Supporting Information

A Scalable and Eco-friendly Total Synthesis of Poly (ADP-Ribose) Polymerase Inhibitor Olaparib

Indranil Chatterjee \dagger, Deblina Roy \dagger and Gautam Panda* $\dagger \ddagger$
"Medicinal \& Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension, Sitapur Road, Lucknow 226031, UP, India
* Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India

*Corresponding Author: gautam.panda@gmail.com, gautam_panda@cdri.res.in
Phone: 915222772450 , ext 4659, Fax: 915222771941.

Table of Contents

1. General Information. S2
2. Synthetic details and experimental section S2-S4
3. Calculations of Green Chemistry Metrics S5-S7
4. Table of comparing the shifts (${ }^{1}$ H NMR spectrum) of final compound Olaparib (1) with the literature reported values S8
5. Table of comparing the shifts (${ }^{1} \mathrm{H}$ NMR spectrum) of final compound AZD2461(19) with the literature reported values S8-S9
6. References S10
7. Spectra of compounds S11-S41
8. Analytical information of compounds S42-S43
9. Biological data of Olaparib S44
10. General Information. Unless otherwise noted, all commercial reagents were used without further purification. All the reactions were performed in round bottom flask, stirred with a magnetic bar under nitrogen atmosphere and monitored by Thin-layer chromatography (0.2 mm silica gel-coated GF 254 plates) and visualized under UV or by staining with dragendorff solution. Flash column chromatography was carried out on Silica Gel 60-120 and 100-200 mesh basified by triethylamine. Nuclear magnetic resonance (NMR) spectra were recorded using Bruker Avance 400 Spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are reported in ppm downfield of tetramethylsilane and referenced to residual solvent peak $\left[\mathrm{CHCl}_{3} ; \delta_{\mathrm{H}}=7.26\right.$ and $\delta_{\mathrm{C}}=77.0 ;$ DMSO- $\mathrm{d}_{6} ; \delta_{\mathrm{H}}=2.54$ and $\left.\delta_{\mathrm{C}}=39.5\right]$.Multiplicities were given as: s (singlet); brs (broad singlet), d (doublet); t (triplet); q (quartet); dd (doublets of doublet); m (multiplets).High resolution mass spectra were taken with a 3000 -mass spectrometer, using Waters Agilent 6520-Q-TofMS/MS system and JEOL-Accu TOF JMST100LC. Melting points are uncorrected and were determined in capillary tubes on SMP 10 melting point apparatus.

