Synthesis of α-aminophosphorus derivatives using a deep eutectic solvent (DES) in a dual role

Susmita Mandal,^a Rajrani Narvariya,^a Shiva Lall Sunar,^a Ishita Paul,^a Archana Jain,^{*b} and Tarun K. Panda^{*a}

^aDepartment of Chemistry Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India-502284

^bDepartment of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet-500 075, Hyderabad, Telangana, India

Electronic Supporting Information

Content List

1. Experimental Section
1a. General Information
1b. General procedure for Synthesis of DES
1c. General procedure for Kabachnik–Fields Condensation Reaction
1d. Recyclability Test
1e. General procedure for Gram Scale Kabachnik–Fields Condensation Reaction
2. Characterisation data of DES4
3. Characterisation data of α -aminophosphine oxides (1a-1z)4-13
4. Characterisation data of α -aminophosphonate derivative (2a-2q)13-19
5. NMR spectra of α -aminophosphine oxides (1a-1z)
6. NMR spectra of α -aminophosphonate derivative (2a-2q)
7. NMR spectra of DES
8. Characterisation data of 6-(phenyl(phenylamino)methyl) dibenzo[d,f][1,3,2]dioxaphosp-
hepine 6-oxide
9. NMR spectra of 6-(phenyl(phenylamino)methyl) dibenzo[d,f][1,3,2]dioxaphosphepine
6-oxide
10. IR spectra of aldehyde and aldehyde with DES(ChCl-Urea)92
11. IR spectra of Imine and Imine with DES(ChCl-Urea)93
12. Green chemistry metrics calculation for hydrophosphorylation reaction94-96

13. References	.97	-9	9	8	,
----------------	-----	----	---	---	---

1. Experimental Section

1a. General Information

All the reactions were performed in an open atmosphere by using oven-dried glassware. Diphenyl phosphine oxide and diethyl phosphite were taken from the glove box because of their hygroscopic nature. ¹H (600 MHz and 400 MHz), ³¹P (243 MHz), and ¹³C (100 MHz and 150 MHz) NMR spectra were recorded by using Bruker advance III-400 and Bruker advance III-600 spectrometer. Mass spectroscopy data of phosphine oxides and amino phosphonates were collected on ESI-HRMS mass spectrometer. The NMR solvent CDCl₃ and all other reagents were purchased from Sigma Aldrich and were used without additional purification.

1b. General procedure for synthesis of DES

DES was synthesized according to the procedure reported in the literature.¹ In a dry 50 mL round bottom flask, Choline chloride (ChCl) (0.028 mol, 4.0 g) and urea (0.057 mol, 3.4 g) were added in a 1:2 ratio and then heated at 60 °C for 30 min. A colorless liquid was formed. The liquid eutectic mixture is used as such for catalytic experiments without any purification. The DES is characterized by ¹H and ¹³C{¹H} NMR spectroscopy.

1c. General procedure for Kabachnik-Fields condensation reaction.

Preparation of α-aminophosphine oxide derivatives (1a-1z)

In a 25 mL dry Schlenk tube, the corresponding aromatic aldehyde (0.495 mmol), aromatic amine (0.495 mmol), diphenyl phosphine oxide (0.495 mmol, 100 mg), and DES (0.096 mmol, 25 mg, 20 mol%) were mixed. The colorless reaction mixture was heated at 60 °C for one hour in an oil bath. The reaction progress was monitored by TLC. After completion of the reaction, as indicated by TLC, the reaction mixture was cooled to room temperature, and diluted with water (10 mL) followed by ethyl acetate (4 x 5 mL). The combined ethyl acetate extracts were washed with saturated aq. sodium bicarbonate solution (2 x 5 mL) and dried over anhydrous sodium sulfate. The combined ethyl acetate extracts were concentrated *in vacuo* and the resulting product was directly charged on a small silica gel column and eluted with a mixture of hexane: ethyl acetate (EtOAc) (3:2) to afford the pure α -aminophosphorous derivative in each case. Each derivative is characterized by ¹H, ¹³C{¹H}, ³¹P{¹H} NMR spectroscopy, and Mass spectrometry.

Preparation of α-aminophosphonate derivatives (2a-2q)

In a 25 mL dry Schlenk tube, the corresponding aromatic aldehyde (0.724 mmol), aromatic amine (0.724 mmol), diethyl phosphite (0.724 mmol, 100 mg), and DES (0.138 mmol, 36 mg, 20 mol%) were mixed. The colorless reaction mixture was heated at 60 °C for one hour in an oil bath. The reaction progress was monitored by TLC. After completion of the reaction, the corresponding products were isolated and characterized by following the similar procedure mentioned above.

1d. Recyclability Test

The reusability test was performed on the multicomponent model reaction between benzaldehyde, aniline, and diethylphosphite in DES in 1:1:1:0.2 molar ratio under optimized conditions (at 60 °C temperature for one hour). After completion of the reaction, DES was recovered from water phase by evaporation at 85 °C under reduced pressure. The remainder of the viscous DES was further dried at 70 °C for 3 h under reduced pressure to remove any traces of water and then subjected to the next run with the same reactants without further addition of DES in the cycle.

No of cycle	Amount of DES taken (mg)	Amount of DES recovered (mg)	% of DES recovered
Fresh	36.0	32.4	90
1 st cycle	32.4	27.9	86
2 nd cycle	27.9	23.6	85
3 rd cycle	23.6	19.0	80
4 th cycle	19.0	14.2	75

1e. Gram scale Kabachnik-Fields condensation reaction.

In a 50 mL dry Schlenk tube, the aromatic aldehyde, benzaldehyde (0.0049 mol, 0.52 g), aniline (0.0049 mol, 0.46 g), diphenylphosphine oxide (0.0049 mol, 1.0 g), and DES (0.1 mmol, 0.25 g, 20 mol%) were mixed. The colorless reaction mixture was heated at 60 °C for one hour in an oil bath. The reaction progress was monitored by TLC. After completion of the reaction, as indicated by TLC, the reaction mixture was cooled to room temperature, diluted with water (40 mL) followed by ethyl acetate (5 x 10 mL). The combined ethyl acetate extracts were washed with saturated aq. sodium bicarbonate solution (2 x 10 mL) and dried over anhydrous sodium sulfate. The combined ethyl acetate extracts were concentrated *in vacuo* and the resulting product was directly charged on a small silica gel column and eluted with a mixture of hexane:

EtOAc (3:2) to afford the pure product of diphenyl(phenyl(phenylamino)methyl)phosphine oxide (**1a**) with the yield of 89 % (1.7 g). The product is characterized by ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectroscopy.

Characterization data of DES:

¹H NMR (600 MHz, D₂O, 25 °C): $\delta_{\rm H}$ 5.94 (s, 1H), 4.79 (s, 8H), 4.15 - 4.10 (m, 2H), 3.63 - 3.58 (m, 2H), 3.28 (s, 9H) ppm. ¹³C{¹H} NMR (150 MHz, D₂O, 25 °C): $\delta_{\rm C}$ 162.42, 67.56, 55.79, 54.04 ppm.

Characterization data of α -aminophosphine oxides (1a-1z):

Diphenyl(phenyl(phenylamino)methyl)phosphine oxide (**1a**).² Yield: 171 mg, 90%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.85 - 7.88 (m, 2H, Ar*H*), 7.55 - 7.57 (m, 1H, Ar*H*), 7.52 - 7.48 (m, 2H, Ar*H*), 7.44 - 7.35 (m, 3H, Ar*H*), 7.30 - 7.24 (m, 2H, Ar*H*), 7.16 - 7.06 (m, 7H, Ar*H*), 6.66 - 6.68 (m, 1H, Ar*H*), 6.58 - 6.62 (m, 2H, Ar*H*), 5.18 - 5.22 (m, 2H, C*H* and N*H*) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 146.1, 135.1, 132.4, 132.1, 131.8, 131.7, 129.3, 129.0, 129.0, 128.5, 128.5, 128.3, 128.2, 127.8, 118.5, 114.0, 57.8, 57.1 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 33.3 ppm.

((4-methoxyphenyl)(phenylamino)methyl)diphenylphosphine oxide (**1b**). Yield: 188 mg, 92%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.93 - 7.79 (m, 2H, Ar*H*), 7.60 - 7.24 (m, 8H, Ar*H*), 7.13 - 7.04 (m, 4H, Ar*H*), 6.80 - 6.47 (m, 5H, Ar*H*), 5.20 - 5.09 (m, 2H, C*H* and N*H*), 3.70 (s, 3H, OC*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C):

 $\delta_{\rm C}$ 159.2, 146.2, 146.1, 132.4, 132.1, 131.8, 131.8, 131.7, 131.7, 131.3, 130.8, 130.4, 129.8, 129.6, 129.5, 129.3, 129.0, 128.9, 128.4, 128.3, 126.8, 118.5, 114.1, 113.8, 113.8, 57.1, 56.3, 55.3, 29.8 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 33.4 ppm. HRMS (ESI) m/z: [(M+H)⁺] calcd for C₂₆H₂₄PNO₂ 414.1514, found 414.1589.

