are as follow: a glassy carbon disk working electrode (diameter, 3 mm), Pt disk and Ag/AgCl as counter and reference electrode. Cyclic voltammograms of reactants and their mixtures in 0.3 M tetrabutylammonium bromide glassy carbon disk working electrode (diameter, 3 mm), Pt disk and Ag/AgCl (0.1 M in EtOH) as counter and reference electrode at 100 mV/s scan rate: a) 5 mM of **4aa** in MeCN (10 mL) (black line), (2) 5 mM of **5aa** in MeCN (10 mL) (red line).

Figure S7 Cyclic voltammogram experiments of **4aa** and **5aa** in an electrolyte of ^{*n*}Bu₄NBr (0.3 M) in MeCN from -2 V to +2 V at room temperature

2.8 Calculation of Apparent Quantum Yield

$$E_{photon} = \frac{hc}{\lambda_{inc}(455 \text{ nm})} = \frac{6.63 \times 10^{-34} \text{ J.Sx} 3 \times 10^8 \text{ m.s}^{-1}}{455 \times 10^{-9} \text{ m}} = 4.37 \times 10^{-19} \text{ J}$$

 E_{total} =PSt = 17.47x 10⁻³ W.cm⁻²x4.78 cm² x12x3600s = 3.6x10³ J

Number of incident photons = $\frac{E_{photon}}{E_{tota}}$ = $\frac{3.6 \times 10^3 \text{ J}}{4.37 \times 10^{-19} \text{ J}}$ =8.24x10²¹=13.58 mmol A.Q.Y(%) = $\frac{\text{Number of Product}}{\text{Number of incident photons}}$ = $\frac{0.194 \text{mmol}}{13.58 \text{ mmol}}$ =1.4 %< 1

Figure S8 Apparent Quantum Yield

Where h (J·s) is Planck's constant, c $(m \cdot s^{-1})$ is the speed of light and λ inc (m) is the wavelength of the incident light. P $(W \cdot cm^{-2})$ is the power density of the incident light, S (cm^2) is the irradiation area and t (s) is the photoreaction time.

3. Characterization data of products

N-phenyl-N-methylnaphtho[2,1-d][1,3]selenazol-2-amine (4aa): 97%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.0 Hz, 1H), 7.83-7.75 (m, 2H), 7.50 (d, J = 4.4 Hz, 5H), 7.46-7.33 (m, 3H), 3.69 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.58, 152.23, 147.08, 130.44, 130.12, 129.77, 129.56, 128.68, 127.64, 126.69, 126.51, 125.89, 125.82, 123.89, 120.81, 40.38; HRMS: calcd for C₁₈H₁₅N₂Se [M+H]⁺ 339.0395, found 339.0393.

N-methyl-N-(p-tolyl)naphtho[2,1-d][1,3]*selenazol-2-amine (4ab)*: 87%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.7 Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.48 (d, J = 8.1 Hz, 1H), 7.46-7.39 (m, 1H), 7.38-7.34 (m, 3H), 7.30 (d, J = 8.0 Hz, 2H), 3.66 (s, 3H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.93, 152.32, 144.58, 137.75, 130.71, 130.42, 129.73, 129.45, 128.64, 126.62, 126.46, 125.84, 125.76, 123.78, 120.72, 40.32, 21.12; HRMS: calcd for C₁₉H₁₇N₂Se [M+H]⁺ 353.0551, found 353.0545.

N-(4-methoxyphenyl)-*N*-methylnaphtho[2,1-d][1,3]selenazol-2-amine (4ac): 86%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.1 Hz, 1H), 7.82-7.73 (m, 2H), 7.48 (d, *J* = 8.2 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 1H), 7.38-7.3 (m, 3H), 7.02-6.96 (m, 2H), 3.85 (s, 3H), 3.63 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.48, 158.98, 152.57, 140.12, 130.50, 129.98, 129.44, 128.64, 127.79, 126.61, 126.45, 125.78, 123.75,

120.78, 115.26, 55.44, 40.41; HRMS: calcd for $C_{19}H_{17}N_2OSe [M+H]^+$ 369.0501, found 369.0501.