2. Synthetic details and experimental section.

Cyclopropyl (piperazin-1-yl) methanone (15): Acetic acid (10 ml) was treated with piperazine (2.5 g , 29.02 mmol) portion wise over 15 minutes with stirring under nitrogen. The reaction mixture was warmed to $40{ }^{\circ} \mathrm{C}$ and maintained at this temperature until a complete solution was obtained. Cyclopropane carbonyl chloride ($2.89 \mathrm{ml}, 31.92 \mathrm{mmol}$) was added over 15 minutes. The reaction mixture was stirred at room temperature for 8 h . The reaction mixture was filtered and the filtrate distilled under reduced pressure until acetic acid was fully evaporated. Ethyl acetate was charged to the reaction mixture and filtrate distilled under reduced pressure. A further charge of ethyl acetate was added and reduced pressure distillation continued until white precipitation of (15).White solid (3.9 g), Melting point-149 ${ }^{\circ} \mathrm{C}$, yield-88\%, ${ }^{1} \mathbf{H}$ NMR (400MHz, DMSO-d ${ }_{6}$) $\delta 9.73$ ($1 \mathrm{H}, \mathrm{brs}$), 3.93-3.41 ($5 \mathrm{H}, \mathrm{m}$), 3.09-3.06 (3H, s), 2.03-1.95 ($1 \mathrm{H}, \mathrm{m}$), 0.80-0.74 ($4 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (100 MHz, DMSO- d_{6}) $\delta 171.9$, 42.9, 42.2, 10.7, 7.6; HRMS(ESI): Calculated for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}-155.1179$, found 155.1183.
(4-(5-bromo-2-fluorobenzoyl)piperazin-1-yl)(cyclopropyl)methanone (14): To a stirred mixture of 2-fluoro-5-bromo benzoic acid ($5.54 \mathrm{~g}, 25.29 \mathrm{mmol}$) in anhydrous DMF (25 ml) was added DIPEA $(13.22 \mathrm{ml}, 75.87 \mathrm{mmol})$, HBTU $(9.59 \mathrm{~g}, 25.29 \mathrm{mmol})$, followed by cyclopropyl (piperazin-1-yl) methanone ($3.9 \mathrm{~g}, 25.29 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. After the addition, the mixture was allowed to stir at room temperature for 15 h . After distilling DMF, the mixture was diluted with dichloromethane, washed with saturated citric acid, followed by saturated sodium bicarbonate, brine, dried over anhydrous sodium sulfate, and concentrated. White solid of (4-(5-bromo-2-fluorobenzoyl)piperazin-1-yl)(cyclopropyl)methanone was obtained by recrystallization using EtOAc. White solid (6.74 g), Melting point- $93{ }^{\circ} \mathrm{C}$, yield- $75 \%,{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.48-7.44 (2 H , $\mathrm{m}), 6.97-6.93(1 \mathrm{H}, \mathrm{m}), 3.71-3.27(8 \mathrm{H}, \mathrm{m}), 1.68(1 \mathrm{H}, \mathrm{brs}), 0.96-0.93(2 \mathrm{H}, \mathrm{m}), 0.74(2 \mathrm{H}, \mathrm{brs}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,163.9,157.1(\mathrm{~d}, J=248.3 \mathrm{~Hz}), 134.5(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 132.1(\mathrm{~d}, J=$
$3.5 \mathrm{~Hz}), 125.5(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 117.7(\mathrm{~d}, J=23.1 \mathrm{~Hz}), 117.4(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 47.2,42.3,11.0,7.7$; HRMS(ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrFN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}-355.0452$, found 355.0462.

2-(2-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorophenyl) acetyl) benzoic acid (12): In a 50 ml schlenk tube, 2 -acetylbenzoic acid ($9.34 \mathrm{~g}, 56.92 \mathrm{mmol}$), (4-(5-bromo-2-fluorobenzoyl)piperazin-1-yl)(cyclopropyl)methanone ($6.74 \mathrm{~g}, 18.97 \mathrm{mmol}$) and sodium tert butoxide $(9.12 \mathrm{~g}, 94.85 \mathrm{mmol})$ were taken and then 20 ml of DMF was added to it under argon atmosphere. After that, mixture was heated to $120^{\circ} \mathrm{C}$ for $36-40 \mathrm{~h}$. After completion of the reaction was monitored by TLC or LCMS, the mixture was extracted with chilled ethyl acetate and the extract dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Crude NMR was taken and used subsequently without further purification for next step. The product (12) was obtained as Colourless oil (7.07 g), yield- 85%, ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(1 \mathrm{H}, \mathrm{s})$, 7.84-7.83 (1H, m), 7.67-7.52 (2H, m), 7.41-7.39 (1H, m), $7.33(1 H, s), 6.82-6.80(1 H, m), 3.78-3.74$ $(4 \mathrm{H}, \mathrm{m}), 3.58(2 \mathrm{H}, \mathrm{s}), 3.30(2 \mathrm{H}, \mathrm{brs}), 2.96(2 \mathrm{H}, \mathrm{s}), 1.88-1.75(1 \mathrm{H}, \mathrm{m}), 0.99(2 \mathrm{H}, \mathrm{s}), 0,79(2 \mathrm{H}, \mathrm{brs}) ;$ ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.1,172.5,168.4,162.8,156.5(\mathrm{~d}, J=243.4 \mathrm{~Hz}), 148.8,133.1$ $(\mathrm{d}, J=3.3 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 130.2,129.6(\mathrm{~d}, J=18.5 \mathrm{~Hz}), 129.3,128.8,127.2,125.2,122.1$, $118.6(\mathrm{~d}, ~ J=20.4 \mathrm{~Hz}), 113.4,46.5,45.2,42.2,41.8,36.6,11.0,7.7 ;{ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -117.03 ; $\mathbf{H R M S}(E S I):$ Calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}-439.1664$, found 439.1662 .

