Synthesis of α cyanato- α '-carbonyl Sulfoxonium Ylides in Water

Qingyao Zhang,† Cankun Luo,† Ruizhi Lai, Zhiqian Lin, Pengfei Jia, Shuran Xu, Li Guo and Yong Wu*

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041 (P. R. China)

[†]These authors contributed equally.

Table of Contents

1 General Information1
2 Experimental section1
2.1 Preparation of sulfoxonium ylides 1a-28a1
2.2 Preparation of sulfoxonium ylides 29a-32a2
2.3 Optimization of the reaction conditions4
2.4 Typical procedure for the reaction4
2.5 Convertion from Carboxylic Acid to α -cyanato- α '-carbonyl Sulfoxonium Ylide 8b5
2.6 Reference5
3 Characterization data for the products6
4 ¹ H NMR and ¹³ C NMR Spectra of Products13
5 LCMS, GCMS analysis of the reaction system and standard <i>p</i> -toluenesulfinic acid46

1 General Information

Unless noted, all reactions were carried out in single necked flask with magnetic stirring under an atmosphere of air. Solvents used were of analytical purity. All the reactions were monitored by thin-layer chromatography (TLC) and were visualized using UV light and lodine. The product purification was done using silica gel column chromatography. Thin-layer chromatography (TLC) characterization was performed with precoated silica gel GF254 (0.2mm), while column chromatography characterization was performed with silica gel (200-300 mesh). NMR spectra were recorded on a Varian spectrometer (400 or 600 MHz for ¹H, 100 or 150 MHz for ¹³C and 376 MHz for ¹⁹F). Chemical shifts are reported in δ ppm referenced to an internal SiMe₄ standard for ¹H NMR and chloroform-*d* (δ 77.1) or DMSO-*d*₆ (δ 39.5) for ¹³C NMR. Coupling constants were given in Hz. HRMS spectra were recorded on a Waters Q-TOF Premier. Melting points were measured with YRT-3 melting point apparatus (Shantou Keyi Instrument &Equipment Co., Ltd., Shantou, China).

2 Experimental section

2.1 Preparation of sulfoxonium ylides 1a-28a^{1, 2}

To a stirred solution of potassium tert-butoxide (1.0 g, 9.1 mmol) in THF (10 mL) was added trimethylsulfoxonium iodide (1.5 g, 6.9 mmol) at room temperature. The resulting mixture was refluxed for 3 h under argon. Then the reaction mixture was cooled to 0 °C, followed by addition of acylchlorides (2.3 mmol) in THF (2 mL). The reaction allowed to warm to room temperature and stirred for 3 h. After the solvent was evaporated, water (20 mL) and ethyl acetate (20 mL) were added to the residual crude product. The aqueous layer was separated and washed with ethyl acetate (3×20 mL) and the organic layers were combined. The organic solution was dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified by column chromatography on silica gel. Sulfoxonium ylides **1a-21a, 23a-28a** were afforded in 65-98% yields according to this method.

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-1-(pyridin-3-yl)ethan-1-one (22a)

To a mixture of potassium tert-butoxide (3.03 g, 27 mmol) and anhydrous THF (55 mL) was added dried trimethylsulfoxonium chloride (3.47 g, 27 mmol) and the resulting mixture refluxed for 3 h under argon. The resulting mixture was cooled to 0 °C and to the mixture was added dropwise a solution of nicotinoyl chloride hydrochloride (1.6 g, 9 mmol), NEt₃ (1.26 mL, 9 mmol), and anhydrous THF (10 mL) which had been pre-stirred for 1 h at ambient temperature. The resulting mixture was warmed to ambient temperature and stirred for 72 h under argon. The resulting mixture was filtered through Celite and concentrated under reduced pressure to give an orange oil (3.3 g). The resulting residue was purified by automated flash column chromatography. The appropriate fractions were combined and concentrated to give **22a** as a off-white solid (460 mg) of sufficient purity to be used in the subsequent reactions without purification.

