Electrooxidation-Induced Synthesis 3-Thio/selenophosphorylated Imidazole: A Potent Pesticide with Good Biocompatibility

Yonghong Yin,^{‡, a} Jianjing Yang,^{‡, a} Kelu Yan,^a Ting Zeng,^a Hongyan Lin,^a Jing Lin,^b Shibo Wang,^{*, b} & Jiangwei Wen^{*, a}

^a Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China. E-mail: <u>wenjy@afnu.edu.cn;</u>

^b Institute of Smart Biomaterial Materials, School of Materials Science and Engineering, Zhejiang SciTech University, P. R. China. E-mail: <u>shibowang@zstu.edu.cn</u>;

† These authors contributed equally to this work.

1. General information

All glassware was oven dried at 100 °C for hours and cooled down under vacuum. Isoselenocyanatobenzene, isoselenocyanatobenzenes, and phosphite ester derivatives were prepared according to reported procedures.¹ All the reaction prepared using the solvent of CH₃CN, DMF, and DMSO (AR, 99.0%) was purchased from Macklin. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The instrument for electrolysis is dual display potentiostat (DJS-292B or SS-L303SPD) (made in China), the carbon rods ($\phi = 6$ mm), carbon felt (1 x 1 cm²), Pt plates (1 x 1 cm²), and Ni plates (1 x 1 cm²) was purchased from Xuzhou Xinke Instrument and Meter Co. LTD. The thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (b. p. 60-90 °C). ¹H, ¹³C and ¹⁹F NMR data were recorded with Bruker Advance III (400 or 500 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. All chemical shifts are reported relative to tetramethylsilane and *d*-solvent peaks (77.00 ppm, chloroform, or 40.0 ppm, DMSO-*d*₆), respectively.

2. General procedure electrooxidation-induced synthesis 3-thio/selenophosphorylated imidazoles with H₂ evolution

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, **a** (0.5 mmol), **b** (0.5 mmol), and NaOH (1.5 mmol, 60.0 mg) were combined. The flask was equipped with a carbon felt (1.0 \times 1.0 cm²) as the anode and Pt plates (1.0 \times 1.0 cm²) as the cathode. Under the air, CH₃CN (8.0 mL) was slowly injected into the reaction flask. The reaction mixture was stirred 1 h, and **c** (1.0 mmol), HCl (37%, 1.5 mmol) were added and then electrolyzed at a constant current of 1.0 mA under room temperature for

8 h. When the reaction was finished, adjust pH to neutral with HCl, the reaction mixture was concentrated and then extracted with CH_2Cl_2 (10 mL × 3). The organic layers were combined, dried over Na_2SO_4 , and concentrated. The pure product was obtained by flash column chromatography on silica gel. Note: the resulting products should be stored under an inert atmosphere at 2-8 °C.

3. Large-scale synthesis of 1d

In an oven-dried beaker (500 mL) equipped with a stir bar, **1a** (10.0 mmol, 1.35 g), **1b** (10.0 mmol, 1.01 g), and NaOH (30.0 mmol, 1.2 g) were combined. The beaker was equipped with a carbon felt ($2.0 \times 2.0 \text{ cm}^2$) as the anode and Pt plates ($1.0 \times 1.0 \text{ cm}^2$) as the cathode. Under the air, CH₃CN (160.0 mL) was slowly injected into the reaction system. The reaction mixture was stirred 1 h, and **1c** (20.0 mmol), HCl (37%, 30.0 mmol) were added and then electrolyzed at a constant current of 1.0 mA under room temperature for 22 h. Adjust pH to neutral with HCl, the reaction mixture was concentrated and then extracted with CH₂Cl₂ (10 mL × 3). The organic layers were combined, dried over Na₂SO₄, and concentrated again. The pure product **1d** was obtained in a yield of 57% (2.19 g) by flash column chromatography on silica gel.