4-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorobenzyl) phthalazin-1(2H)-one (1): Add hydrazine hydrate $(0.7 \mathrm{ml}, 20.96 \mathrm{mmol})$ to a solution of 2-(2-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorophenyl) acetyl) benzoic acid ($7.07 \mathrm{~g}, 16.12 \mathrm{mmol}$) in EtOH (15 ml). Reflux the reaction mixture for 15 h . Cool the mixture and distilled off the ethanol using rotavapour. The collected ethanol was reused. Then the reaction mixture was purified without any solvent extraction. The final product (1) was purified by flash chromatography. HPLC purity: 99.9%. White solid (6.30 g), Melting point- $208{ }^{\circ} \mathrm{C}$, yield-90\%, IR $\vee\left(\mathrm{cm}^{-1}\right): 3912.64,3885.22,3781.66,3696.08$, $3657.28,3404.03,3011.49,2922.83,1633.92,1468.48,1438.75,1357.09,1287.40,1229.20,1159.16$, $1064.56,1014.22,841.68,774.12,646.79,559.42,485.55 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 12.59$ $(1 \mathrm{H}, \mathrm{s}), 8.28-8.26(1 \mathrm{H}, \mathrm{m}), 7.98-7.82(3 \mathrm{H}, \mathrm{m}), 7.46-7.37(2 \mathrm{H}, \mathrm{m}), 7.27-7.22(1 \mathrm{H}, \mathrm{m}), 4.34(2 \mathrm{H}, \mathrm{s}), 3.75-$ $3.60(6 \mathrm{H}, \mathrm{m}), 3.23-3.17(2 \mathrm{H}, \mathrm{m}), 1.99(1 \mathrm{H}, \mathrm{s}), 0.75-0.72(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(100 \mathrm{MHz}$, DMSO$\left.\mathrm{d}_{6}\right) \delta 171.8,164.5,159.9,156.8(\mathrm{~d}, J=244.2 \mathrm{~Hz}), 145.3,135.3(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 133.9,132.2(\mathrm{~d}, J=7.7$ $\mathrm{Hz}), 132.0,129.5,129.4(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 128.4,126.5,125.9,124.0(\mathrm{~d}, J=18.2 \mathrm{~Hz}), 116.4(\mathrm{~d}, J=21.6$ $\mathrm{Hz}), 46.7,45.4,42.2,41.6,36.9,10.8,7.6 ;{ }^{19}$ F NMR (376 MHz, DMSO- d_{6}) $\delta-118.05$; HRMS (ESI): Calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{FN}_{4} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}-435.1827$, found 435.1833 .
(5-bromo-2-fluorophenyl)(4-methoxypiperidin-1-yl)methanone (21): To a stirred mixture of 2-fluoro-5-bromo benzoic acid ($200 \mathrm{mg}, 0.91 \mathrm{mmol}$) in anhydrous DMF (5 ml) was added DIPEA (320 $\mathrm{mg}, 2.74 \mathrm{mmol}$), HBTU ($346 \mathrm{mg}, 0.91 \mathrm{mmol}$), followed by 4-methoxypiperidine ($105 \mathrm{mg}, 0.91 \mathrm{mmol}$) at $\quad 0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After the addition, the mixture was allowed to stir at room
temperature for 15 h . After distilling DMF, the mixture was diluted with dichloromethane (50 ml), washed with saturated citric acid ($100 \mathrm{ml} \times 2$), followed by saturated sodium bicarbonate ($100 \mathrm{ml} \times 2$), brine (50 ml), dried over anhydrous sodium sulfate, and concentrated. White solid (5-bromo-2-fluorophenyl)(4-methoxypiperidin-1-yl)methanone was obtained by recrystallization using EtOAc. White solid, Melting point- $89^{\circ} \mathrm{C}$, yield- $78 \%,{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.47(2 \mathrm{H}, \mathrm{m}), 7.01-$ $6.97(1 \mathrm{H}, \mathrm{m}), 3.96(1 \mathrm{H}, \mathrm{brs}), 3.61(1 \mathrm{H}, \mathrm{brs}), 3.51-3.46(2 \mathrm{H}, \mathrm{m}), 3.36(3 \mathrm{H}, \mathrm{s}), 3.16(1 \mathrm{H}, \mathrm{brs}), 1.96-1.80$ $(2 \mathrm{H}, \mathrm{m}), 1.75-1.61(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.4,157.1(\mathrm{~d}, J=249.0 \mathrm{~Hz}), 133.9$ (d, $J=7.9 \mathrm{~Hz}$), 131.7 (d, $J=3.6 \mathrm{~Hz}$), 126.4 (d, $J=19.8 \mathrm{~Hz}$), 117.6 (d, $J=23.1 \mathrm{~Hz}$), 117.2 (d, $J=3.5$ $\mathrm{Hz}), 74.9,55.8,44.1,38.9,31.0,29.9 ;{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-117.46; HRMS(ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrFNO}_{2}(\mathrm{M}+\mathrm{H})^{+}-316.0343$, found 316.0349.