2.2 Preparation of sulfoxonium ylides 29a-32a³

Step-I: To a stirred solution of a carboxylic acid (10 mmol) and DMF (2 drops) in CH₂Cl₂ (40 mL), (COCl)₂ (20 mmol, 1.8 mL) was added dropwise. The reaction was allowed to stir at room temperature overnight. Evaporation of the reaction mixture gave a residue which was dissolved in THF (20 mL). The resulting solution was used as acid chloride solution in subsequent reactions. **Step-II:** To a stirred solution of potassium tert-butoxide (40 mmol, 4.5 g) in dry THF (40 mL), trimethylsulfoxonium iodide (30 mmol, 6.6 g) was added and the reaction was allowed to reflux for 3 h under argon. The reaction mixture was cooled to 0 °C and the solution of the acid chloride (obtained by **step-I**) was added dropwise to it. Then, the reaction was allowed to stir at room temperature for additional 3 h. After completion, 20 mL of water was added to the reaction mixture and the organic part was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with brine (20 mL) and water (10 mL). The organic solution was dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified on silica gel column

chromatography to afford sulfoxonium ylides **29a**, **31a**, **32a**. Sulfoxonium ylide **30a** does not require purification for the next step of synthesis .

1-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-(6-methoxynaphthalen-2-yl)butan-2-one (29a)

Yield: 85% (2.6 g). Yellow solid, m.p.: 115.1-116.7 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 – 7.63 (m, 3H), 7.40 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.14 – 7.09 (m, 2H), 4.31 (s, 1H), 3.89 (s, 3H), 3.64 (q, *J* = 7.1 Hz, 1H), 3.27 (d, *J* = 18.4 Hz, 6H), 1.51 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 192.1, 157.3, 138.4, 133.4, 129.2, 129.0, 126.8, 126.8, 125.8, 118.6, 105.6, 69.4, 55.3, 50.3, 42.0, 41.9, 18.3.

1-(dimethyl(oxo)-λ⁶-sulfaneylidene)-4-(4,5-diphenyloxazol-2-yl)butan-2-one (31a)

Yield: 72% (2.63 g). Yellow solid, m.p.: 137.1-139.0 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.61 (d, J = 7.0 Hz, 2H), 7.55 (d, J = 7.0 Hz, 2H), 7.36 – 7.27 (m, 6H), 4.45 (s, 1H), 3.34 (s, 6H), 3.13 (t, J = 7.8 Hz, 2H), 2.72 (t, J = 7.8 Hz, 2H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 188.0, 163.0, 145.1, 135.0, 132.6, 129.1, 128.6, 128.5, 128.3, 128.0, 127.9, 126.4, 69.5, 42.1, 37.2, 24.2.

4-(2-(dimethyl(oxo)-λ⁶-sulfaneylidene)acetyl)-N,N-dipropylbenzenesulfonamide (32a)

Yield: 75% (2.71 g). Yellow solid, m.p.: 110.5-112.0 °C. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.2 Hz, 2H), 7.74 (d, *J* = 8.1 Hz, 2H), 5.05 (s, 1H), 3.49 (s, 6H), 3.05 – 2.96 (m, 4H), 1.51 – 1.41 (m, 4H), 0.84 – 0.74 (m, 6H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 180.3, 142.5, 141.6, 127.2, 126.8, 70.5, 49.9, 42.0, 21.9, 11.1.

2.3 Optimization of the reaction conditions^a

	0 0 S 1a	+ TsCN	conditio	ons	O S CN 1b
entry	catalyst	solvent	t (h)	eq of TsCN	yield (%) ^b
1	$B(C_6F_5)_3$	Tol	12	2	64
2	-	Tol	12	2	40
3	-	Tol	24	2	50
4	-	THF	24	2	57
5	-	iPrOH	24	2	47
6	-	MeCN	24	2	28
7	-	CHCl₃	24	2	90
8	-	EA	24	2	49
9	-	DMF	24	2	56
10	-	Acetone	24	2	88
11	-	DMSO	24	2	90
12	-	EtOH	24	2	30
13	-	DCE	24	2	51
14	-	H ₂ O	24	2	93
15	-	H ₂ O	24	1.1	83
16	-	H ₂ O	24	1.2	84
17	-	H ₂ O	24	1.5	92

^a Reaction conditions: 1a (0.2 mmol), TsCN, catalyst (5 mol%) in 2 mL of solvent at 60 °C under air.
 ^b Isolated yields after chromatography on silica gel.

2.4 Typical procedure for the reaction

To a 10 mL glass vial equipped with a magnetic stir bar was added the sulfoxonium ylide **1a** (0.2 mmol), TsCN (0.3 mmol). Then 2 mL H_2O was added and the mixture was stirred at 60 °C for 24 h determined by TLC. Afterwards, it was extracted with EA, and the organic layers were combined.