- 4. Preliminary mechanistic studies
 - a) Radical trapping experiments

In an oven-dried undivided three-necked flask (25 mL) equipped with a stir bar, **a** (0.5 mmol), **b** (0.5 mmol), and NaOH (1.5 mmol, 60.0 mg) were combined. The flask was equipped with a carbon felt (1.0 \times 1.0 cm²) as the anode and Pt plates (1.0 \times 1.0 cm²) as the cathode. Under the air, CH₃CN (8.0 mL) was slowly injected into the reaction flask. The reaction mixture was stirred 1 h, and **c** (1.0 mmol), HCl (37%, 1.5 mmol), TEMPO or CBr₄ (1.0 mmol) were added and then electrolyzed at a constant current of 1.0 mA under room temperature for 8 h. When the reaction was finished, the solution was concentrated in a vacuum and not detected the desired product **1d**. The compound **H** can be detected by HRMS.

Figure S1. The HRMS results of H.

b) HRMS sampling results

Figure S3. The HRMS results of D.

Figure S4. The HRMS results of F.

c) CV experiments

Figure S5. Cyclic voltammograms at grass carbon as work electrode, Ag/AgCl as the reference electrode, Pt (1 x 1 cm ²) as counter electrode in 0.1 M ${}^{n}Bu_{4}NBF_{4}$ in CH₃CN, scan rate 100 mV/s. (1), (2)), (3) **1a** (0.25 mM), **1b** (0.25 mM), **1c**, **A** (0.25 mM), HCl (0.25 mM). (4), (5) Mixed CV curves of HCl (0.25 mM) and varying concentrations of **1c** or intermediate **A**.

Scheme S2. (a) Monitoring of reaction pH. (b) Investigation into the impact of pH on product stability.

5. The anti-locust activity of wheat seedlings and aquatic toxicity

Figure S6. Cultivation of wheat seedlings. Wheat seedlings were derived from the germination of wheat seeds without any pharmaceutical additives.

Figure S7. Preliminary study on the activity of pesticides. Grasshopper (2-3 cm) was purchased from Feixian affluence grasshopper breeding base in Linyi city, Shandong province, and all the grasshoppers were fed normally in groups for a week before the experiment. All animal experiments were conducted in adherence with the Biomedical Ethics Committee of Qufu Normal University (approval number 2023102).

Sample	Concentration	Mortality rate of carp juvenile at different trial times				
	(mg/L)	24 h	48 h	72 h	96 h	
EtOH/H ₂ O	(v = 0.1/50 mL)	0	0	0	0	
	5	0	0	0	0	
	6.5	0	40	80	100	
Br Por	8.5	30	70	100	100	
6d	10	80	100	100	100	
	60	100	100	100	100	

Table S1. Aquatic toxicity, the mortality rate of carp juveniles (2-3 cm) at different trial times

Carp juveniles (2-3 cm) was purchased from Zhizhi fishery aquaculture farm in Weihai, Shandong province, and all the carp juveniles were fed normally in groups for a week before the experiment. Carp juveniles were divided into several groups of 10 in each groups, and the results were the average of 3 parallel experiments. All animal experiments were conducted in adherence with the Biomedical Ethics Committee of Qufu Normal University (approval number 2023102).

6. References

1. (a) Takemoto, Y.; Nanjo, T.; Tsukano, C, *Synlett.* **2014**, *25*, 1473-1477; (b) Zhou, M.; Ji, S.; Wu, Z.; Li, Y.; Zheng, W.; Zhou, H.; Chen, T., *Eur. J. Med. Chem.* **2015**, *96*, 92-7.