N-methyl-N-(4-(methylthio)phenyl)naphtho[2,1-d][1,3]selenazol-2-amine (4ad): 84%, black oil. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.91 (d, *J* = 8.0 Hz, 1H), 7.81 (d, *J* = 8.7 Hz, 1H), 7.71 (d, *J* = 8.7 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.53-7.48 (m, 2H), 7.45 (t, *J* = 6.9 Hz, 1H), 7.41-7.34 (m, 3H), 3.54 (s, 3H), 2.52 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 169.06, 152.19, 143.41, 137.99, 130.01, 129.21, 129.08, 128.65, 127.20, 127.03, 126.79, 126.49, 125.81, 124.13, 120.66, 40.27, 14.66; HRMS: calcd for C₁₉H₁₇N₂SSe [M+H]⁺ 385.0272, found 385.0275.

N-methyl-N-(4-(trifluoromethoxy)phenyl)naphtho[2,1-d][1,3]selenazol-2-amine (*4ae*): 90%, yellow oil. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.93 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.79-7.74 (d, 2H), 7.72 (d, J = 8.7 Hz, 1H), 7.66 (d, J = 8.2 Hz, 1H), 7.54 (d, J = 8.4 Hz, 2H), 7.51-7.44 (m, 1H), 7.40 (t, J = 7.5 Hz, 1H), 3.59 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.58, 151.95, 146.78, 145.35, 129.98, 129.36, 129.19, 128.68, 127.74, 127.12, 126.93, 125.91, 124.33, 122.78, 121.12, 120.75, 119.08 (q, J = 257.04 Hz), 40.60. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -56.88; HRMS: calcd for C₁₉H₁₄F₃N₂OSe [M+H]⁺ 423.0218, found 423.0217.

N-(4-fluorophenyl)-*N*-methylnaphtho[2,1-d][1,3]selenazol-2-amine (4af): 85%, black oil. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 8.1 Hz, 1H), 7.78 (q, *J* = 8.7 Hz, 2H), 7.49 (d, *J* = 8.1 Hz, 1H), 7.46-7.41 (m, 3H), 7.38-7.35 (m, 1H), 7.22-7.14 (m, 2H), 3.63 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.68, 162.51, 160.53 (t, *J* = 10.0 Hz), 152.26, 143.03, 143.00, 136.40, 130.40, 130.02, 129.53, 128.68, 128.22, 128.15 (d, J = 8.82 Hz), 126.77, 126.58 (d, J = 23.94 Hz), 125.79, 123.97, 120.81, 117.12, 116.94 (d, J = 22.68 Hz), 40.54. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.76; HRMS: calcd for C₁₈H₁₄FN₂Se [M+H]⁺ 357.0301, found 357.0304.

N-(4-chlorophenyl)-N-methylnaphtho[2,1-*d*][1,3]selenazol-2-amine (4ag): 84%, yellow oil. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 8.7 Hz, 1H), 7.72 (d, *J* = 8.7 Hz, 1H), 7.68-7.62 (m, 3H), 7.60 (d, *J* = 8.7 Hz, 2H), 7.51-7.44 (m, 1H), 7.42-7.39 (m, 1H), 3.58 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.61, 151.98, 145.28, 131.70, 130.15, 129.96, 129.30, 129.16, 128.67, 127.65, 127.10, 126.89, 125.85, 124.28, 120.72, 40.43; HRMS: calcd for C₁₈H₁₄ClN₂Se [M+H]⁺ 373.0005, found 373.0007.

N-(4-bromophenyl)-N-methylnaphtho[2,1-d][1,3]selenazol-2-amine (4ah): 80%, yellow oil. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 8.7 Hz, 1H), 7.74-7.71 (m, 3H), 7.63 (d, *J* = 8.2 Hz, 1H), 7.60-7.52 (m, 2H), 7.51-7.44 (m, 1H), 7.41-7.38 (m, 1H), 3.57 (d, *J* = 1.1 Hz, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.48, 151.95, 145.68, 133.07, 129.96, 129.31, 129.17, 128.68, 127.86, 127.10, 126.89, 125.85, 124.29, 120.72, 120.03, 40.40; HRMS: calcd for C₁₈H₁₄BrN₂Se [M+H]⁺ 416.9500, found 416.9503.