The organic solution was dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified by silica gel chromatography using PE/EA.

2.5 Convertion from Carboxylic Acid to α -cyanato- α '-carbonyl Sulfoxonium Ylide 8b.

Step-I: To a stirred solution of a carboxylic acid (10 mol) and DMF (2 drops) in CH₂Cl₂ (40 mL), (COCl)₂ (20 mmol, 1.8 mL) was added dropwise. The reaction was allowed to stir at room temperature overnight. Evaporation of the reaction mixture gave a residue which was dissolved in THF (20 mL). The resulting solution was used as acid chloride solution in subsequent reactions. **Step-II:** To a stirred solution of potassium tert-butoxide (40 mmol, 4.5 g) in dry THF (40 mL), trimethylsulfoxonium iodide (30 mmol, 6.6 g) was added and the reaction was allowed to reflux for 3 h under argon. The reaction mixture was cooled to 0 °C and the solution of the acid chloride (obtained by **step-I)** was added dropwise to it. Then, the reaction was allowed to stir at room temperature for additional 3 h. After completion, the mixture was filtered through a plug of celite (elution EA). Evaporation of the filtrate gave the crude product and no further purification was required for the next step of synthesis .

Step-III: To a 150 mL flask equipped with a magnetic stir bar was added the sulfoxonium ylide (obtained by **step-II**), TsCN (15 mmol, 2.72 g). Then 75 mL H₂O was added and the mixture was stirred at 60 °C for 24 h determined by TLC. Afterwards, it was extracted with EA, and the organic layers were combined. The organic solution was dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified by silica gel chromatography using PE/EA to give the desired product **8b** in 81% (1.93 g, white solid).

2.6 Reference

- 1 J. Li, H. He, M. Huang, Y. Chen, Y. Luo, K. Yan, Q. Wang and Y. Wu, *Org. Lett.*, 2019, **21**, 9005-9008.
- 2 S. Hassell-Hart, E. Speranzini, S. Srikwanjai, E. Hossack, S. M. Roe, D. Fearon, D. Akinbosede, S. Hare and J. Spencer, *Org. Lett.*, 2022, **24**, 7924-7927.
- 3 S. Saha, B. Debnath, K. Talukdar, P. Karjee, S. Mandal and T. Punniyamurthy, Org. Lett., 2023,

25, 3352-3357.

3 Characterization data for the products

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-3-oxo-3-phenylpropanenitrile (1b)

127.3, 117.0, 71.8, 40.4. HRMS (ESI) calculated for C₁₁H₁₂NO₂S [M+H]⁺ 222.0583, Found 222.0584.
 2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-3-oxo-3-(*p*-tolyl)propanenitrile (2b)

Yield: 88% (41.5 mg). White solid, m.p.: 153.1-154.5 °C. ¹H NMR (400 \checkmark MHz, Chloroform-*d*) δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 3.63 (s, 6H), 2.36 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 186.3, 142.7,

134.6, 129.0, 127.9, 116.5, 70.1, 42.1, 21.6. HRMS (ESI) calculated for $C_{12}H_{14}NO_2S$ [M+H]⁺ 236.0740, Found 236.0741.

3-(4-(*tert*-butyl)phenyl)-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-oxopropanenitrile (3b)

Yield: 92% (50.8 mg). Light yellow solid, m.p.: 148.4-150.2 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 8.5 Hz, 2H), 3.63 (s, 6H), 1.30 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ

186.2, 155.7, 134.5, 127.8, 125.3, 116.6, 70.0, 42.2, 35.0, 31.1. **HRMS (ESI)** calculated for $C_{15}H_{20}NO_2S [M+H]^+ 278.1209$, Found 278.1207.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-(4-methoxyphenyl)-3-oxopropanenitrile (4b)

Yield: 90% (45 mg). White solid, m.p.: 145.1-147.0 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, *J* = 8.9 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 3.84 (s, 3H), 3.65 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 185.3,

162.7, 130.0, 129.7, 116.5, 113.6, 69.4, 55.4, 42.4. **HRMS (ESI)** calculated for C₁₂H₁₄NO₃S [M+H]⁺ 252.0689, Found 252.0690.