4-(4-fluoro-3-(4-methoxypiperidine-1-carbonyl)benzyl)phthalazin-1(2H)-one (19): In a 30 ml glass vial, 2-acetylbenzoic acid (792mg, 4.8 mmol), (5-bromo-2-fluorophenyl)(4-methoxypiperidin-1yl)methanone ($500 \mathrm{mg}, 1.58 \mathrm{mmol}$) and sodium tert butoxide ($760 \mathrm{mg}, 7.9 \mathrm{mmol}$) were taken and then 5 ml of DMF was added to it under argon atmosphere. After that, the reaction mixture was heated to $120^{\circ} \mathrm{C}$ for $36-40 \mathrm{~h}$. After completion of the reaction, DMF distilled off. Then the mixture was extracted with ethyl acetate and the extract dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude oily product (500 mg) was used in next step without further purification. The crude oily product (500 mg) was dissolved in EtOH and then adds hydrazine hydrate ($480 \mu \mathrm{l}, 1.54 \mathrm{mmol}$) to it. Reflux the reaction mixture for 15 h . Cool the mixture and distilled off the ethanol using rotavapour. Then the mixture was extracted with ethyl acetate and the extract dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The final product (19) was purified by flash chromatography. HPLC purity: 99.9%. White solid, Melting point $-80^{\circ} \mathrm{C}$, yield- 68%, IR $v\left(\mathrm{~cm}^{-1}\right): 3913.12,3885.50,3781.85,3432.25$, 2931.78, 2121.60, 1633.49, 1451.27, 1407.43, 1353.38, 1268.99, 1228.48, 1182.74, 1154.96, 1092.96, 1024.47, 938.29, 846.02, 754.33, 685.04, 647.23, 560.24, 485.67; ${ }^{1} \mathbf{H}$ NMR (400MHz, DMSO-d ${ }_{6}$) δ $12.60(1 \mathrm{H}, \mathrm{s}), 8.28-8.25(1 \mathrm{H}, \mathrm{m}), 7.97-7.95(1 \mathrm{H}, \mathrm{m}), 7.89-7.79(2 \mathrm{H}, \mathrm{m}), 7.43-7.34(2 \mathrm{H}, \mathrm{m}), 7.23-7.18$ $(1 \mathrm{H}, \mathrm{m}), 4.33(2 \mathrm{H}, \mathrm{s}), 3.91(1 \mathrm{H}, \mathrm{brs}), 3.42-3.38(3 \mathrm{H}, \mathrm{m}), 3.23(3 \mathrm{H}, \mathrm{s}), 3.05-2.99(1 \mathrm{H}, \mathrm{m}), 1.88-1.84(1 \mathrm{H}$, $\mathrm{m}), 1.72-1.69(1 \mathrm{H}, \mathrm{m}), 1.47-1.39(1 \mathrm{H}, \mathrm{m}), 1.32-1.29(1 \mathrm{H}, \mathrm{m}),{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) \delta$ 163.7, 159.4, 156.4 (d, $J=244.1 \mathrm{~Hz}), 144.9,134.8(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 133.5,131.5,131.4(\mathrm{~d}, J=7.9 \mathrm{~Hz})$, 129.1, 128.6 (d, $J=3.5 \mathrm{~Hz}$), 127.9, 126.1, 125.5, 124.2 (d, $J=18.7 \mathrm{~Hz}$), 115.8 (d, $J=21.6 \mathrm{~Hz}$), 74.8, 55.0, 43.9, 38.5, 36.5, 30.7, 30.1; ${ }^{19}$ F NMR (376 MHz , DMSO- d_{6}) $\delta-120.16$; HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FN}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}-396.1718$, found 396.1711.