N-methyl-N-(m-tolyl)naphtho[2,1-*d*][1,3]selenazol-2-amine (4ai): 88%, yellow oil. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.91 (d, *J* = 8.1 Hz, 1H), 7.81 (d, *J* = 8.7 Hz, 1H), 7.71 (d, *J* = 8.7 Hz, 1H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.50-7.31 (m, 5H), 7.23 (d, *J* = 7.5 Hz, 1H), 3.57 (s, 3H), 2.36 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.92, 152.11, 146.65, 139.94, 130.04, 130.01, 129.09, 129.02, 128.63, 128.43, 126.97, 126.74, 126.11, 125.82, 124.09, 122.66, 120.65, 40.21, 20.93; HRMS: calcd for C₁₉H₁₇N₂Se [M+H]⁺ 353.0551, found 353.0549.

N-methyl-N-(o-tolyl)naphtho[2,1-d][1,3]selenazol-2-amine (4aj): 83%, yellow oil, ¹H NMR (500 MHz, CDCl₃) δ 7.87-7.74 (m, 3H), 7.46-7.31 (m, 7H), 3.60 (s, 3H), 2.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.22, 152.61, 145.30, 136.61, 132.15, 130.53, 130.24, 129.29, 129.14, 128.66, 128.47, 128.08, 126.67, 126.48, 125.74, 123.75, 120.72, 39.26, 17.44; HRMS: calcd for C₁₉H₁₇N₂Se [M+H]⁺ 353.0551, found 353.0555.

Methyl-N-propylnaphtho[2,1-d][1,3]selenazol-2-amine (4ak): 98%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.75-7.74 (m, 1H), 7.64 (s, 2H), 7.50-7.48 (m, 1H), 7.38-7.35 (m, 1H), 7.27-7.24 (m, 1H), 3.39-3.37 (t, J = 5 Hz, 2H), 3.11 (s, 3H), 1.68-1.64 (m, 2H), 0.91-0.88 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.47, 152.87, 130.71, 129.37, 129.14, 128.79, 126.76, 126.60, 125.81, 123.63, 120.73, 56.59, 38.84, 20.63, 11.39; HRMS: calcd for C₁₅H₁₇N₂Se [M+H]⁺ 305.0551, found 305.0553.

Methyl-N-octylnaphtho[2,1-d][1,3]selenazol-2-amine (4al): 90%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.89-7.77 (m, 3H), 7.64-7.62 (m, 1H), 7.51-7.48 (m, 1H), 7.40-7.37 (m, 1H), 3.55-3.52 (t, J = 7.5 Hz, 2H), 3.24 (s, 3H), 1.77-1.72 (m, 2H), 1.39-1.32 (m, 10H), 0.94-0.91 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.38, 152.85, 130.72, 129.35, 129.14, 128.78, 126.74, 126.58, 125.81, 123.62, 120.73, 55.07, 38.75, 31.85, 29.40, 29.28, 27.29, 26.90, 22.69, 14.16; HRMS: calcd for C₂₀H₂₇N₂Se [M+H]⁺ 375.1334, found 375.1330.

(tert-butyl)-N-methylnaphtho[2,1-d][1,3]selenazol-2-amine (4am): 95%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.90-7.68 (m, 4H), 7.52-7.39 (m, 2H), 3.18 (s, 3H), 1.67 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 168.84, 152.63, 130.60, 129.78, 129.21, 128.75, 126.47, 126.41, 126.32, 123.64, 121.22, 59.37, 39.13, 28.31; HRMS: calcd for C₁₆H₁₉N₂Se [M+H]⁺ 319.0708, found 319.0713.

N-cyclopropyl-N-methylnaphtho[2,1-d][1,3]selenazol-2-amine (4an): 92%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7,90-7.37 (m, 6H), 3.39-3.31 (m, 3H), 2.82-2.27 (m, 1H), 0.98-0.91 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 171.52, 152.17, 130.65, 129.91, 129.32, 128.78, 126.61, 126.56, 125.95, 123.86, 121.00, 38.48, 36.18, 8.89; HRMS: calcd for C₁₅H₁₅N₂Se [M+H]⁺ 303.0395, found 303.0399.