Diphenyl((phenylamino)(*p*-tolyl)methyl)phosphine oxide (**1c**). Yield: 179 mg, 91%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.89 - 7.83 (m, 2H, Ar*H*), 7.57 - 7.54 (m, 1H, Ar*H*), 7.50 - 7.41 (m, 5H, Ar*H*), 7.27 -7.29 (m, 2H, Ar*H*), 7.10 - 7.02 (m, 4H, Ar*H*), 6.93 (d, *J* = 8.0 Hz, 2H, Ar*H*), 6.67 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.60 (d, *J* = 7.7 Hz, 2H, Ar*H*), 5.20

- 5.13 (m, 2H, CH and NH), 2.22 (s, 3H, CH₃) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 146.3, 146.2, 137.4, 132.4, 132.4, 132.0, 131.9, 131.8, 131.7, 130.7, 130.0, 129.3, 129.0, 129.0, 128.9, 128.8, 128.4, 128.3, 128.3, 128.2, 118.4, 114.0, 57.4, 56.9 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 33.1 ppm. HRMS (ESI) m/z: [(M+H) ⁺] calcd for C₂₆H₂₄PNO 398.1614, found 398.1623.

((3-phenoxyphenyl)(phenylamino)methyl)diphenylphosphine oxide (**1d**). Yield: 212 mg, 90%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.89 - 7.84 (m, 2H, Ar*H*), 7.57 - 7.53 (m, 1H, Ar*H*), 7.43 - 7.49 (m, 5H, Ar*H*), 7.36 - 7.24 (m, 4H, Ar*H*), 7.15 - 7.03 (m, 5H, Ar*H*), 6.81 - 6.77 (m, 2H, Ar*H*), 6.75 - 6.67 (m, 3H, Ar*H*), 6.62 - 6.59 (m, 2H, Ar*H*), 5.25 - 5.15 (m, 2H, C*H* and N*H*) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 157.0,

156.7, 146.0, 145.9, 137.4, 132.4, 132.1, 131.7, 131.7, 131.6, 131.6, 131.1, 130.4, 129.7, 129.7, 129.7, 129.7, 129.2, 128.9, 128.8, 128.3, 128.2, 123.4, 123.4, 123.1, 119.2, 119.2, 118.5, 114.0, 57.4, 56.9 ppm. $^{31}P{^{1}H}$ NMR (243 MHz, CDCl₃, 25 °C): δ_P 33.1 ppm. HRMS (ESI) m/z: [(M+H) ⁺] calcd for C₃₁H₂₆PNO₂ 476.1667, found 476.174.

((2-fluorophenyl)(phenylamino)methyl)diphenylphosphine oxide (**1e**). Yield: 181 mg, 91%. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ _H 7.91 - 7.83 (m, 2H, Ar*H*), 7.60 - 7.37 (m, 6H, Ar*H*), 7.34 - 7.24 (m, 2H, Ar*H*), 7.15 - 7.07 (m, 4H, Ar*H*), 6.82 (t, *J* = 8.6 Hz, 2H, Ar*H*), 6.69 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.61 - 6.55 (m, 2H, Ar*H*), 5.21 - 5.13 (m, 2H, C*H* and N*H*) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ_{C} 146.0, 132.6, 132.3, 131.8, 131.8, 131.7, 131.7, 130.0, 129.4, 129.1, 128.9, 128.5, 128.3, 118.7, 115.4, 115.2, 114.0, 57.1, 56.4 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): δ_{P} 33.2 ppm. ¹⁹F{¹H} NMR (565 MHz, CDCl₃, 25 °C): δ_{F} - 126.8 ppm. HRMS (ESI) m/z: [(M+H) ⁺] calcd for C₂₅H₂₁PFNO 402.1318, found 402.1394.

((4-chlorophenyl)(phenylamino)methyl)diphenylphosphine oxide (**1f**). Yield: 192 mg, 93%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.92 - 7.80 (m, 2H, Ar*H*), 7.65 - 7.25 (m, 8H, Ar*H*), 7.22 - 6.94 (m, 6H, Ar*H*), 6.78 - 6.50 (m, 3H, Ar*H*), 5.23 - 5.15 (m, 2H, C*H* and N*H*) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 145.9, 145.8, 133.8, 133.6, 133.6,

132.6, 132.6, 132.4, 132.3, 131.8, 131.7, 131.7, 131.6, 130.0, 129.7, 129.7, 129.4, 129.1, 128.9, 128.5, 128.5, 128.4, 118.8, 114.0, 57.3, 56.5 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 33.1 ppm. HRMS (ESI) m/z: [(M+H)⁺] calcd for C₂₅H₂₁PCINO 418.1023, found 418.1098.

((2-bromophenyl)(phenylamino)methyl)diphenylphosphine oxide (**1g**). Yield: 206 mg, 90%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 8.03 - 7.92 (m, 2H, Ar*H*), 7.74 (d, *J* = 7.8 Hz, 1H, Ar*H*), 7.61 - 7.48 (m, 3H, Ar*H*), 7.38 - 7.32 (m, 1H, Ar*H*), 7.29 - 7.24 (m, 3H, Ar*H*), 7.21 - 7.13 (m, 3H, Ar*H*), 7.10 - 7.03 (m, 2H, Ar*H*), 7.02 - 6.96 (m, 1H, Ar*H*), 6.66 - 6.58 (m,

3H, Ar*H*), 5.80 - 5.65 (m, 2H, C*H* and N*H*) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 145.9, 145.7, 135.2, 132.6, 132.6, 132.2, 132.1, 132.0, 131.7, 131.6, 130.1, 130.0, 129.5, 129.5, 129.4, 129.1, 129.0, 128.1, 127.9, 127.8, 125.1, 125.1, 118.4, 113.8, 55.4, 54.7 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 33.6 ppm. HRMS (ESI) m/z: [(M+Na) ⁺] calcd for C₂₅H₂₁PBrNO 486.0409, found 486.0393.

((3-chlorophenyl)(phenylamino)methyl)diphenylphosphine oxide (**1h**). Yield: 188 mg, 91%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.91 - 7.82 (m, 2H, Ar*H*), 7.61 - 7.54 (m, 1H, Ar*H*), 7.53 - 7.37 (m, 5H, Ar*H*), 7.33 - 7.28 (m, 2H, Ar*H*), 7.15 - 6.99 (m, 6H, Ar*H*), 6.70 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.61 - 6.56 (m, 2H, Ar*H*), 5.23 - 5.14 (m, 2H, C*H* and N*H*) ppm. ¹³C{¹H}

NMR (150 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 145.9, 137.6, 134.2, 132.7, 132.4, 131.8, 131.8, 131.7, 131.7, 130.1, 129.6, 129.4, 129.1, 129.0, 128.6, 128.5, 128.5, 128.4, 128.0, 126.5, 126.5, 118.8, 114.0, 57.4, 56.9 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 33.2 ppm. HRMS (ESI) m/z: [(M+H)⁺] calcd for C₂₅H₂₁PCINO 418.1017, found 418.1093.

2-((diphenylphosphoryl)(phenylamino)methyl)benzonitrile (**1i**). Yield: 178 mg, 88%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.92 - 7.81 (m, 2H, Ar*H*), 7.60 - 7.55 (m, 1H, Ar*H*), 7.54 - 7.35 (m, 7H, Ar*H*), 7.33 - 7.22 (m, 4H, Ar*H*), 7.11 - 7.06 (m, 2H, Ar*H*), 6.70 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.60 - 6.52 (m, 2H, Ar*H*), 5.38 - 5.24 (m, 2H, C*H* and N*H*) ppm. ¹³C{¹H} NMR

(150 MHz, CDCl₃, 25 °C): δ_{C} 145.6, 145.5, 141.4, 132.7, 132.5, 131.9, 131.6, 131.6, 131.6, 131.5, 130.4, 130.0, 129.8, 129.4, 129.3, 129.1, 129.1, 129.0, 128.6, 128.5, 119.0, 118.7, 113.9, 111.4, 57.7, 57.3 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): δ_{P} 32.7 ppm. HRMS (ESI) m/z: [(M+H)⁺] calcd for C₂₆H₂₁PN₂O 409.136, found 409.1433.

Diphenyl((phenylamino)(1H-pyrrol-2-yl)methyl)phosphine oxide (**1**j). Yield: 166 mg, 90%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 10.44 (s, 1H, Pyrrole-N*H*), 7.90 - 7.82 (m, 2H, Ar*H*), 7.62 - 7.24 (m, 8H, Ar*H*), 7.10 (t, *J* = 7.9 Hz, 2H, Ar*H*), 6.75 - 6.68 (m, 3H, Ar*H*), 6.56 (d, *J* = 1.4 Hz, 1H, Ar*H*), 5.92 (dd, *J* = 5.6, 2.7 Hz, 1H, C*H*), 5.69 (s, 2H, Ar*H*), 5.46 (t, *J* = 10.6 Hz,

1H, N*H*) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): δ_{C} 159.1, 152.7, 140.3, 132.3, 132.0, 131.8, 131.8, 131.7, 130.8, 129.6, 129.5, 128.8, 128.8, 128.3, 128.2, 127.0, 115.4, 114.8, 113.7, 113.7, 57.9, 57.4, 55.7, 55.2 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): δ_{P} 34.1 ppm. HRMS (ESI) m/z: [(M+Na)⁺] calcd for C₂₃H₂₁PN₂O 395.1258, found 395.1256.