3. Calculations of Green Chemistry Metrics.

The green chemistry metrics of our method and literature reported method were calculated on the basis of Green Chemistry equations. ${ }^{1}$

Steps involved in this process (linear reactions) are:

$$
A+B \longrightarrow C \xrightarrow[\text { ii) } E]{\text { i) } D} F
$$

The reactants and reagents efficiently participate in product formation excluding intermediates. The Green Chemistry Metrics are calculated based on general formula ${ }^{1}$ as below:

1. No. of steps $=$ No. of steps involved in the process
2. Atom economy $=[($ M.W. of product F $) /($ M.W. of A+M.W. of B+M.W. of D+M.W. of E) $)] \times 100$
3. Overall yield $=($ Yield of formation of $C \times$ Yield of formation of $F) / 100$
4. Atom efficiency $=\%$ yield x Atom economy
5. Process Mass Intensity $=$ (Total mass used in the process $/$ Mass of the product $)$
6. Mass productivity $=(1 /$ Mass intensity $) \times 100$
7. E -factor $=($ Mass intensity -1$)$
8. Effective Mass Yield = (1/E-factor) $\times 100$
9. Reaction Mass Efficiency $=[($ Mass of product $F) /($ Mass of $A+$ Mass of $B+$ Mass of $D+$ Mass of E)] x 100 .
A) Calculation of Green Chemistry Metrics for our method

Steps involved in this process are:

1. No. of steps $=4$.
2. Atom economy $=[(434.47) /$
$(104.53+86.14+219.01+379.24+129.25+164.16+96.10+32.04)] \times 100=[434.47 / 1210.47] \times 100$ $=35.89 \% \approx 35.9 \%$.
3. Overall yield $=51.0 \%$.
4. Atom efficiency $=[(51.0 / 100) \times 35.9]=18.3 \%$.
5. Process Mass Intensity $(\mathrm{PMI})=$
$[(3.32+2.50+10.50+5.54+9.59+9.81+23.60+9.34+9.12+18.90+0.70+11.80) / 6.30]=$ $[114.72 / 6.30]=18.21 \mathrm{~g} / \mathrm{g} \approx 18.2 \mathrm{~g} / \mathrm{g}$.
6. Mass productivity $=[(1 / 18.2) \times 100]=[0.0549 \times 100]=5.5 \%$.
7. E-factor $=18.2-1=17.2 \mathrm{~g} / \mathrm{g}$.
8. Effective Mass Yield $=[(1 / 17.2) \times 100]=[0.0581 \times 100]=5.8 \%$.
9. Reaction Mass Efficiency $($ RME $)=$ $[\{6.30 /(3.32+2.50+5.54+9.59+9.81+9.34+9.12+0.70)\} \times 100]=[\{6.30 / 49.92\} \times 100]=12.62 \%$ $\approx 12.6 \%$.
B) Calculation of Green Chemistry Metrics for Literature reported method ${ }^{2}$ (WO 2004/080976 A1 \& WO 2008/047082 A2)

Consideration: All calculations are done based on two literature reported patents (WO 2004/080976 A1 \& WO 2008/047082 A2). In our work, 6.30 g Olaparib was synthesized. The two above-mentioned patents disclosed all reactions procedures, such as equivalent of reactants, mmol, yield etc. But the scaling of all steps is different. So, for mass calculation purpose and comparison with our method, we assume the scale of Olaparib synthesis in 6.30 g by using reported patents data (such as equivalent of reactants, mmol, yield etc).