N-cyclohexyl-N-methylnaphtho[2,1-*d*][1,3]selenazol-2-amine (4ao): 65%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 8.1 Hz, 1H), 7.74 (s, 2H), 7.60 (d, *J* = 8.2 Hz, 1H), 7.50-7.44 (m, 1H), 7.36 (t, *J* = 7.5 Hz, 1H), 3.85 (s, 1H), 3.11 (s, 3H), 1.97-1.87 (m, 4H), 1.75-1.71 (m, 1H), 1.60-1.41 (m, 4H), 1.21-1.11 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 169.77, 152.58, 130.57, 129.00, 128.68, 128.59, 126.62, 126.46, 125.66, 123.47, 120.60, 62.23, 33.28, 30.09, 25.75, 25.40; HRMS: calcd for C₁₈H₂₁N₂Se [M+H]⁺ 345.0864, found 345.0867.

N-benzyl-N-methylnaphtho[2,1-*d*][1,3]selenazol-2-amine (4ap): 72%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 8.1 Hz, 1H), 7.78 (s, 2H), 7.61 (d, J = 8.1 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.41-7.28 (m, 6H), 4.81 (s, 2H), 3.18 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.96, 152.60, 136.20, 130.60, 129.71, 129.17, 128.75, 128.72, 127.73, 127.54, 126.80, 126.59, 125.74, 123.72, 120.75, 57.45, 38.90; HRMS: calcd for C₁₉H₁₇N₂Se [M+H]⁺ 353.0551, found 353.0551.

Ethyl N-methyl-N-(naphtho[2,1-d][1,3]selenazol-2-yl)glycinate (4aq): 88%, light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.89-7.35 (m, 6H), 4.44 (s, 2H), 4.28-4.22 (m, 2H), 3.29-3.23 (m, 3H), 1.32-1.27 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.60, 169.12, 152.40, 130.62, 129.31, 128.79, 126.83, 126.68, 125.87, 125.84,

123.96, 121.05, 61.43, 53.74, 41.07, 14.25; HRMS: calcd for C₁₆H₁₇N₂O₂Se [M+H]⁺ 349.0450, found 349.0447.

N-(2,2-dimethoxyethyl)-N-methylnaphtho[2,1-d][1,3]selenazol-2-amine (4ar): 95%, white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.76-7.75 (d, J = 5 Hz, 1H), 7.65 (d, J = 5 Hz, 2H), 7.52-7.50 (d, J = 10 Hz, 1H), 7.39-7.36 (t, J = 7.5 Hz, 1H), 7.28-7.25 (t, J = 7.5 Hz, 1H), 4.63-4.60 (t, J = 7.5 Hz, 1H), 3.60-3.59 (d, J = 5 Hz, 2H), 3.36 (s, 6H), 3.16 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.40, 152.74, 130.68, 129.83, 129.19, 128.79, 126.80, 126.66, 125.85, 123.79, 120.89, 102.98, 55.81, 55.04, 41.31; HRMS: calcd for C₁₆H₁₉N₂O₂Se [M+H]⁺ 351.0606, found 351.0607.

Methyl-N-(pyridin-4-ylmethyl)naphtho[2,1-d][1,3]selenazol-2-amine (4as): 70%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.60-8.54 (m, 2H), 7.89-7.20 (m, 8H), 4.85 (s, 2H), 3.18 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.72, 152.48, 150.20, 145.77, 130.62, 130.23, 129.34, 128.84, 127.03, 126.81, 125.81, 124.05, 122.36, 120.89, 55.70, 39.75; HRMS: calcd for C₁₈H₁₆N₃Se [M+H]⁺ 354.0504, found 354.0500.

Isopropyl-N-phenylnaphtho[2,1-d][1,3]*selenazol-2-amine (4at)*: 72%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.75-7.65 (m, 3H), 7.48-7.43 (m, 3H), 7.35-7.17 (m, 5H),

5.20-5.14 (m, 1H), 1.21 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.81, 152.60, 142.20, 130.94, 130.51, 130.16, 129.57, 129.35, 129.16, 128.70, 126.63, 126.45, 125.88, 123.68, 120.85, 51.42, 21.26; HRMS: calcd for C₂₀H₁₉N₂Se [M+H]⁺ 367.0708, found 367.0710.