$2-(dimethyl(oxo)-\lambda^6-sulfaneylidene)-3-oxo-3-(4-(trifluoromethyl)phenyl)propanenitrile (5b)$

Yield: 88% (50.8 mg). White solid, m.p.: 153.7-155.2 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, *J* = 8.1 Hz, 2H), 7.61 (d, *J* = 8.2 Hz, 2H), 3.61 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 185.0, 140.3, 133.4 (q, J = 32.8 Hz), 128.3, 125.4 (q, J = 3.8 Hz), 123.7 (q, J = 270.7 Hz), 115.7, 70.9, 42.1. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -62.98. **HRMS (ESI)** calculated for C₁₂H₁₁F₃NO₂S [M+H]⁺ 290.0457, Found 290.0456.

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-3-(4-nitrophenyl)-3-oxopropanenitrile (6b)

Yield: 96% (51.1 mg). Yellow solid, m.p.: 207.2-209.0 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.32 (d, J = 8.8 Hz, 2H), 7.93 (d, J = 8.8 Hz, 2H), 3.86 (s, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 183.2, 148.8, 143.6, 128.7,

123.6, 116.4, 72.9, 40.3. HRMS (ESI) calculated for $C_{11}H_{11}N_2O_4S$ [M+H]⁺ 267.0434, Found 267.0437.

4-(2-cyano-2-(dimethyl(oxo)-λ⁶-sulfaneylidene)acetyl)benzonitrile (7b)

118.2, 116.4, 113.6, 72.6, 40.3. HRMS (ESI) calculated for $C_{12}H_{11}N_2O_2S$ [M+H]⁺ 247.0536, Found 247.0537.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-(4-fluorophenyl)-3-oxopropanenitrile (8b)

Yield: 95% (45.2 mg). White solid, m.p.: 160.0-161.2 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 7.90 (m, 2H), 7.15 – 7.06 (m, 2H), 3.67 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 184.9, 165.0 (d, *J* = 253.2 Hz),

133.33 (d, *J* = 3.1 Hz), 130.4 (d, *J* = 9.1 Hz), 116.1, 115.5 (d, *J* = 21.9 Hz), 70.0, 42.3. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -106.59. **HRMS (ESI)** calculated for C₁₁H₁₁FNO₂S [M+H]⁺ 240.0489, Found 240.0487.

3-(4-chlorophenyl)-2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-3-oxopropanenitrile (9b)

Yield: 75% (38 mg). White solid, m.p.: 146.7-148.5 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.5 Hz, 2H), 7.39 (d, *J* = 8.6 Hz, 2H), 3.66 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 185.0, 138.3, 135.5, 129.3,

Yield: 83% (46.1 mg). White solid, m.p.: 154.0-155.7 °C. ¹H NMR

128.6, 116.0, 70.3, 42.2. **HRMS (ESI)** calculated for $C_{11}H_{11}CINO_2S$ [M+H]⁺ 256.0194, Found 256.0191.

methyl 4-(2-cyano-2-(dimethyl(∞o)- λ^6 -sulfaneylidene)acetyl)benzoate (10b)

MeOOC

(400 MHz, Chloroform-*d*) δ 8.07 (d, *J* = 8.0 Hz, 2H), 7.91 (d, *J* = 8.1 Hz, 2H), 3.92 (s, 3H), 3.68 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 185.5, 166.3, 140.9, 133.0, 129.6, 127.8, 115.7, 70.9, 52.4, 42.1. HRMS (ESI) calculated for C₁₃H₁₄NO₄S [M+H]⁺ 280.0638, Found 280.0640.

3-(3-chlorophenyl)-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-oxopropanenitrile (11b)

Yield: 78% (39.8 mg). White solid, m.p.: 134.3-136.1 °C. ¹H NMR (400 CI CN CI CN CN Hz, Chloroform-*d*) δ 7.83 – 7.73 (m, 2H), 7.45 (d, *J* = 7.7 Hz, 1H), 7.35 (t, *J* = 7.9 Hz, 1H), 3.65 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 184.8, 138.9, 134.5, 132.0, 129.7, 127.9, 126.0, 115.9, 70.7, 42.0. HRMS (ESI) calculated for $C_{11}H_{11}CINO_2S$ [M+H]⁺ 256.0194, Found 256.0192.