1. No. of steps $=6$.
2. Atom economy $=[(434.47) /$
$(150.13+110.05+54.02+96.11+149.12+101.19+40.00+32.04+186.25+379.24+129.25+36.50+$ $104.53+101.19)] \times 100=[434.47 / 1669.62] \times 100=26.02 \% \approx 26.0 \%$.
3. Overall yield $=46.0 \%$.
4. Atom efficiency $=[(46.0 / 100) \times 26.0]=11.96 \% \approx 12.0 \%$.
5. Process Mass Intensity $(\mathrm{PMI})=$
$[(4.82+7.11+13.96+6.83+36.21+4.57+3.10+64.16+3.54+1.42+15.91+5.07+11.19+6.46+26.4$ $9+12.91+5.14+1.68+1.63+94.40) / 6.30]=[326.60 / 6.30]=51.84 \mathrm{~g} / \mathrm{g} \approx 51.8 \mathrm{~g} / \mathrm{g}$.
6. Mass productivity $=[(1 / 51.8) \times 100]=[0.0193 \times 100]=1.9 \%$.
7. E-factor $=51.8-1=50.8 \mathrm{~g} / \mathrm{g}$
8. Effective Mass Yield $=[(1 / 50.8) \times 100]=[0.0197 \times 100]=1.97 \% \approx 2.0 \%$.
9. Reaction Mass Efficiency $($ RME $)=$ $[\{6.30 /(4.82+7.11+13.96+6.83+4.57+3.10+3.54+1.42+5.07+11.19+6.46+12.91+1.68+1.63)\}$ $\mathrm{x} 100]=[\{6.30 / 84.29\} \times 100]=7.47 \% \approx 7.5 \%$.
10. Table S1: Table of comparing the shifts (${ }^{1} \mathrm{H}$ NMR spectrum) of final compound Olaparib (1) with the literature reported ${ }^{3}$ values.

${ }^{1}$ H NMR (400MHz, DMSO-d ${ }_{6}$) Compound 1 ($\delta \mathrm{ppm}$)	\qquad
12.59 (1H, s)	12.53 (1H, s)
8.28-8.26 (1H, m)	8.25 (1H, dd)
7.98-7.82 (3H, m)	$\begin{gathered} 7.92(1 \mathrm{H}, \mathrm{~d}), 7.83 \\ (1 \mathrm{H}, \mathrm{dt}), 7.77(1 \mathrm{H}, \\ \mathrm{dt}) \end{gathered}$
7.46-7.37 (2H, m)	$\begin{gathered} 7.41(1 \mathrm{H}, \mathrm{~m}), 7.34 \\ (1 \mathrm{H}, \mathrm{dd}) \end{gathered}$
7.27-7.22 (1H, m)	7.17 (1H, t)
$4.34(2 \mathrm{H}, \mathrm{s})$	$4.31(2 \mathrm{H}, \mathrm{s})$
3.75-3.60 (6H, m)	3.56 (6H, m)
3.23-3.17 (2H, m)	3.20 (2H, brs)
1.99 (1H, s)	1.88 ($1 \mathrm{H}, \mathrm{brs}$)
0.75-0.72 ($4 \mathrm{H}, \mathrm{m}$)	0.70 (4H, m)

5. A) Table S2: Table of comparing the shifts (${ }^{1} \mathrm{H}$ NMR spectrum) of final compound AZD2461(19) with the literature reported ${ }^{4}$ values.

$\begin{gathered} { }^{1} \text { H NMR }(400 \mathrm{MHz}, \\ \text { DMSO-d } 6) \\ \text { Compound } 19 \\ (\delta \mathrm{ppm}) \end{gathered}$	${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ Literature reported compound $(\delta \mathrm{ppm})$
12.60 (1H, s)	12.12 (1H, s)
8.28-8.25 ($1 \mathrm{H}, \mathrm{m}$)	$8.41-8.39$ (1H, m)
$\begin{aligned} & 7.97-7.95(1 \mathrm{H}, \mathrm{~m}), \\ & 7.89-7.79(2 \mathrm{H}, \mathrm{~m}) \end{aligned}$	7.66-7.65 (3H, m)
7.43-7.34 (2H, m)	$\begin{aligned} & \hline 7.28-7.24(1 \mathrm{H}, \mathrm{~m}), \\ & 7.23-7.21(1 \mathrm{H}, \mathrm{~m}) \end{aligned}$
7.23-7.18 (1H, m)	6.94-6.90 ($1 \mathrm{H}, \mathrm{m}$)
4.33 (2H, s)	4.22 (2H, s)
3.91 (1 H, brs)	3.91 (1H, brs)
3.42-3.38 (3H, m)	$\begin{aligned} & \hline 3.50-3.39(1 \mathrm{H}, \mathrm{~m}), \\ & 3.31-3.27(2 \mathrm{H}, \mathrm{~m}) \\ & \hline \end{aligned}$