(Furan-2-yl(phenylamino)methyl)diphenylphosphine oxide (**1k**). Yield: 162 mg, 88%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.92 - 7.81 (m, 2H, Ar*H*), 7.64 - 7.53 (m, 3H, Ar*H*), 7.51 - 7.45 (m, 3H, Ar*H*), 7.38 (m, 2H, Ar*H*), 7.20 - 7.06 (m, 3H, Ar*H*), 6.75 - 6.64 (m, 3H, Ar*H*), 6.26 (t, *J* = 3.1 Hz, 1H, Ar*H*), 6.20 - 6.18 (m, 1H, Ar*H*), 5.36 (dd, *J* = 12.0, 9.9 Hz, 1H, C*H*), 4.96 - 4.93

(m, 1H, N*H*) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): δ_{C} 149.1, 146.1, 142.3, 132.5, 132.3, 131.7, 131.7, 131.6, 131.6, 129.4, 128.9, 128.9, 128.4, 128.4, 119.1, 114.2, 110.9, 109.7, 52.5, 52.0 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): δ_{P} 30.9 ppm. HRMS (ESI) m/z: [(M+H)⁺] calcd for C₂₃H₂₀PNO₂ 374.1216, found 374.1292.

(((4-fluorophenyl)amino)(phenyl)methyl)diphenylphosphine oxide (11). Yield: 173 mg, 87%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.96 - 7.82 (m, 2H, Ar*H*), 7.59 - 7.56 (m, 1H, Ar*H*), 7.51 - 7.48 (m, 2H, Ar*H*), 7.45 - 7.34 (m, 3H, Ar*H*), 7.32 - 7.24 (m, 2H, Ar*H*), 7.15 - 7.10 (m, 5H, Ar*H*), 6.78 (t, *J* = 8.7 Hz, 2H, Ar*H*), 6.55 - 6.47 (m, 2H, Ar*H*), 5.15 - 5.09 (m, 2H, C*H* and N*H*) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 157.1, 155.6, 142.5,

134.9, 132.5, 132.2, 131.8, 131.7, 131.1, 130.5, 130.4, 129.7, 129.0, 128.9, 128.5, 128.5, 128.4, 128.3, 128.2, 127.9, 115.9, 115.7, 115.0, 114.9, 58.4, 57.9 ppm. ${}^{31}P{}^{1}H$ NMR (243 MHz, CDCl₃, 25 °C): δ_P 33.2 ppm. ${}^{19}F{}^{1}H$ NMR (565 MHz, CDCl₃, 25 °C): δ_F -126.8 ppm. HRMS (ESI) m/z: [(M+H)⁺] calcd for C₂₅H₂₁PFNO 402.1331, found 402.1342.

(((4-chlorophenyl)amino)(phenyl)methyl)diphenylphosphine oxide (**1m**). Yield: 184 mg, 89%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.87 - 7.83 (m, 2H, Ar*H*), 7.60 - 7.55 (m, 1H, Ar*H*), 7.54 - 7.47 (m, 2H, Ar*H*), 7.44 - 7.33 (m, 3H, Ar*H*), 7.32 - 7.23 (m, 3H, Ar*H*), 7.23 - 7.04 (m, 4H, Ar*H*), 7.06 - 6.97 (m, 2H, Ar*H*), 6.53 - 6.48 (m, 2H, Ar*H*), 5.27 (t, *J* = 8.6 Hz, 1H, N*H*), 5.11 (dd, *J* = 11.2, 8.9 Hz, 1H, C*H*) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃,

25 °C): δ_{C} 132.6, 132.2, 131.8, 131.7, 131.7, 129.2, 129.1, 129.0, 128.4, 128.3, 128.3, 123.2, 115.2, 57.9, 57.4 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): δ_{P} 33.3 ppm. HRMS (ESI) m/z: [(M+Na)⁺] calcd for C₂₅H₂₁PCINO 440.101, found 440.0906.

(((2-bromo-4-fluorophenyl)amino)(phenyl)methyl)diphenylphosphine oxide (**1n**). Yield: 209 mg, 88%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.81 - 7.77 (m, 2H, Ar*H*), 7.61 - 7.55 (m, 3H, Ar*H*), 7.50 - 7.45 (m, 3H, Ar*H*), 7.36 - 7.33 (m, 2H, Ar*H*), 7.19 - 7.11 (m, 6H, Ar*H*), 6.77 - 6.71 (m, 1H, Ar*H*), 6.46 - 6.43 (m, 1H, Ar*H*), 5.38 (t, *J* = 8.6 Hz, 1H, N*H*), 5.18 (dd, *J* = 13.4, 8.8 Hz, 1H, C*H*) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 156.1,

154.5, 134.3, 132.6, 132.6, 132.3, 132.1, 132.0, 131.9, 131.8, 128.9, 128.8, 128.5, 128.4, 128.3, 128.3, 128.1, 119.8, 119.7, 115.1, 115.0, 113.3, 113.2, 110.3, 110.2, 58.7, 58.2 ppm. $^{31}P{^{1}H}$ NMR (243 MHz, CDCl₃, 25 °C): δ_P 31.7 ppm. $^{19}F{^{1}H}$ NMR (565 MHz, CDCl₃, 25 °C): δ_F - 125.2 ppm. HRMS (ESI) m/z: [(M+Na)⁺] calcd for C₂₅H₂₀PBrFNO 502.0306, found 502.0288.

(((4-bromo-2-methylphenyl)amino)(phenyl)methyl)diphenylphosphine oxide (**1o**). Yield: 212 mg, 90%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.92 - 7.78 (m, 2H, Ar*H*), 7.58 - 7.55 (m, 1H, Ar*H*), 7.53 - 7.35 (m, 5H, Ar*H*), 7.31 - 7.26 (m, 2H, Ar*H*), 7.24 - 7.06 (m, 6H, Ar*H*), 7.04 - 7.00 (m, 1H, Ar*H*), 6.35 (d, *J* = 8.7 Hz, 1H, Ar*H*), 5.22 - 5.15 (m, 1H, Ar*H*), 5.20 - 5.00 (m, 2H, C*H* and N*H*), 2.08 (s, 3H, C*H*₃) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25

°C): $\delta_{\rm C}$ 143.3, 143.3, 134.7, 132.8, 132.5, 132.5, 132.2, 132.2, 131.7, 131.7, 131.7, 131.7, 130.9, 130.2, 129.6, 129.0, 128.9, 128.4, 128.4, 128.4, 128.3, 128.2, 128.2, 127.9, 127.9, 125.5, 113.0, 110.0, 57.8, 57.4, 17.3 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 33.0 ppm. HRMS (ESI) m/z: [(M+Na)⁺] calcd for C₂₆H₂₃PBrNO 498.0558, found 498.0558.

(((2,6-diisopropylphenyl)amino)(phenyl)methyl)diphenylphosphine oxide (**1p**). Yield: 204 mg, 88%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.87 -7.80 (m, 2H, Ar*H*), 7.50 - 7.45 (m, 3H, Ar*H*), 7.44 - 7.37 (m, 2H, Ar*H*), 7.35 - 7.31 (m, 1H, Ar*H*), 7.28 - 7.22 (m, 4H, Ar*H*), 7.14 - 7.04 (m, 3H, Ar*H*), 6.96 - 6.79 (m, 3H, Ar*H*), 4.73 - 4.55 (m, 2H, C*H* and N*H*), 2.82 -

2.71 (m, 2H, i-propyl C*H*), 0.99 (d, J = 6.8 Hz, 6H, i-propyl C*H*₃), 0.75 (d, J = 6.7 Hz, 6H, i-propyl C*H*₃) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 141.7, 140.8, 140.8, 136.8, 132.5, 131.8, 131.8, 131.6, 131.5, 131.5, 131.5, 131.2, 131.1, 131.0, 129.1, 129.0, 128.2, 128.2, 127.6, 123.4, 123.4, 64.0, 63.4, 27.4, 24.0, 24.0 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 32.4 ppm. HRMS (ESI) m/z: [(M) ⁺] calcd for C₃₁H₃₅PNO 468.2424, found 468.2420.

((4-methoxyphenyl)((4-methoxyphenyl)amino)methyl)diphenylphosphine oxide (**1q**). Yield: 195 mg, 89%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.89 - 7.83 (m, 2H, Ar*H*), 7.55 - 7.40 (m, 6H, Ar*H*), 7.32 -7.25 (m, 2H, Ar*H*), 7.07 - 7.03 (m, 2H, Ar*H*), 6.71 - 6.60 (m, 4H, Ar*H*), 6.55 - 6.52 (m, 2H, Ar*H*), 5.10 - 4.86 (m, 2H, C*H* and N*H*), 3.69 (s, 3H, OC*H*₃), 3.66 (s, 3H, OC*H*₃) ppm. ¹³C{¹H} NMR (150 MHz,

CDCl₃, 25 °C): *δ*_C 159.1, 152.7, 140.3, 132.3, 132.0, 131.8, 131.8, 131.7, 130.8, 129.6, 129.5, 128.8, 128.8, 128.3, 128.2, 127.0, 115.4, 114.8, 113.7, 113.7, 57.9, 57.4, 55.7, 55.2 ppm.