N,N-diisopropylnaphtho[2,1-d][1,3]selenazol-2-amine (4au): 84%, yellow solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.91 (d, J = 8.1 Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.63-7.61 (m, 2H), 7.51-7.49 (m, 1H), 7.38-7.35 (m, 1H), 3.88-3.80 (m, 2H), 1.42 (d, J = 6.7 Hz, 12H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.68, 152.77, 130.05, 128.69, 128.49, 127.34, 126.94, 126.49, 125.75, 123.58, 120.47, 19.97; HRMS: calcd for C₁₇H₂₁N₂Se [M+H]⁺ 333.0864, found 333.0867.

N,N-diethylnaphtho[2,1-*d*][1,3]selenazol-2-amine (4av): 90%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.88-7.82 (m, 1H), 7.74 (s, 2H), 7.59 (d, J = 8.2 Hz, 1H), 7.50-7.44 (m, 1H), 7.39-7.32 (m, 1H), 3.60 (q, J = 7.2 Hz, 4H), 1.33 (t, J = 7.2 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 168.21, 152.81, 130.65, 129.03, 128.94, 128.69, 126.58, 126.46, 125.74, 123.46, 120.59, 46.55, 12.86; HRMS: calcd for C₁₅H₁₇N₂Se [M+H]⁺ 305.0551, found 305.0552.

N,N-dihexylnaphtho[2,1-d][1,3]selenazol-2-amine (4aw): 70%, yellow oil. ¹H NMR (500 MHz, DMSO- d_6) δ 7.90 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.62 (t, J = 8.3 Hz, 2H), 7.49 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 3.46 (t, J = 7.5 Hz, 4H), 1.65 (t, J = 7.4 Hz, 4H), 1.28 (q, J = 7.8, 7.0 Hz, 12H), 0.88-0.82 (m, 6H); ¹³C NMR (125 MHz, DMSO- d_6) δ 168.15, 152.63, 130.19, 128.68, 128.55, 128.31, 126.98, 126.63, 125.59, 123.68, 120.41, 31.03, 27.01, 26.00, 22.11, 13.94; HRMS: calcd for C₂₃H₃₃N₂Se [M+H]⁺ 417.1803, found 417.1805.

2-(azetidin-1-yl)naphtho[2,1-d][1,3]selenazole (4ax): 98%, white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 8.1 Hz, 1H), 7.75 (s, 2H), 7.58 (d, J = 8.2 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 4.20 (t, J = 7.5 Hz, 4H), 2.53-2.47 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 169.39, 152.54, 130.80, 130.46, 129.27, 128.79, 126.90, 126.70, 125.96, 123.92, 120.76, 53.60, 17.24; HRMS: calcd for C₁₄H₁₃N₂Se [M+H]⁺ 289.0238, found 289.0236.

2-(pyrrolidin-1-yl)naphtho[2,1-d][1,3]selenazole (4ay): 75%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.1 Hz, 1H), 7.81-7.72 (m, 2H), 7.60 (d, J = 8.2 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 3.58 (d, J = 6.4 Hz, 4H), 2.11-2.03 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 166.00, 152.76, 130.69, 129.18, 128.94, 128.67, 126.71, 126.48, 125.72, 123.50, 120.62, 50.41, 25.60; HRMS: calcd for C₁₅H₁₅N₂Se [M+H]⁺ 303.0395, found 303.0394.

2-(*piperidin-1-yl*)*naphtho*[2,1-*d*][1,3]*selenazole* (4*az*): 95%, white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, J = 8.1 Hz, 1H), 7.77-7.67 (m, 2H), 7.58 (d, J = 8.2 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 3.60 (t, J = 5.2 Hz, 4H), 1.73-1.68 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.16, 152.60, 130.67, 129.34, 129.26, 128.79, 126.77, 126.60, 125.85, 123.74, 120.76, 51.01, 25.46, 24.36; HRMS: calcd for C₁₆H₁₇N₂Se [M+H]⁺ 317.0551, found 317.0555.

2-(azepan-1-yl)naphtho[2,1-d][1,3]selenazole (4aA): 84%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.1 Hz, 1H), 7.75 (s, 2H), 7.60 (d, J = 8.1 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 3.68 (t, J = 6.1 Hz, 4H), 1.95-1.81 (m, 4H), 1.65-1.61 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 169.08, 152.81, 130.60, 128.93, 128.78, 128.65, 126.58, 126.43, 125.68, 123.40, 120.56, 51.90, 27.83, 27.52; HRMS: calcd for C₁₇H₁₉N₂Se [M+H]⁺ 331.0708, found 331.0706.