3-(2-chlorophenyl)-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-oxopropanenitrile (12b)

131.2, 130.5, 130.1, 128.3, 127.0, 115.0, 72.3, 41.8. HRMS (ESI) calculated for $C_{11}H_{11}CINO_2S$ [M+H]⁺ 256.0194, Found 256.0195.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-(3-methoxyphenyl)-3-oxopropanenitrile (13b)

Yield: 96% (48 mg). White solid, m.p.: 77.1-78.9 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (d, *J* = 7.7 Hz, 1H), 7.36 (t, *J* = 2.1 Hz, 1H), 7.31 (t, *J* = 7.9 Hz, 1H), 7.02 (dd, *J* = 8.3, 2.7 Hz, 1H), 3.81 (s, 3H), 3.63

(s, 6H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 186.2, 159.5, 138.5, 129.4, 120.3, 118.5, 116.3, 112.5, 70.5, 55.5, 42.1. **HRMS (ESI)** calculated for C₁₂H₁₄NO₃S [M+H]⁺ 252.0689, Found 252.0685.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-(2-methoxyphenyl)-3-oxopropanenitrile (14b)

Yield: 97% (48.8 mg). White solid, m.p.: 150.0-152.6 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.36 (m, 2H), 7.01 – 6.92 (m, 2H), 3.88 (s, 3H), 3.65 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 187.0, 156.7, 132.1, 128.9, 128.1,

120.5, 115.5, 111.5, 72.0, 55.7, 42.1. **HRMS (ESI)** calculated for $C_{12}H_{14}NO_3S$ [M+H]⁺ 252.0689, Found 252.0688.

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-3-oxo-3-(o-tolyl)propanenitrile (15b)

Yield: 97% (45.7 mg). White solid, m.p.: 158.2-159.1 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.32 (td, *J* = 7.5, 1.5 Hz, 1H),

7.25 – 7.19 (m, 2H), 3.66 (s, 6H), 2.41 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 189.9, 138.1, 135.4, 131.0, 130.3, 127.2, 125.6, 115.5, 71.7, 42.0, 19.4. HRMS (ESI) calculated for C₁₂H₁₄NO₂S [M+H]⁺ 236.0740, Found 236.0739.

3-(benzo[d][1,3]dioxol-5-yl)-2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-3-oxopropanenitrile (16b)

Yield: 91% (48.2 mg). White solid, m.p.: 95.1-97.0 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.39 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.24 (d, *J* = 1.7 Hz, 1H), 7.00 (d, J = 8.1 Hz, 1H), 6.11 (s, 2H), 3.80 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 183.5, 149.9, 147.1, 132.0, 122.7, 117.2, 107.8, 107.5, 101.7, 71.2, 40.5. HRMS (ESI)

calculated for C₁₂H₁₂NO₄S [M+H]⁺ 266.0482, Found 266.0483.

3-(3,5-dimethoxyphenyl)-2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-3-oxopropanenitrile (17b)

Yield: 95% (53.2 mg). White solid, m.p.: 156.0-157.5 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.00 (d, J = 2.3 Hz, 2H), 6.56 (t, J = 2.3 Hz, 1H), 3.78 (s, 6H), 3.63 (s, 6H). ¹³C NMR (100 MHz, Chloroform-d) δ 186.0, 160.6, 139.0, 116.2, 105.6, 104.7, 70.6, 55.6, 42.0. HRMS (ESI)

calculated for C₁₃H₁₆NO₄S [M+H]⁺ 282.0795, Found 282.0796.

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-3-oxo-3-(3,4,5-trimethoxyphenyl)propanenitrile (18b)

Yield: 94% (58.3 mg). White solid, m.p.: 126.1-127.5 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.17 (s, 2H), 3.85 (s, 6H), 3.84 (s, 3H), 3.63 (s, 6H). ¹³C NMR (100 MHz, Chloroform-d) δ 185.2, 152.7, 141.2, 132.0, 116.3, 105.4, 70.1, 60.8, 56.2, 42.1. HRMS (ESI) calculated for

C₁₄H₁₈NO₅S [M+H]⁺ 312.0900, Found 312.0901.