³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): δ_P 33.4 ppm. HRMS (ESI) m/z: [(M+Na)⁺] calcd for C₂₇H₂₆PNO₃ 466.1615, found 466.1611.

(((4-chlorophenyl)amino)(4-methoxyphenyl)methyl)diphenylphosphine oxide (**1r**). Yield: 200 mg, 90%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.89 - 7.82 (m, 2H, Ar*H*), 7.58 - 7.38 (m, 6H, Ar*H*), 7.33 - 7.26 (m, 2H, Ar*H*), 7.14 - 6.89 (m, 4H, Ar*H*), 6.68 - 6.65 (m, 2H, Ar*H*), 6.53 - 6.49 (m, 2H, Ar*H*), 5.26 (t, *J* = 8.5 Hz, 1H, N*H*), 5.08 (dd, *J* = 10.8, 9.0 Hz, 1H, C*H*), 3.70 (s, 3H, OC*H*₃) ppm. ¹³C{¹H} NMR (150

MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 159.3, 144.9, 144.9, 132.5, 132.2, 131.8, 131.7, 131.6, 130.9, 130.8, 129.6, 129.5, 129.1, 129.1, 129.0, 128.9, 128.3, 128.3, 126.5, 123.1, 115.2, 113.9, 113.8, 57.1, 56.6, 55.3 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 33.4 ppm. HRMS (ESI) m/z: [(M+H)⁺] calcd for C₂₆H₂₃PClNO₂ 448.1179, found 448.1252.

((2-fluorophenyl)((4-methoxyphenyl)amino)methyl) diphenylphosphine oxide (**1s**). Yield: 186 mg, 87%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.98 - 7.89 (m, 2H, Ar*H*), 7.63 - 7.36 (m, 7H, Ar*H*), 7.26 - 7.23 (m, 2H, Ar*H*), 7.09 - 7.03 (m, 2H, Ar*H*), 6.70 - 6.50 (m, 5H, Ar*H*), 5.61 (t, *J* = 10.6 Hz, 1H, N*H*), 5.04 (dd, *J* = 10.7, 8.9 Hz, 1H,

CH), 3.66 (s, 3H, OCH₃) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 152.8, 139.9, 139.8, 132.4, 132.1, 131.7, 131.6, 131.5, 131.4, 130.7, 130.3, 129.6, 129.5, 129.4, 129.4, 129.0, 128.9, 128.1, 128.0, 124.7, 123.4, 123.3, 115.0, 114.9, 114.6, 114.5, 55.7, 49.9, 49.3 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 33.0 ppm. ¹⁹F{¹H} NMR (565 MHz, CDCl₃, 25 °C): $\delta_{\rm F}$ -118.6 ppm. HRMS (ESI) m/z: [(M+H) ⁺] calcd for C₂₆H₂₃PFNO₂ 432.1414, found 432.1490.

((4-chlorophenyl)((4-chlorophenyl)amino)methyl)diphenylphosphine oxide(**1t**). Yield: 192 mg, 86%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.87 - 7.82 (m, 2H, Ar*H*), 7.62 - 7.57 (m, 1H, Ar*H*), 7.52 - 7.49 (m, 2H, Ar*H*), 7.47 - 7.45 (m, 1H, Ar*H*), 7.41 - 7.37 (m, 2H, Ar*H*), 7.34 - 7.25 (m, 2H, Ar*H*), 7.10 (d, *J* = 8.4 Hz, 2H, Ar*H*), 7.07 - 6.99 (m, 4H, Ar*H*), 6.50 - 6.47 (m, 2H, Ar*H*), 5.22 (t, *J* = 8.6 Hz, 1H, N*H*), 5.09 (dd, *J* =

11.2, 8.8 Hz, 1H, CH). ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 132.7, 132.5, 131.7, 131.7, 131.6, 129.7, 129.7, 129.3, 129.1, 129.1, 128.6, 128.5, 128.4, 123.5, 115.1, 57.4 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 32.9 ppm. HRMS (ESI) m/z: [(M+H) ⁺] calcd for C₂₅H₂₀PCl₂NO 452.0618, found 452.0697.

((Benzylamino)(phenyl)methyl)diphenylphosphine oxide (**1u**).³ Yield: 179 mg, 91%. ¹H NMR (600 MHz, CDCl₃, 25 °C): δ _H 7.80 - 7.75 (m, 2H, Ar*H*), 7.55 - 7.51 (m, 1H, Ar*H*), 7.46 - 7.40 (m, 4H, Ar*H*), 7.35 - 7.31 (m, 1H, Ar*H*), 7.28 - 7.16 (m, 10H, Ar*H*), 7.12 - 7.09 (m, 2H, Ar*H*), 4.37 (d, *J* = 10.6 Hz, 1H, N*H*), 3.82 (d, *J* = 13.3 Hz, 1H, C*H*₂), 3.49 (d, *J* = 13.4 Hz,

1H, CH₂), 2.57 (s, 1H, CH) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): δ c 139.0, 135.1, 132.0, 132.0, 131.9, 131.8, 131.5, 131.5, 129.1, 129.1, 128.7, 128.4, 128.3, 128.3, 128.0, 128.0, 127.8, 127.8, 127.2, 61.3, 60.8, 51.0, 50.9 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): δ _P 31.6 ppm.

(((4-methoxybenzyl)amino)(phenyl)methyl)diphenylphosphine oxide (**1v**). Yield: 194 mg, 92%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.82 - 7.74 (m, 2H, Ar*H*), 7.57 - 7.51 (m, 1H, Ar*H*), 7.48 - 7.39 (m, 4H, Ar*H*), 7.35 - 7.30 (m, 1H, Ar*H*), 7.29 - 7.14 (m, 7H, Ar*H*), 7.04 - 7.01 (m, 2H, Ar*H*), 6.83 - 7.79 (m, 2H, Ar*H*), 4.36 (d, *J* = 10.6

Hz, 1H, N*H*), 3.82 - 3.72 (m, 4H, OC*H*₃ and C*H*₂), 3.43 (d, J = 13.1 Hz, 1H, C*H*₂), 2.56 (s, 1H, C*H*) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 158.8, 135.1, 132.0, 132.0, 131.8, 131.8, 131.5, 131.0, 129.9, 129.2, 129.1, 128.4, 128.3, 128.3, 128.0, 128.0, 127.8, 127.7, 113.6, 61.1, 60.5, 55.3, 50.3, 50.2 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 31.7 ppm. HRMS (ESI) m/z: [(M+H)⁺] calcd for C₂₇H₂₆PNO₂ 428.1674, found 428.1747.

(((4-chlorobenzyl)amino)(phenyl)methyl)diphenylphosphine oxide (1w). Yield: 192 mg, 90%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.73 - 7.67 (m, 2H, Ar*H*), 7.46 - 7.22 (m, 6H, Ar*H*), 7.18 - 7.05 (m, 9H, Ar*H*), 6.92 (d, *J* = 7.8 Hz, 2H, Ar*H*), 4.21 (d, *J* = 10.2 Hz, 1H, N*H*), 3.69 (d, *J* = 13.6 Hz, 1H, C*H*₂), 3.36 (d, *J* = 13.6 Hz, 1H, C*H*₂), 2.54 (s, 1H, C*H*)

ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): δ_{C} 137.6, 135.0, 132.8, 131.9, 131.9, 131.6, 131.6, 131.5, 131.4, 130.0, 129.1, 129.1, 128.4, 128.4, 128.4, 128.1, 128.0, 127.9, 127.9, 61.3, 60.7, 50.2, 50.1 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): δ_{P} 31.7 ppm. HRMS (ESI) m/z: [(M+H)⁺] calcd for C₂₆H₂₃PCINO 432.1179, found 432.1251.

(1-((4-fluorophenyl)amino)propyl)diphenylphosphine oxide (**1x**). Yield: 143 mg, 82%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.86 - 7.79 (m, 2H, Ar*H*), 7.73 - 7.67 (m, 2H, Ar*H*), 7.52 - 7.41 (m, 6H, Ar*H*), 6.89 - 6.81 (m, 2H, Ar*H*), 6.60 - 6.53 (m, 2H, Ar*H*), 5.17 (brs, 1H, N*H*), 4.61 - 4.51 (m, 1H, C*H*), 1.86 - 1.73 (m, 2H, C*H*₂CH₃), 0.60 (t, *J* = 7.5 Hz,

3H, CH₂CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ_{C} 157.3, 155.0, 142.8, 131.8, 131.7, 131.4, 131.3, 128.8, 128.7, 128.3, 128.2, 115.7, 115.5, 114.9, 114.8, 61.2, 60.4, 21.1, 13.5 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): δ_{P} 33.6 ppm. ¹⁹F{¹H} NMR (376 MHz, CDCl₃, 25 °C): δ_{F} -127.1 ppm. HRMS (ESI) m/z: [(M+H) ⁺] calcd for C₂₁H₂₁PFNO 353.1335, found 354.1410.