2-(4-methylpiperazin-1-yl)naphtho[2,1-d][1,3]selenazole (4aB): 70%, yellow oil. ¹H NMR (500 MHz, DMSO- d_6) δ 7.93 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.6 Hz, 1H), 7.65 (t, J = 7.7 Hz, 2H), 7.52 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 3.57 (t, J = 5.1Hz, 4H), 2.45 (t, J = 5.1 Hz, 4H), 2.23 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 169.59, 152.16, 130.13, 129.08, 128.82, 128.76, 127.14, 126.84, 125.71, 124.11, 120.62, 53.88, 49.19, 45.68; HRMS: calcd for $C_{16}H_{18}N_3Se [M+H]^+$ 332.0660, found 332.0661.

4-(naphtho[2,1-d][1,3]selenazol-2-yl)morpholine (4aC): 85%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 8.1 Hz, 1H), 7.75 (q, J = 8.7 Hz, 2H), 7.62 (d, J = 8.2 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 3.85 (t, J = 5.0 Hz, 4H), 3.66-3.61 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 170.37, 151.98, 130.47, 129.66, 129.38, 128.76, 126.94, 126.69, 125.80, 124.07, 120.84, 66.24, 49.63; HRMS: calcd for C₁₅H₁₅N₂OSe [M+H]⁺ 319.0344, found 319.0347.

3-(naphtho[2,1-d][1,3]selenazol-2-yl)thiazolidine (4aD): 95%, white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 8.1 Hz, 1H), 7.77 (s, 2H), 7.61 (d, J = 8.1 Hz, 1H), 7.51-7.48 (m, 1H), 7.41-7.38 (m, 1H), 4.73 (s, 2H), 3.92 (t, J = 6.2 Hz, 2H), 3.22 (t, J = 6.2 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.76, 152.16, 130.63, 130.29, 129.43, 128.83, 127.08, 126.79, 125.86, 124.15, 120.96, 53.66, 52.42, 30.69; HRMS: calcd for C₁₄H₁₃N₂SSe [M+H]⁺ 320.9959, found 320.9955.

4-(naphtho[2,1-d][1,3]selenazol-2-yl)thiomorpholine (4aE): 95%, white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.1 Hz, 1H), 7.74 (d, *J* = 8.7 Hz, 1H), 7.69 (d,

J = 8.7 Hz, 1H), 7.58 (d, J = 8.2 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 4.00-3.93 (m, 4H), 2.81-2.74 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 169.36, 152.24, 130.57, 129.78, 129.42, 128.84, 126.98, 126.76, 125.82, 124.06, 120.86, 52.65, 26.79; HRMS: calcd for C₁₅H₁₅N₂SSe [M+H]⁺ 335.0116, found 335.0119.

6-(naphtho[2,1-d][1,3]selenazol-2-yl)-2-oxa-6-azaspiro[3.3]heptane (4aF): 96%, white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.1 Hz, 1H), 7.76 (s, 2H), 7.59 (d, J = 8.1 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 4.86 (s, 3H), 4.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.04, 152.18, 130.95, 130.71, 129.45, 128.84, 127.09, 126.84, 125.97, 124.24, 120.83, 80.77, 62.86, 39.73; HRMS: calcd for C₁₆H₁₅N₂OSe [M+H]⁺ 331.0344, found 331.0347.

2-(3,4-dihydroquinolin-1(2H)-yl)naphtho[2,1-d][1,3]selenazole (4aG): 97%, yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 8.1 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.74-7.65 (m, 2H), 7.49 (d, J = 8.2 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.33-7.26 (m, 1H), 7.20-7.13 (m, 1H), 7.10 (d, J = 7.4 Hz, 1H), 7.03 (t, J = 7.4 Hz, 1H), 4.05 (t, J = 6.2 Hz, 2H), 2.72 (t, J = 6.4 Hz, 2H), 2.04-1.95 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 167.88, 151.23, 141.41, 131.00, 130.37, 129.89, 129.11, 128.99, 128.71, 126.81, 126.70, 126.62, 125.96, 124.50, 124.18, 120.96, 120.51, 49.80, 27.35, 23.45; HRMS: calcd for C₂₀H₁₇N₂Se [M+H]⁺ 365.0551, found 365.0556.