2-(dimethyl(∞ o)- λ ⁶-sulfaneylidene)-3-(3,5-dimethylphenyl)-3- ∞ opropanenitrile (19b)

Yield: 97% (48.4 mg). White solid, m.p.: 152.3-154.1 °C. 1H NMR (400 MHz, Chloroform-d) δ 7.45 (s, 2H), 7.11 (s, 1H), 3.61 (s, 6H), 2.32 (s, 6H). ^{13}C NMR (100 MHz, Chloroform-d) δ 186.9, 137.9, 137.3, 133.6, 125.5, 116.3, 70.2, 42.0, 21.2. HRMS (ESI) calculated for C₁₃H₁₆NO₂S [M+H]⁺

250.0896, Found 250.0894.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-(naphthalen-2-yl)-3-oxopropanenitrile (20b)

Yield: 96% (52.2 mg). White solid, m.p.: 138.0-140.0 °C. ¹H NMR (400 MHz, Chloroform-d) δ 8.46 (s, 1H), 7.96 – 7.81 (m, 4H), 7.59 – 7.47 (m, 2H), 3.64 (s, 6H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 186.3, 134.9, 134.5, 132.3, 129.3, 128.8, 128.2, 128.0, 127.7, 126.7, 124.1, 116.4, 70.5, 42.1. **HRMS (ESI)** calculated for C₁₅H₁₄NO₂S [M+H]⁺ 272.0740, Found 272.0739.

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-3-(naphthalen-1-yl)-3-oxopropanenitrile (21b)

CN Yield: 8 O Chlorot 2.4 Hz,

Yield: 89% (48.2 mg). White solid, m.p.: 139.1-141.0 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 – 8.13 (m, 1H), 7.93 (d, *J* = 8.3 Hz, 1H), 7.87 (dd, *J* = 7.0, 2.4 Hz, 1H), 7.76 (dd, *J* = 7.1, 1.2 Hz, 1H), 7.57 – 7.45 (m, 3H), 3.64 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 188.9, 135.4, 133.8, 131.2, 129.9, 128.5,

127.2, 126.4, 126.2, 125.1, 124.6, 115.7, 72.6, 42.0. **HRMS (ESI)** calculated for C₁₅H₁₄NO₂S [M+H]⁺ 272.0740, Found 272.0737.

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-3-oxo-3-(pyridin-3-yl)propanenitrile (22b)

Yield: 92% (40.8 mg). White solid, m.p.: 148.0-149.5 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.90 (d, J = 2.2 Hz, 1H), 8.71 (dd, J = 4.8, 1.6 Hz, 1H), 8.09 (dt, J = 7.9, 2.0 Hz, 1H), 7.53 (dd, J = 8.0, 4.8 Hz, 1H), 3.85 (s, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 183.0, 151.8, 148.0, 135.1, 133.7, 123.5, 116.7, 72.5, 40.3. HRMS (ESI) calculated for C₁₀H₁₁N₂O₂S [M+H]⁺ 223.0536, Found 223.0537.

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-3-oxo-3-(thiophen-2-yl)propanenitrile (23b)

Yield: 94% (42.7 mg). White solid, m.p.: 213.1-215.0 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.90 (dd, J = 3.9, 1.1 Hz, 1H), 7.86 (dd, J = 5.0, 1.1 Hz, 1H), 7.20 (dd, J = 5.0, 3.8 Hz, 1H), 3.82 (s, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 175.6,

143.2, 132.3, 130.0, 128.2, 116.8, 70.3, 40.6. HRMS (ESI) calculated for $C_9H_{10}NO_2S_2$ [M+H]⁺ 228.0147, Found 228.0148.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-oxobutanenitrile (24b)

Yield: 53% (16.9 mg). Light yellow solid, m.p.: 151.2-152.7 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 3.69 (s, 6H), 2.07 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 188.4, 117.0, 71.1, 40.2, 26.9. HRMS (ESI) calculated for C₆H₁₀NO₂S [M+H]⁺ 160.0427, Found

160.0429.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-oxo-4-phenylbutanenitrile (25b)

Yield: 70% (33 mg). White solid, m.p.: 134.4-136.1 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.22 (m, 5H), 3.82 (s, 2H), 3.48 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.5, 134.6, 129.5, 128.6, 127.0, 115.8, 69.5, 46.2, 41.8. **HRMS (ESI)** calculated for C₁₂H₁₄NO₂S [M+H]⁺ 236.0740, Found 236.0741.