(1-((4-methoxyphenyl)amino)propyl)diphenylphosphine oxide (1y).⁴ Yield: 144 mg, 80%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.88 - 7.79 (m, 2H, Ar*H*), 7.76 - 7.67 (m, 2H, Ar*H*), 7.51 - 7.40 (m, 6H, Ar*H*), 6.78 - 6.71 (m, 2H, Ar*H*), 6.63 - 6.56 (m, 2H, Ar*H*), 5.15 (brs, 1H, N*H*), 4.61 - 4.54 (m, 1H, C*H*), 3.72 (s, 3H, OC*H*₃), 1.84 -

1.73 (m, 2H, CH₂CH₃), 0.59 (t, J = 7.5 Hz, 3H, CH₂CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 152.5, 140.7, 140.5, 134.2, 134.1, 131.8, 131.7, 131.5, 131.4, 128.7, 128.6, 128.2, 128.1, 115.2, 114.7, 61.4, 60.6, 55.7, 21.0, 13.6 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 33.6 ppm.

((Tert-butylamino)(4-chlorophenyl)methyl)diphenylphosphine oxide (1z). Yield: 167 mg, 85%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.96 - 7.86 (m, 2H, Ar*H*), 7.65 - 7.52 (m, 3H, Ar*H*), 7.51 - 7.28 (m, 5H, Ar*H*), 7.15 - 7.08 (m, 4H, Ar*H*), 4.54 (d, *J* = 13.5 Hz, 1H, C*H*), 0.87

(s, 9H, ^tBu-C*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ_{C} 137.9, 133.2, 132.3, 132.2, 132.0, 131.9, 131.8, 130.1, 130.1, 128.5, 128.3, 128.3, 128.2, 128.1, 58.5, 57.7, 52.6, 30.2 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): δ_{P} 31.1 ppm. HRMS (ESI) m/z: [(M+Na)⁺] calcd for C₂₃H₂₅ClPNO 397.1338, found 420.1230.

Characterisation data of α-amino phosphonate derivatives:

Diethyl(phenyl(phenylamino)methyl)phosphonate (**2a**).⁵ Yield: 201 mg, 87%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.49 - 7.45 (m, 2H, Ar*H*), 7.35 - 7.21 (m, 3H, Ar*H*), 7.11 - 7.06 (m, 2H, Ar*H*), 6.67 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.59 (d, *J* = 7.8 Hz, 2H, Ar*H*), 4.91 - 4.72 (m, 2H, C*H* and N*H*), 4.19 - 4.03 (m, 2H, OEt-C*H*₂), 3.98 - 3.87 (m, 1H, OEt-C*H*₂), 3.69

- 3.63 (m, 1H, OEt-C*H*₂), 1.27 (t, *J* = 7.1 Hz, 3H, OEt-C*H*₃), 1.10 (t, *J* = 7.1 Hz, 3H, OEt-C*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 146.4, 146.3, 136.0, 135.9, 129.2, 128.6, 128.6, 128.0, 127.9, 127.9, 118.4, 113.9, 63.3, 63.3, 63.3, 63.3, 56.8, 55.3, 16.5, 16.4, 16.2, 16.2 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 22.7 ppm.

Diethyl((phenylamino)(p-tolyl)methyl)phosphonate (**2b**).⁵ Yield: 215 mg, 89%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.43 - 7.33 (m, 2H, Ar*H*), 7.28 - 6.99 (m, 4H, Ar*H*), 6.84 - 6.53 (m, 3H, Ar*H*), 4.95 - 4.70 (m, 2H, C*H* and N*H*), 4.18 - 4.11 (m, 2H, OEt-C*H*₂), 3.98 -3.95 (m, 1H, OEt-C*H*₂), 3.74 - 3.68 (m, 1H, OEt-C*H*₂), 2.31 (s, 3H,

CH₃), 1.29 (t, J=7.1 Hz, 3H, OEt-CH₃), 1.14 (t, J=7.1 Hz, 3H, OEt-CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 146.4, 146.3, 137.5, 137.5, 132.7, 129.3, 129.2, 129.1, 127.7, 127.7, 118.2, 113.8, 63.2, 63.2, 63.1, 63.1, 56.4, 54.9, 21.1, 16.4, 16.4, 16.2, 16.1 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 22.9 ppm.

Diethyl((4-methoxyphenyl)(phenylamino)methyl)phosphonate (2c).⁶ Yield: 227 mg, 90%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.42 - 7.38 (m, 2H, Ar*H*), 7.09 (t, *J* = 7.8 Hz, 2H, Ar*H*), 6.86 (d, *J* = 8.6 Hz, 2H, Ar*H*), 6.73 - 6.57 (m, 3H, Ar*H*), 4.94 - 4.68 (m, 2H, C*H* and N*H*), 4.24 - 4.04 (m, 2H, OEt-C*H*₂), 3.99 - 3.90 (m, 1H,

OEt-C*H*₂), 3.76 - 3.66 (m, 4H, OEt-C*H*₂ and OC*H*₃), 1.27 (t, *J* = 7.1 Hz, 3H, OEt-C*H*₃), 1.13 (t, *J* = 7.1 Hz, 3H, OEt-C*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, v): δ_{C} 159.2, 159.2, 146.4, 146.3, 129.0, 128.9, 128.9, 127.6, 127.6, 118.2, 114.0, 113.9, 113.8, 63.2, 63.1, 63.1, 63.1, 56.0, 55.1, 54.5, 16.4, 16.3, 16.2, 16.2 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): δ_{P} 23.0 ppm.

Diethyl((4-chlorophenyl)(phenylamino)methyl)phosphonate (2d).⁷ Yield: 220 mg, 86%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.43 -7.39 (m, 2H, Ar*H*), 7.32 - 7.28 (m, 2H, Ar*H*), 7.13 - 7.08 (m, 2H, Ar*H*), 6.71 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.58 - 6.54 (m, 2H, Ar*H*), 4.81 - 4.68 (m, 2H, C*H* and N*H*), 4.20 - 4.04 (m, 2H, OEt-C*H*₂), 4.02 -

3.95 (m, 1H, OEt-C*H*₂), 3.81- 3.74 (m, 1H, OEt-C*H*₂), 1.29 (t, J = 7.1 Hz, 3H, OEt-C*H*₃), 1.15 (t, J = 7.1 Hz, 3H, OEt-C*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 146.2, 146.1, 134.7, 133.8, 129.4, 129.3, 129.2, 128.9, 128.9, 118.8, 114.0, 63.6, 63.5, 63.4, 56.4, 54.9, 16.6, 16.5, 16.4, 16.3 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 22.0 ppm.

Diethyl((3-chlorophenyl)(phenylamino)methyl)phosphonate (2e).⁸ Yield: 218 mg, 85%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.47 (d, J = 1.8 Hz, 1H, Ar*H*), 7.39 - 7.35 (m, 1H, Ar*H*), 7.30 - 7.20 (m, 2H, Ar*H*), 7.14 - 7.09 (m, 2H, Ar*H*), 6.71 (t, J = 7.3 Hz, 1H, Ar*H*), 6.59 - 6.55 (m, 2H, Ar*H*), 4.88 - 4.68 (m, 2H, C*H* and N*H*), 4.19 - 4.06 (m, 2H, OEt-

CH₂), 4.02 - 3.93 (m, 1H, OEt-CH₂), 3.80 - 3.74 (m, 1H, OEt-CH₂), 1.28 (t, J = 7.1 Hz, 3H, OEt-CH₃), 1.15 (t, J = 7.1 Hz, 3H, OEt-CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 157.1, 155.6, 146.2, 146.0, 138.4, 138.4, 134.6, 134.6, 129.9, 129.9, 129.3, 128.2, 128.2, 128.0, 128.0, 126.1, 126.0, 118.7, 113.8, 63.6, 63.5, 63.4, 56.5, 55.0, 16.5, 16.4, 16.3, 16.2 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 21.9 ppm.

Diethyl((2-fluorophenyl)(phenylamino)methyl)phosphonate (**2f**).⁹ Yield : 207 mg, 85%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.54 - 7.48 (m, 1H, Ar*H*), 7.29 - 7.00 (m, 5H, Ar*H*), 6.76 - 6.56 (m, 3H, Ar*H*), 5.20 -4.85 (m, 2H, C*H* and N*H*) 4.28 - 4.15 (m, 2H, OEt-C*H*₂), 4.03 - 3.87 (m, 1H, OEt-C*H*₂), 3.76 - 3.70 (m, 1H, OEt-C*H*₂), 1.32 (t, *J* = 7.1 Hz, 3H,

OEt-CH₃), 1.09 (t, J = 7.1 Hz, 3H, OEt-CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 162.1, 159.7, 146.0, 145.8, 129.7, 129.6, 129.4, 129.0, 128.9, 128.9, 124.7, 124.7, 118.8, 115.4, 115.2, 113.7, 63.6, 63.6, 63.5, 63.5, 49.0, 47.5, 16.6, 16.5, 16.2, 16.2 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 22.0 ppm. ¹⁹F{¹H} NMR (565 MHz, CDCl₃, 25 °C): $\delta_{\rm F}$ -118.4 ppm.