$3.23(3 \mathrm{H}, \mathrm{s})$	$3.12(3 \mathrm{H}, \mathrm{s})$
$3.05-2.99(1 \mathrm{H}, \mathrm{m})$	$3.05-2.81(1 \mathrm{H}, \mathrm{m})$
$1.88-1.84(1 \mathrm{H}, \mathrm{m})$	$1.86-1.82(1 \mathrm{H}, \mathrm{m})$
$1.72-1.69(1 \mathrm{H}, \mathrm{m})$	$1.69(1 \mathrm{H}, \mathrm{brs})$
$1.47-1.39(1 \mathrm{H}, \mathrm{m})$	$1.64-1.62(1 \mathrm{H}, \mathrm{brs})$
$1.32-1.29(1 \mathrm{H}, \mathrm{m})$	$1.60-1.59(1 \mathrm{H}, \mathrm{m})$

B) Table S3: Table of comparing the shifts ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of final compound AZD2461(19) with the literature reported ${ }^{4}$ values.

$\begin{gathered} { }^{13} \text { C NMR (100MHz, } \\ \text { DMSO-d } \left.{ }_{6}\right) \\ \text { Compound } 19 \\ (\delta \mathrm{ppm}) \end{gathered}$	${ }^{13} \mathbf{C ~ N M R}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Literature reported compound ${ }^{4}$ $(\delta \mathrm{ppm})$
163.73	164.75
159.44	161.10
157.61 \& 155.18	157.96 \& 155.99
144.96	145.55
134.83 \& 134.80	134.20 \& 134.18
133.48	133.46
131.55	131.34
131.44 \& 131.36	131.04 \& 130.97
129.10	129.48
128.61 \& 128.57	128.81 \& 128.78
127.93	128.16
126.10	126.93
125.46	125.02
124.29 \& 124.10	124.51\& 124.36
115.96 \& 115.75	116.03 \& 115.86
74.76	74.97
55.04	55.86
43.90	44.08
38.52	38.81
36.48	37.86
30.72	30.91
30.10	29.94

6. References

1. (a) D. J. C. Constable, A. D. Curzons, V. L. Cunningham, Green Chem., 2002, 4, 521-527; (b) A. D. Curzons, D. J. C. Constable, D. N. Mortimer, V. L. Cunningham, Green Chem., 2001, 3, 1-6.
2. (a) N. M. B. Martin, G. C. Smith, S. P. Jackson, V. J. M. Loh, X.-L. F. Cockcroft, I. T. W. Matthews, K. A. Menear, F. Kerrigan, A. Ashworth, WO 2004/080976 A1, Sep 23, 2004; (b) K. A. Menear, A. P. Ottridge, D. J. Londesbrough, M. R. Hallett, K. R. Mulholland, J. D. Pittam, D. D. P. Laffan, I. W. Ashworth, M. F. Jones, J. H. Cherryman, WO 2008/047082 A2, Apr 24, 2008.
3. (a) K. A. Quigley, E. J. Still, L. J. Chyall, U.S. Patent Appl. 8183369 B2, May 22, 2012; (b) K. A. Menear, A. P. Ottridge, D. J. Londesbrough, M. R. Hallett, K. R. Mulholland, J. D. Pittam, D. D. P. Laffan, I. W. Ashworth, M. F. Jones, J. H. Cherryman, U.S. Patent Appl. 8247416 B2, Aug. 21, 2012.
4. S. W. Reilly, L. N. Puentes, C-J. Hsieh, M. Makvandi, R. H. Mach, ACS Omega., 2018, 3, 9997-10001.