3-cyclohexyl-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-oxopropanenitrile (26b)

Yield: 83% (37.5 mg). White solid, m.p.: 138.6-140.0 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 3.53 (s, 6H), 2.65 (t, *J* = 11.3 Hz, 1H), 1.83 – 1.70 (m, 4H), 1.64 (d, *J* = 12.6 Hz, 1H), 1.43 – 1.08 (m, 5H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 196.9, 115.8, 68.6, 47.3, 42.0, 28.8, 25.7, 25.6. HRMS (ESI) calculated for C₁₁H₁₈NO₂S [M+H]⁺ 228.1053, Found 228.1054.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-4,4-dimethyl-3-oxopentanenitrile (27b)

Yield: 84% (33.8 mg). White solid, m.p.: 122.0-124.0 °C. ¹H NMR (400 MHz, t_{Bu} t_{Bu} t_{Bu}

3-((3r,5r,7r)-adamantan-1-yl)-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-oxopropanenitrile (28b)

Yield: 96% (53.8 mg). White solid, m.p.: 166.1-167.5 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 3.52 (s, 6H), 2.01 (s, 3H), 1.94 (d, *J* = 3.0 Hz, 6H), 1.68 (d, *J* = 3.2 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 198.9, 116.4, 69.1, 45.2,

42.3, 37.8, 36.4, 28.2. HRMS (ESI) calculated for C₁₅H₂₂NO₂S [M+H]⁺ 280.1366, Found 280.1367.

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-4-(6-methoxynaphthalen-2-yl)-3-oxopentanenitrile (29b)

Yield: 72% (47.3 mg). Light orange solid, m.p.: 72.5-74.0 °C.
¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 – 7.64 (m, 3H),
7.42 (d, *J* = 8.5 Hz, 1H), 7.17 – 7.06 (m, 2H), 4.26 (q, *J* = 7.0

Hz, 1H), 3.88 (s, 3H), 3.41 (s, 3H), 3.31 (s, 3H), 1.49 (d, J = 7.0 Hz, 3H). ¹³**C** NMR (100 MHz, Chloroform-*d*) δ 193.8, 157.6, 136.1, 133.7, 129.4, 129.0, 127.2, 126.5, 126.5, 119.0, 115.8, 105.6, 69.6, 55.3, 48.4, 41.8, 41.3, 18.2. HRMS (ESI) calculated for C₁₈H₂₀NO₃S [M+H]⁺ 330.1158, Found 330.1157.

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-3-oxo-4-(4-((2-

oxocyclopentyl)methyl)phenyl)pentanenitrile (30b)

Yield: 60% (41.5 mg). White solid, m.p.: 78.1-79.5 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 (d, *J* = 7.8 Hz, 2H), 7.09 (d, *J* = 7.9 Hz, 2H), 4.15 – 4.08 (m, 1H), 3.49 (d, J = 29.8 Hz, 6H), 3.09 (dd, J = 13.9, 4.0 Hz, 1H), 2.52 – 2.42 (m, 1H), 2.37 – 2.26 (m, 2H), 2.15 – 2.05 (m, 2H), 1.99 – 1.90 (m, 1H), 1.78 – 1.65 (m, 1H), 1.59 – 1.48 (m, 1H), 1.41 (d, J = 7.0 Hz, 3H). ¹³**C** NMR (150 MHz, Chloroform-*d*) δ 220.4, 193.9, 138.8, 138.6, 129.2, 127.9, 115.6, 69.4, 51.0, 48.1, 42.0, 41.6, 38.2, 35.3, 29.4, 20.6, 18.3. HRMS (ESI) calculated for C₁₉H₂₄NO₃S [M+H]⁺ 346.1471, Found 346.1470.

2-(dimethyl(∞o)- λ^6 -sulfaneylidene)-5-(4,5-diphenyloxazol-2-yl)-3-oxopentanenitrile (31b)

Yield: 70% (54.9 mg). White solid, m.p.: 137.1-139.0 °C. ¹H
NMR (400 MHz, Chloroform-*d*) δ 7.54 (d, *J* = 7.3 Hz, 2H), 7.48 (d, *J* = 7.3 Hz, 2H), 7.32 - 7.18 (m, 6H), 3.41 (s, 6H), 3.13 - 2.98 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.6, 162.1, 145.4,

134.9, 132.4, 128.9, 128.6, 128.6, 128.5, 128.1, 127.8, 126.5, 115.5, 69.6, 41.7, 35.8, 22.8. **HRMS (ESI)** calculated for C₂₂H₂₁N₂O₃S [M+H]⁺ 393.1267, Found 393.1265.