2-(1H-imidazol-1-yl)naphtho[2,1-d][1,3]selenazole (4aH): 60%, yellow oil. ¹H NMR (500 MHz, DMSO- d_6) δ 8.62 (s, 1H), 8.10 (d, J = 8.0 Hz, 1H), 8.04 (dd, J = 5.5, 3.0 Hz, 4H), 7.68 (t, J = 7.4 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 7.23 (d, J = 1.4 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 157.75, 149.25, 136.90, 134.31, 130.96, 130.55, 129.73, 128.96, 127.97, 127.86, 126.59, 126.49, 122.13, 118.96; HRMS: calcd for C₁₄H₁₀N₃Se [M+H]⁺ 300.0034, found 300.0034.

7-bromo-N-methyl-N-phenylnaphtho[2,1-d][1,3]selenazol-2-amine (4ba): 73%, yellow oil, ¹H NMR (500 MHz, DMSO- d_6) δ 8.22 (s, 1H), 7.83 (d, J = 8.7 Hz, 1H), 7.76 (d, J = 8.7 Hz, 1H), 7.65-7.59 (m, 3H), 7.59-7.54 (m, 3H), 7.47-7.42 (m, 1H), 3.60 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 169.39, 152.69, 146.56, 130.49, 130.37, 129.73, 129.07, 128.60, 128.03, 127.95, 126.10, 125.83, 121.72, 116.81, 40.37; HRMS: calcd for C₁₈H₁₄BrN₂Se [M+H]⁺416.9500, found 416.9503.

N,7-*dimethyl-N-phenylnaphtho*[2,1-*d*][1,3]*selenazol-2-amine (4ca)*: 84%, yellow oil. ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.78-7.64 (m, 3H), 7.62-7.49 (m, 5H), 7.42 (t, *J* = 7.3 Hz, 1H), 7.31 (d, *J* = 8.3 Hz, 1H), 3.59 (s, 3H), 2.44 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.43, 151.44, 146.66, 133.28, 130.20, 129.29, 129.02, 128.99, 128.14, 127.63, 127.53, 126.11, 125.70, 125.68, 120.60, 40.26, 21.02; HRMS: calcd for C₁₉H₁₇N₂Se [M+H]⁺ 353.0551, found 353.0549.

4. Reference

- 1. H. Liu, Z.-L. Ye, Z.-J. Cai and S.-J. Ji, Green Chem., 2023, 25, 4239.
- 2. Y. Fang, Z.-L. Zhu, P. Xu, S.-Y. Wang and S.-J. Ji, Green Chem., 2017, 19, 1613.

5. ¹H, ¹⁹F and ¹³C NMR spectra of products

¹³C NMR of compound **4aa**

¹³C NMR of compound **4ab**

¹³C NMR of compound **4ac**

¹³C NMR of compound **4ad**

¹³C NMR of compound **4ae**

S29

¹³C NMR of compound **4af**

¹³C NMR of compound **4ag**

¹H NMR of compound **4ah**

¹H NMR of compound 4ai

¹H NMR of compound 4aj

S36

¹H NMR of compound **4al**

¹H NMR of compound **4am**

¹H NMR of compound **4an**

S40

¹H NMR of compound **4ap**

¹H NMR of compound **4aq**

¹H NMR of compound **4au**

¹³C NMR of compound **4au**

¹³C NMR of compound **4av**

¹³C NMR of compound **4aw**

S50

¹³C NMR of compound **4ay**

¹³C NMR of compound **4az**

¹H NMR of compound **4aA**

¹H NMR of compound **4aB**

¹H NMR of compound **4aC**

¹H NMR of compound **4aD**

¹³C NMR of compound **4aD**

¹³C NMR of compound **4aE**

¹³C NMR of compound **4aF**

¹H NMR of compound 4aG

¹³C NMR of compound **4aG**

S61

¹H NMR of compound **4aH**

¹H NMR of compound **4ba**

¹H NMR of compound **4ca**

¹³C NMR of compound **4ca**