Diethyl((2-bromophenyl)(phenylamino)methyl)phosphonate (2g).¹⁰ Yield: 242 mg, 84%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.64 - 7.51 (m, 2H, Ar*H*), 7.28 - 7.10 (m, 4H, Ar*H*), 6.74 - 6.55 (m, 3H, Ar*H*), 5.35 (t, *J* = 9.2 Hz, 1H, N*H*), 5.02 (dd, *J* = 24.6, 8.6 Hz, 1H, C*H*), 4.26 - 4.18 (m, 2H, OEt-C*H*₂), 3.87 - 3.92 (m, 1H, OEt-C*H*₂), 3.59 - 3.63 (m, 1H,

OEt-C*H*₂), 1.34 (t, J = 7.1 Hz 3H, OEt-C*H*₃), 1.06 (t, J = 7.1 Hz, 3H, OEt-C*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ_{C} 145.9, 145.7, 135.8, 132.9, 132.9, 129.5, 129.5, 129.4, 129.3, 129.2, 128.1, 128.1, 124.9, 124.8, 118.6, 113.7, 63.7, 63.6, 63.5, 55.1, 53.6, 16.6, 16.5, 16.2, 16.2 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): δ_{P} 22.1 ppm.

Diethyl((phenylamino)(1H-pyrrol-2-yl)methyl)phosphonate (2h).

Yield: 187 mg, 84%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 9.71 (s, 1H, pyrrole-N*H*), 7.18 - 7.11 (m, 2H, Ar*H*), 6.76 - 6.66 (m, 4H, Ar*H*), 6.28 - 6.07 (m, 2H, Ar*H*), 5.05 - 4.89 (m, 2H, C*H* and N*H*), 4.23 - 4.07 (m, 2H, OEt-C*H*₂), 4.00 - 3.94 (m, 1H, OEt-C*H*₂), 3.76 - 3.70 (m, 1H,

OEt-C*H*₂), 1.29 (t, *J* = 7.1 Hz, 3H, OEt-C*H*₃), 1.19 (t, *J* = 7.1 Hz, 3H, OEt-C*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 146.9, 146.8, 129.2, 125.3, 125.2, 118.7, 118.6, 114.2, 114.2, 108.4, 108.3, 63.6, 63.6, 63.5, 50.7, 49.6, 16.6, 16.5, 16.4, 16.4 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 22.1 ppm. HRMS (ESI) m/z: [(M+Na) ⁺] calcd for C₁₅H₂₁PN₂O₃ 331.1170, found 331.1165.

Diethyl(((4-chlorophenyl)amino)(phenyl)methyl)phosphonate

(2i).¹¹ Yield: 226 mg, 88%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.47 - 7.43 (m, 2H, Ar*H*), 7.34 - 7.21 (m, 3H, Ar*H*), 7.07 - 6.95 (m, 2H, Ar*H*), 6.58 - 6.48 (m, 2H, Ar*H*), 5.12 (t, *J* = 8.6 Hz, 1H, N*H*), 4.72 (dd, *J* = 24.2, 7.9 Hz, 1H, C*H*), 4.23 - 4.02 (m, 2H, OEt-C*H*₂),

3.94 - 3.88 (m, 1H, OEt-C*H*₂), 3.72 - 3.59 (m, 1H, OEt-C*H*₂), 1.27 (t, *J* = 7.1 Hz, 3H, OEt-C*H*₃), 1.09 (t, *J* = 7.1 Hz, 3H, OEt-C*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 145.1, 144.9, 135.5, 135.5, 128.9, 128.6, 128.6, 128.0, 128.0, 127.8, 127.8, 122.8, 114.9, 63.4, 63.3, 63.3, 63.2, 56.8, 55.3, 16.4, 16.4, 16.2, 16.1 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 22.4 ppm.

Diethyl(((4-fluorophenyl)amino)(phenyl)methyl)phosphonate (**2j**).¹² Yield: 210 mg, 86%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.46 -7.43 (m, 2H, Ar*H*), 7.38 - 7.25 (m, 3H, Ar*H*), 6.83 - 6.77 (m, 2H, Ar*H*), 6.54 - 6.49 (m, 2H, Ar*H*), 4.82 - 4.60 (m, 2H, C*H* and N*H*), 4.20 - 4.03 (m, 2H, OEt-C*H*₂), 3.98 - 3.87 (m, 1H, OEt-C*H*₂), 3.70 -

3.63 (m, 1H, OEt-C*H*₂), 1.29 (t, *J* = 7.1 Hz, 3H, OEt-C*H*₃), 1.11 (t, *J* = 7.0 Hz, 3H, OEt-C*H*₃) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 157.2, 155.6, 142.7, 142.6, 135.8, 128.8, 128.8, 128.2, 128.2, 128.0, 127.9, 115.8, 115.7, 115.0, 114.9, 63.5, 63.5, 63.4, 63.4, 57.3, 56.3, 16.6, 16.5, 16.3, 16.3 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 22.6 ppm. ¹⁹F{¹H} NMR (565 MHz, CDCl₃, 25 °C): $\delta_{\rm F}$ -126.8 ppm.

Diethyl(((4-bromo-2-methylphenyl)amino)(phenyl)methyl)phosphonate (**2k**).¹³ Yield: 254 mg, 85%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.43 - 7.40 (m, 2H, Ar*H*), 7.35 - 7.26 (m, 3H, Ar*H*), 7.16 (d, J = 1.9 Hz, 1H, Ar*H*), 7.04 - 7.00 (m, 1H, Ar*H*), 6.24 (d, J = 8.6 Hz, 1H, Ar*H*), 4.87 - 4.54 (m, 2H, C*H* and N*H*), 4.22 - 3.84 (m, 3H, OEt-

CH₂), 3.77 - 3.62 (m, 1H, OEt-CH₂), 2.25 (s, 3H, CH₃), 1.28 (t, J = 7.1Hz, 3H, OEt-CH₃), 1.12 (t, J = 7.1 Hz, 3H, OEt-CH₃) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 143.5, 143.4, 135.5, 135.5, 132.8, 129.6, 128.8, 128.8, 128.2, 128.2, 127.8, 127.7, 125.3, 113.0, 110.0, 63.6, 63.5, 63.5, 63.4, 56.7, 55.7, 17.5, 16.6, 16.5, 16.3, 16.3 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 22.5 ppm.

Diethyl((4-methoxyphenyl)((4-methoxyphenyl)amino)methyl)phosphonate (**2l**).⁷ Yield: 241 mg, 88%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.43 - 7.24 (m, 2H, Ar*H*), 6.85 (d, *J* = 8.4 Hz, 2H, Ar*H*), 6.70 - 6.66 (m, 2H, Ar*H*), 6.56 - 6.52 (m, 2H, Ar*H*), 4.65 - 4.50 (m, 2H, C*H* and N*H*), 4.14 - 4.07 (m, 2H, OEt-C*H*₂),

3.97 - 3.92 (m, 1H, OEt-CH₂), 3.78 - 3.65 (m, 7H, OCH₃ and OEt-CH₂), 1.28 (t, J = 7.1 Hz, 3H, OEt-CH₃), 1.13 (t, J = 7.0 Hz, 3H, OEt-CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 159.3, 159.3, 152.7, 140.5, 140.4, 129.1, 129.0, 127.8, 115.3, 114.8, 114.1, 114.1, 63.3, 63.3, 63.2, 57.1, 55.7, 55.6, 55.3, 16.6, 16.5, 16.4, 16.3 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 23.1 ppm.

Diethyl(((4-chlorophenyl)amino)(4-methoxyphenyl)methyl)phosphonate (**2m**).¹¹ Yield: 247 mg, 89%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.40 - 7.34 (m, 2H, Ar*H*), 7.04 - 7.00 (m, 2H, Ar*H*), 6.87 - 6.83 (m, 2H, Ar*H*), 6.54 - 6.50 (m, 2H, Ar*H*), 5.02 - 4.62 (m, 2H, C*H* and N*H*), 4.17 - 4.04 (m, 2H, OEt-C*H*₂), 3.91 -

3.95 (m, 1H, OEt-C*H*₂), 3.75 (s, 3H, OC*H*₃), 3.66 - 3.70 (m, 1H, OEt-C*H*₂), 1.28 (t, J = 7.1 Hz, 3H, OEt-C*H*₃), 1.13 (t, J = 7.0 Hz, 3H, OEt-C*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 159.4, 159.4, 145.1, 144.9, 129.0, 128.9, 127.2, 127.2, 122.8, 115.0, 114.1, 114.1, 63.4, 63.3, 63.2, 63.2, 56.2, 55.2, 54.6, 16.5, 16.4, 16.3, 16.2 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 22.6 ppm.