4-(2-cyano-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)acetyl)-*N*,*N*-dipropylbenzenesulfonamide (32b)

Yield: 80% (61.2 mg). White solid, m.p.: 176.1-178.0 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 8.1 Hz, 2H), 7.84 (d, *J* = 8.1 Hz, 2H), 3.69 (s, 6H), 3.07 (t, *J* = 7.4 Hz, 4H), 1.60 – 1.47 (m, 4H), 0.85 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (100 MHz,

Chloroform-*d*) δ 184.7, 143.0, 140.5, 128.6, 127.0, 115.6, 71.1, 50.1, 42.1, 22.1, 11.2. **HRMS (ESI)** calculated for C₁₇H₂₅N₂O₄S₂ [M+H]⁺ 385.1250, Found 385.1251.

4¹H NMR and ¹³C NMR Spectra of Products

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-oxo-3-phenylpropanenitrile (1b)

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-3-oxo-3-(*p*-tolyl)propanenitrile (2b)

 $3-(4-(tert-butyl)phenyl)-2-(dimethyl(oxo)-\lambda^6-sulfaneylidene)-3-oxopropanenitrile (3b)$

 $2-(dimethyl(oxo)-\lambda^{6}-sulfaneylidene)-3-(4-methoxyphenyl)-3-oxopropanenitrile (4b)$

$2-(dimethyl(oxo)-\lambda^6-sulfaneylidene)-3-oxo-3-(4-(trifluoromethyl)phenyl) propanenitrile (5b)$

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-(4-nitrophenyl)-3-oxopropanenitrile (6b)

4-(2-cyano-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)acetyl)benzonitrile (7b)

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-(4-fluorophenyl)-3-oxopropanenitrile (8b)

$3-(4-chlorophenyl)-2-(dimethyl(oxo)-\lambda^6-sulfaneylidene)-3-oxopropanenitrile (9b)$

methyl 4-(2-cyano-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)acetyl)benzoate (10b)

3-(2-chlorophenyl)-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-oxopropanenitrile (12b)

$2-(dimethyl(oxo)-\lambda^{6}-sulfaneylidene)-3-(3-methoxyphenyl)-3-oxopropanenitrile (13b)$

 $2-(dimethyl(oxo)-\lambda^6-sulfaneylidene)-3-(2-methoxyphenyl)-3-oxopropanenitrile (14b)$

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-3-oxo-3-(o-tolyl)propanenitrile (15b)

3-(benzo[d][1,3]dioxol-5-yl)-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-oxopropanenitrile (16b)

 $2-(dimethyl(oxo)-\lambda^{6}-sulfaneylidene)-3-oxo-3-(3,4,5-trimethoxyphenyl) propanenitrile (18b)$

 $2-(dimethyl(oxo)-\lambda^6-sulfaneylidene)-3-(3,5-dimethylphenyl)-3-oxopropanenitrile (19b)$

 $\label{eq:limit} 2-(dimethyl(oxo)-\lambda^6-sulfaneylidene)-3-(naphthalen-2-yl)-3-oxopropanenitrile~(20b)$

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-(naphthalen-1-yl)-3-oxopropanenitrile (21b)

 $\label{eq:limit} 2-(dimethyl(oxo)-\lambda^6-sulfaneylidene)-3-oxo-3-(pyridin-3-yl) propanenitrile (22b)$

 $\label{eq:limit} 2-(dimethyl(oxo)-\lambda^6-sulfaneylidene)-3-oxobutanenitrile~(24b)$

2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-oxo-4-phenylbutanenitrile (25b)

3-cyclohexyl-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-3-oxopropanenitrile (26b)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm)

70 60 50 40 30 20 10 0 -10

 $3-((3r, 5r, 7r)-adamantan-1-yl)-2-(dimethyl(oxo)-\lambda^6-sulfaneylidene)-3-oxopropanenitrile (28b)$

$2-(dimethyl(oxo)-\lambda^{6}-sulfaneylidene)-4-(6-methoxynaphthalen-2-yl)-3-oxopentanenitrile (29b)$

oxocyclopentyl)methyl)phenyl)pentanenitrile (30b)

2-(dimethyl(oxo)-λ⁶-sulfaneylidene)-5-(4,5-diphenyloxazol-2-yl)-3-oxopentanenitrile (31b)

4-(2-cyano-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)acetyl)-*N*,*N*-dipropylbenzenesulfonamide (32b)

User Chromatograms

User Spectra

Figure 2 GCMS of the reaction system

 t_R : retention time

 t_R (the reaction system) = 7.669 min

Figure 3 GCMS of the standard *p*-toluenesulfinic acid (purchased from bide pharm)

 t_R (standard *p*-toluenesulfinic acid) = 7.554 min