7. Spectra of compounds

Figure S1. ${ }^{1} \mathrm{H}$ NMR of Cyclopropyl (piperazin-1-yl) methanone (15)

Figure S2. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectra of Cyclopropyl (piperazin-1-yl) methanone (15)

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra of (4-(5-bromo-2-fluorobenzoyl)piperazin-1-yl)(cyclopropyl)methanone (14)

Figure S5. ${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of (4-(5-bromo-2-fluorobenzoyl)piperazin-1-yl)(cyclopropyl)methanone (14)

Figure S6. HRMS spectra of (4-(5-bromo-2-fluorobenzoyl)piperazin-1-yl)(cyclopropyl)methanone (14)
 $\stackrel{8}{8}$ 응

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectra of 2-(2-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorophenyl) acetyl)

Figure S8. ${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 2-(2-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorophenyl) acetyl) benzoic acid (12)

Figure S9. ${ }^{19}$ F NMR spectra of 2-(2-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorophenyl) acetyl) benzoic acid (12)

Figure S10. HSQC spectra of 2-(2-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorophenyl) acetyl) benzoic acid (12)

Figure S11. ESMS spectra of 2-(2-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorophenyl) acetyl) benzoic acid (12)

Figure S12. HRMS spectra of 2-(2-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorophenyl)

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectra of 4-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorobenzyl)

Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 4-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorobenzyl) phthalazin-1(2H)-one (1)

Figure S15. HSQC spectra of 4-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorobenzyl) phthalazin-1(2H)-one (1)

Figure S16. HMBC spectra of 4-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorobenzyl) phthalazin-1(2H)-one (1)

Figure S17. ESMS spectra of 4-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorobenzyl) phthalazin-1(2H)-one (1)

Figure S18. HRMS spectra of 4-(3-(4-(cyclopropanecarbonyl) piperazine-1-carbonyl)-4-fluorobenzyl) phthalazin$1(2 H)$-one (1)

Spectrum

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectra of (5-bromo-2-fluorophenyl)(4-methoxypiperidin-1-yl)methanone (21)

```
# %%%m
```


Figure S22. ${ }^{19}$ F NMR spectra of (5-bromo-2-fluorophenyl)(4-methoxypiperidin-1-yl)methanone (21)

Figure S23. HRMS spectra of (5-bromo-2-fluorophenyl)(4-methoxypiperidin-1-yl)methanone (21)

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectra of 4-(4-fluoro-3-(4-methoxypiperidine-1-carbonyl) benzyl) phthalazin-1(2H)-one (19)

Figure S25. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 4-(4-fluoro-3-(4-methoxypiperidine-1-carbonyl) benzyl) phthalazin1 (2H)-one (19)
comer

Figure S26. ${ }^{19}$ F NMR spectra of 4-(4-fluoro-3-(4-methoxypiperidine-1-carbonyl) benzyl) phthalazin-1(2H)-one (19)

Figure S27. HSQC spectra of 4-(4-fluoro-3-(4-methoxypiperidine-1-carbonyl) benzyl) phthalazin-1(2H)-one (19) S37

Figure S28. HMBC spectra of 4-(4-fluoro-3-(4-methoxypiperidine-1-carbonyl) benzyl) phthalazin-1(2H)-one (19) S38

Figure S30. HRMS spectra of 4-(4-fluoro-3-(4-methoxypiperidine-1-carbonyl) benzyl) phthalazin-1(2H)-one (19)

Spectrum

Figure S31. IR spectra of 4-(4-fluoro-3-(4-methoxypiperidine-1-carbonyl) benzyl) phthalazin-1(2H)-one (19)

8. Analytical information of compounds.

System: Waters e2695-2998 Series Mobile phase: Mobile phase A: $\mathrm{H}_{2} \mathrm{O}$, Mobile phase B: MeCN

Detector: UV at 254 nm
Column: Thermo C-18 $\mathbf{4 . 6 \times 2 5 0 m m , 5 \mu}$
Column Temperature: $\mathbf{2 5}^{\circ} \mathrm{C}$

Figure S33. HPLC spectra of 4-(4-fluoro-3-(4-methoxypiperidine-1-carbonyl) benzyl) phthalazin-1(2H)-one (19)
9. Biological evaluation of Olaparib (1)

Figure S34. (A) PARP1 activity was measured at different concentrations and concentration dependent activity was observed. (B) The fluorescence intensity of NAD+ (substrate of PARP1) was measured in each reaction in the presence and absence of inhibitors. In Fig B, lane 4, NAD+ intensity was lower than lane 3 as it was used up by PARP1 for its activity. In lanes 5-7, the concentration of NAD+ was higher in the presence of Olaparib, indication inhibition of PARP1 activity. (C) Our synthesized compound 1 showed more or less similar activity with commercially sourced olaparib.