Diethyl((2-fluorophenyl)((4-methoxyphenyl)amino)methyl)phosphonate (**2n**).¹⁴ Yield: 231 mg, 87%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.55 - 7.50 (m, 1H, Ar*H*), 7.28 - 7.17 (m, 1H, Ar*H*), 7.13 - 6.98 (m, 2H, Ar*H*), 6.70 - 6.55 (m, 4H, Ar*H*), 5.17 - 4.85 (m, 2H, C*H* and N*H*), 4.26 - 4.15 (m, 2H, OEt-C*H*₂), 3.97 - 3.90

(m, 1H, OEt-C*H*₂), 3.78 - 3.70 (m, 1H, OEt-CH₂), 3.66 (s, 3H, *OCH*₃), 1.31 (t, *J* = 7.1 Hz, 3H, OEt-C*H*₃), 1.08 (t, *J* = 7.1 Hz, 3H, OEt-C*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 162.1, 162.1, 159.7, 159.6, 152.8, 139.9, 139.8, 129.6, 129.5, 129.5, 129.4, 128.9, 128.9, 128.8, 124.6, 124.6, 124.6, 123.8, 123.7, 115.3, 115.3, 115.1, 115.1, 115.0, 114.8, 63.6, 63.5,

63.3, 63.3, 55.6, 49.8, 48.2, 16.5, 16.4, 16.2, 16.1 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 22.2 ppm. ¹⁹F{¹H} NMR (565 MHz, CDCl₃, 25 °C): $\delta_{\rm F}$ -118.6 ppm.

Diethyl(((4-chlorophenyl)amino)(p-tolyl)methyl)phosphonate (**2o**).¹⁵ Yield: 237 mg, 89%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.33 - 7.26 (m, 2H, Ar*H*), 7.13 (d, *J* = 8.1 Hz, 2H, Ar*H*), 7.05 - 7.01 (m, 2H, Ar*H*), 6.52 - 6.49 (m, 2H, Ar*H*), 4.82 (t, *J* = 8.4 Hz, 1H, N*H*), 4.66 (dd, *J* = 23.8, 7.8 Hz, 1H, C*H*), 4.16 - 4.07 (m, 2H, OEt-C*H*₂),

3.97 - 3.89 (m, 1H, OEt-C*H*₂), 3.72 - 3.64 (m, 1H, OEt-C*H*₂), 2.31 (s, 3H, C*H*₃), 1.29 (t, *J* = 7.1 Hz, 3H, OEt-C*H*₃), 1.12 (t, *J* = 7.1 Hz, 3H, OEt-C*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 145.1, 145.0, 138.0, 132.4, 129.5, 129.5, 129.1, 127.8, 127.8, 123.1, 115.1, 63.5, 63.5, 63.4, 63.3, 56.7, 55.2, 21.3, 16.6, 16.5, 16.4, 16.3 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 22.5 ppm.

Diethyl((4-chlorophenyl)((4-ethylphenyl)amino)methyl)phosphonate (**2p**). Yield: 241 mg, 87%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.45 - 7.38 (m, 2H, Ar*H*), 7.29 (d, *J* = 8.0 Hz, 2H, Ar*H*), 6.93 (d, *J* = 8.5 Hz, 2H, Ar*H*), 6.50 (d, *J* = 8.5 Hz, 2H, Ar*H*), 4.78 - 4.68 (m, 2H, C*H* and N*H*), 4.20 - 4.05 (m, 2H, OEt-C*H*₂), 4.01 - 3.94 (m, 1H,

OEt-C*H*₂), 3.86 - 3.69 (m, 1H, OEt-C*H*₂), 2.48 (q, J = 7.6 Hz, 2H, Et-C*H*₂), 1.27 (t, J = 7.1 Hz, 3H, Et-C*H*₃), 1.17 - 1.10 (m, 6H, OEt-C*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ_{C} 144.0, 143.8, 134.8, 134.8, 134.4, 133.6, 133.5, 129.2, 129.1, 128.7, 128.7, 128.5, 113.9, 63.4, 63.3, 63.2, 63.2, 56.5, 55.0, 27.8, 16.4, 16.3, 16.2, 16.2, 15.7 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): δ_{P} 22.2 ppm. HRMS (ESI) m/z: [(M+Na)⁺] calcd for C₁₉H₂₅PClNO₃ 404.1135, found 404.1131.

Diethyl ((4-chlorophenyl)((4-chlorophenyl)amino)methyl) phospho -nate (**2q**).¹⁶ Yield: 244 mg, 87%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.32 - 7.29 (m, 2H, Ar*H*), 7.25 - 7.14 (m, 2H, Ar*H*), 7.02 -6.89 (m, 2H, Ar*H*), 6.47 - 6.36 (m, 2H, Ar*H*), 4.92 (t, *J* = 8.6 Hz, 1H, N*H*), 4.60 (dd, *J* = 24.4, 7.6 Hz, 1H, C*H*), 4.10 - 3.97 (m, 2H, OEt-

*CH*₂), 3.95 - 3.83 (m, 1H, OEt-*CH*₂), 3.77 - 3.60 (m, 1H, OEt-*CH*₂), 1.20 (t, J = 7.1 Hz, 3H, OEt-*CH*₃), 1.07 (t, J = 7.1 Hz, 3H, OEt-*CH*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 144.8, 144.7, 134.2, 134.2, 133.9, 133.9, 129.2, 129.1, 129.1, 128.9, 128.9, 123.3, 115.0, 63.5, 63.5, 63.5, 63.5, 56.4, 54.9, 16.5, 16.4, 16.3, 16.3 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 21.7 ppm.

NMR spectra of α- amino phosphine oxide:

Fig S6. ${}^{31}P{}^{1}H$ NMR spectra of 1b (CDCl₃, 243 MHz).

 $\frac{1}{100 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0}{\mathbf{Fig} S8. {}^{13}C{}^{1}H} NMR \text{ spectra of 1c (CDCl₃, 150 MHz).}$

Fig S12. ${}^{31}P{}^{1}H$ NMR spectra of 1d (CDCl₃, 243 MHz).

Fig S14. ${}^{13}C{}^{1}H$ NMR spectra of 1e (CDCl₃, 100MHz).

90 80 70 60 50 40 30 20 10 0 -10 -30 -50 f1(ppm) 130 110 -110 -70 -90 -130 -150 -170 -190

Fig S15. ${}^{31}P{}^{1}H$ NMR spectra of 1e (CDCl₃, 243 MHz).

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 fl (ppm)

Fig S19. ${}^{31}P{}^{1}H$ NMR spectra of 1f (CDCl₃, 243 MHz).

30

Fig S22. ${}^{31}P{}^{1}H$ NMR spectra of 1g (CDCl₃, 243 MHz).

5.22 5.19 5.18 5.17 5.17 5.17 5.17 5.12

7.86 7.86 7.85 7.85 7.85

7.126 7.127 7.127 7.108 7.108 7.108 7.108 7.108 6.59 6.59 6.59 -----

Fig S24. ${}^{13}C{}^{1}H$ NMR spectra of 1h (CDCl₃, 150 MHz).

2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2
2.2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

Fig S28. ³¹P{¹H} NMR spectra of **1i** (CDCl₃, 243 MHz).

Fig S30. $^{13}C{^{1}H}$ NMR spectra of 1j (CDCl₃, 150 MHz).

7.887 7.887 7.884 7.894 7.600 7.7000 7.7000 7.7000 7.7000 7.7000 7.7000 7.7000 7.7000 7.7000

 $\sum_{\substack{5.29\\5.12}}^{5.29}$

----0.01

Fig S44. ³¹P{¹H} NMR spectra of 1n (CDCl₃, 243 MHz).

Fig S54. ${}^{31}P{}^{1}H$ NMR spectra of 1q (CDCl₃, 243 MHz).

Fig S56. ${}^{13}C{}^{1}H$ NMR spectra of **1r** (CDCl₃, 150 MHz).

 $_{_{f1}(ppm)}^{_{60}}$ -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 **Fig S61**. $^{19}F{^{1}H}$ NMR spectra of **1s** (CDCl₃, 565 MHz).

Constant of the second se

Fig S64. ${}^{31}P{}^{1}H$ NMR spectra of 1t (CDCl₃, 243 MHz).

Fig S69. $^{13}C{^{1}H}$ NMR spectra of 1v (CDCl₃, 150 MHz).

Fig S70. ³¹P{¹H} NMR spectra of 1v (CDCl₃, 243 MHz).

Fig S72. ${}^{13}C{}^{1}H$ NMR spectra of 1w (CDCl₃, 150 MHz).

Fig S76. ${}^{31}P{}^{1}H$ NMR spectra of 1x (CDCl₃, 243 MHz).

Fig S80. ³¹P{¹H} NMR spectra of **1y** (CDCl₃, 243 MHz).

₹456 453

Fig S82. ${}^{13}C{}^{1}H$ NMR spectra of 1z (CDCl₃, 100 MHz).

NMR spectra of α-amino phosphonate derivatives (2a-2q):

Fig S89. ${}^{31}P{}^{1}H$ NMR spectra of **2b** (CDCl₃, 243 MHz).

60 50

40 30 20 10 0 -10 -20 -30 -40 -50 f1 (ppm)

-60 -70 -80

1129 1129 1113 -90 -100

140 130 120

110 100 90 80 70

DEt

Fig S100. ¹³C{¹H} NMR spectra of **2f** (CDCl₃, 100 MHz).

Fig S104. ${}^{13}C{}^{1}H$ NMR spectra of 2g (CDCl₃, 100 MHz).

Fig S112. ¹H NMR spectra of 2j (CDCl₃, 400 MHz).

Fig S114. ³¹P{¹H} NMR spectra of **2j** (CDCl₃, 243 MHz).

Fig S118. ${}^{31}P{}^{1}H$ NMR spectra of 2k (CDCl₃, 243 MHz).

1

Fig S128. ${}^{19}F{}^{1}H{}$ NMR spectra of 2n (CDCl₃, 565 MHz).

Fig S130. ¹³C{¹H} NMR spectra of **20** (CDCl₃, 100 MHz).

Fig S132. ¹H NMR spectra of 2p (CDCl₃, 400 MHz).

NMR spectra of DES:

Characterisation data of 6(phenyl(phenylamino)methyl)dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide:¹⁷

¹H NMR (400 MHz, DMSO-d₆, 25 °C): $\delta_{\rm H}$ 9.17 (s, 1H, N*H*), 7.16 - 7.07 (m, 10H, Ar*H*), 6.90 - 6.86 (m, 4H, Ar*H*), 6.84 - 6.79 (m, 4H, Ar*H*), 4.03 (d, *J* = 7.1 Hz, 1H, C*H*) ppm. ¹³C{¹H} NMR (100 MHz, DMSO-d₆, 25 °C): $\delta_{\rm C}$ 154.43, 131.48, 128.00, 125.86, 118.75, 115.68 ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 25 °C): $\delta_{\rm P}$ 33.3 ppm.

NMR spectra of 6-(phenyl(phenylamino)methyl)dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide:

Fig S143. FT-IR spectra of benzaldehyde with C-O stretching at 1695 cm⁻¹.

Fig S144. FT-IR spectra of benzaldehyde in DES (ChCl-Urea) with **C-O** stretching at 1656 cm⁻¹.

Fig S145. FT-IR spectra of imine with C-N stretching at 1697 cm⁻¹.

Fig S146. FT-IR spectra of imine in DES (ChCl-Urea) with C-N stretching at 1661 cm⁻¹.

Green chemistry metrics calculations for hydrophosphorylation reaction:

Here we have calculated different parameters of green chemistry metric.^{18,19} The parameters are as follows:

- 1) E-factor or environmental factor
- 2) Atom economy (AE)
- 3) Atom efficiency
- 4) Carbon efficiency
- 5) Product mass intensity (PMI)
- 6) Reaction mass efficiency (RME)

Calculations of green chemistry metrics for the synthesis of phosphine oxide derivatives:

383.43 g/mol

MW:	106.124 g/mol	93.13 g/mol	202.19 g/mo

A manual 0, 4045 manual	0.4045	0.4045
Amount: 0.4945 mmol	0.4945 mmoi	0.4945 mmoi

	Name	Chemical formula	Molecular weight	millimole	mg
Reactant 1	Benzaldehyde	C7H6O	106.12	0.4945	52.5
Reactant 2	Aniline	C ₆ H ₇ N	93.13	0.4945	46
Reactant 3	Diphenylphosphine oxide	$C_{12}H_{11}OP$	202.19	0.4945	100
Solvent	DES (ChCl: Urea = 1:2)	-	-	0.099	-
Product	Diphenyl(phenyl(p- henylamino)- methyl)phosphine oxide	C ₂₅ H ₂₂ NOP	383.43	-	171

Yield of product = 90%.

E - factor or environmental factor: It measures the mass of generated waste per unit mass of the product. Ideal value of E - factor is zero.

$$\mathbf{E} \, \mathbf{factor} = \frac{\text{Total mass of the waste}}{\text{Mass of the product}}$$

Where total mass of waste = total mass of raw materials – the total mass of product

$$E - factor = \frac{\{(106.12 \times 0.4945) + (93.13 \times 0.4945) + (202.19 \times 0.4945) - 171\} \text{ mg}}{171 \text{ mg}}$$

E - factor = 0.16

Atom economy (AE): It is a calculation of how many atoms of the reactants present in the final product. The ideal value of AE factor is 100%.

Atom economy = $\frac{MW \text{ of product}}{\Sigma (MW \text{ of reactants})} \times 100$

$$= \frac{383.43}{(106.12 + 93.13 + 202.19)} \times 100$$

= 92.5%
Atom efficiency = $\frac{\% \text{ yield of product } \times \% \text{ atom economy}}{100}$

$$= \frac{90\% \times 92.5\%}{100}$$
Atom efficiency = 83.3%

Carbon efficiency = $\frac{\text{No of carbon atoms in product}}{\Sigma \text{ (No of carbon atoms in reactants)}} \times 100$

Chemical formula: C₇H₆O Chemical formula: C C₆H₇N

Chemical formula: C₁₂H₁₁OP

Chemical formula: C₂₅H₂₂NOP

Carbon efficiency (CE) =
$$\frac{25}{(7+6+12)} \times 100$$

Carbon efficiency (CE) = 100%

Product mass intensity (PMI): PMI is defined as the total mass of the input materials (reactants) including solvent in a chemical reaction divided by the mass of product.

$$PMI = \frac{\Sigma \text{ (Mass of reactants including solvent)}}{\text{Mass of the product}}$$

$$PMI = \frac{(106.12 \times 0.4945) + (93.13 \times 0.4945) + (202.19 \times 0.4945)}{171}$$
$$= 1.16$$

Ideal value of PMI = E - factor + 1

Here **PMI** = **0.16** + **1** = **1.16**.

Reaction mass efficiency (RME): RME is a mass-based metric which is defined as the mass of product divided by the total mass of stoichiometric reactants. The value of RME varies from 0- 100%. It is the measure of percentage of the mass of reactants in the final product. The more RME values greener will be the reaction.

$$RME = \frac{Mass of product}{\Sigma (mass of reactants)} \times 100$$

$$= \frac{171}{(106.12 \times 0.4945) + (93.13 \times 0.4945) + (202.19 \times 0.4945)} \times 100$$

$$RME = 86.13\%$$

Summary of green metric parameters:

E- factor	0.16
Atom economy (AE)	92.5 %
Atom efficiency	83.3%
Carbon efficiency	100%
PMI	1.16
RME	86.13%

References:

- A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and V. Tambyrajah, *Chem. Commun.*, 2003, 70-71.
- 2. Q. Huang, L. Zhua, D. Yib, X. Zhaoc and W. Wei, Chin Chem Lett, 2020, 31, 373-376.
- Y. Gao, Z. Huang, R. Zhuang, J. Xu, P. Zhang, G. Tang and Y. Zhao, Org. Lett., 2013, 15(16), 4214-4217.
- L. L. Mao, C. C. Li, Q. Yang, M. X. Cheng and S. D. Yang, *Chem. Commun.*, 2017, 53, 4473.
- 5. S. Das, P. Rawal, J. Bhattacharjee, A. Devadkar, K. Pal, P. Gupta and T. K. Panda, *Inorg. Chem. Front.*, 2021, **8**, 1142.
- 6. Y. Q. Yu and D. Z. Xu, Synthesis, 2015, 47(13), 1869-1876.
- 7. M. H. Sarvari, Tetrahedron, 2008, 64(23), 5459-5466.
- C. K. Khatri, V. B. Satalkar and G. U. Chaturbhuj, *Tetrahedron Lett.*, 2017, 58(7), 694-698.
- A. B. Amol, O. Jeongsu, K. T. Jong and J. T. Yeon, *Monatsh. Chem.*, 2014, 145(2), 329-336.
- A. Mozhgan, G. Maryam and N. Mohammad, *Inorg. Nano-Met. Chem.*, 2017, 47(4), 591-596.
- N. K. Gupta, C. Verma, R. Salghi, H. Lgaz, A. K. Mukherjee and M. A. Quraishi, *New J. Chem.*, 2017, 41(21), 13114-13129.
- 12. J. Wu, W. Sun, H. G. Xia and X. Sun, Org. Biomol. Chem., 2006, 4(9), 1663-1666.
- 13. X. Jia, X. Liu, Y. Yuan, P. Li, W. Hou and K. He, Chem Asian J, 2018, 13(15), 1911-1914.
- 14. S. Rasal, S. Jain and N. G. Shimpi, Synth Commun, 2018, 48(18), 2420-2434.
- E. Hossein, M. Mahdi, H. Maede and E. Majid, *Phosphorus Sulfur Silicon Relat Elem*, 2015, **190**(10), 1606-1620.
- F. Cecilia, S. Irena, L. Stipe, H. Ivan, M. Katia, D. Francesco, R. C. Pier, P. Andrea, S. Oleksii, B. Dario, P. L. Jean, V. David and C. Evelina, *ACS Sustain. Chem. Eng.*, 2020, 8(51), 18889-18902.
- 17. M. Kasthuraiah, K. A. Kumar, C. S. Reddy and C. D. Reddy, *Heteroat. Chem.*, 2007, **18**, 2-8.
- 18. V. P. Charpe, A. A. Hande, A. Sagadevan and K. C. Hwang, Green Chem., 2018, 20, 4859.
- 19. S. Mathavan, K. Kannan and R. B. R. D. Yamajala, Org. Biomol. Chem., 2019, 17, 9620.