7. Detail descriptions for products

Ethyl 5-((diethoxyphosphoryl)thio)-1-phenyl-1H-imidazole-4-carboxylate (1d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 75% isolated yield (144.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 1.7 Hz, 1H), 7.52 (dd, J = 9.1, 6.1 Hz, 3H), 7.47 (dd, J = 7.8, 1.5 Hz, 2H), 4.43 (q, J = 7.1 Hz, 2H), 4.02 – 3.93 (m, 2H), 3.88 – 3.79 (m, 2H), 1.44 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.0 (d, J = 2.3 Hz), 140.1 (d, J = 2.0 Hz), 138.5 (d, J = 6.1 Hz), 135.0, 129.3 (d, J = 18.5 Hz), 127.4, 120.5 (d, J = 8.7 Hz), 64.3 (d, J = 6.2 Hz), 60.9, 15.8 (d, J = 7.4 Hz), 14.4. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₆H₂₁N₂O₅PS: 385.0982; found: 385.0982. IR (film) v, cm⁻¹: 3112, 3068, 2979, 2929, 1718, 1594, 1496, 1463, 1384, 1309, 1249, 1190, 1050, 842, 767, 696.

Ethyl 5-((ethoxyphosphoryl)thio)-1-phenyl-1H-imidazole-4-carboxylate (1d'): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/2) with 21% isolated yield (17.8 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.71 (s, 1H), 7.47 (t, *J* = 5.4 Hz, 3H), 7.28 (dd, *J* = 10.8, 5.0 Hz, 2H), 4.39 (q, *J* = 7.1 Hz, 2H), 2.70 (q, *J* = 7.4 Hz, 2H), 1.39 (t, *J* = 7.2 Hz, 3H), 0.99 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.3, 138.8, 136.5, 135.2, 130.5, 129.3, 126.7, 68.2, 60.8, 14.5, 14.4.

Ethyl 5-((diethoxyphosphoryl)thio)-1-(p-tolyl)-1H-imidazole-4-carboxylate (2d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 64% isolated yield (127.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 1.5 Hz, 1H), 7.34 – 7.30 (m, 4H), 4.43 (q, *J* = 7.1 Hz, 2H), 4.03 – 3.95 (m, 2H), 3.90 – 3.82 (m, 2H), 2.43 (s, 3H), 1.43 (t, *J* = 7.1 Hz, 3H), 1.19 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.0 (d, *J* = 2.4 Hz), 140.2 (d, *J* = 2.0 Hz), 139.6, 138.4 (d, *J* = 6.1 Hz), 132.41, 129.7, 127.1, 120.6, 64.2 (d, *J* = 6.3 Hz), 60.9, 21.1, 15.8 (d, *J* = 7.5 Hz), 14.3. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₇H₂₃N₂O₅PS: 399.1138; found: 399.1138. IR (film) v, cm⁻¹: 3110, 3072, 2981, 2929, 1720, 1583, 1513, 1479, 1384, 1307, 1251, 1184, 1045, 821, 819.

Ethyl 1-(4-(tert-butyl)phenyl)-5-((diethoxyphosphoryl)thio)-1H-imidazole-4-carboxylate (3d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 60% isolated yield (132.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.73 (s, 1H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 4.36 (dd, *J* = 14.0, 7.0 Hz, 2H), 3.92 (m, 2H), 3.77 (m, 2H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.29 (s, 9H), 1.10 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.0, 152.7, 140.2, 132.3, 126.9, 126.1, 120.6, 64.1 (d, *J* = 6.0 Hz), 60.8, 34.8, 31.2, 15.8 (d, J = 7.5 Hz), 14.3. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₂₀H₂₉N₂O₅PS: 441.1608; found: 441.1607. IR (film) v, cm⁻¹: 3114, 3056, 2969, 2917, 1724, 1610, 1513, 1469, 1380, 1309, 1251, 1187, 1051, 840, 781.

Ethyl 5-((diethoxyphosphoryl)thio)-1-(4-methoxyphenyl)-1H-imidazole-4-carboxylate (4d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 55% isolated yield (114.0 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.61 (s, 1H), 7.46 (d, *J* = 8.9 Hz, 2H), 7.05 (d, *J* = 8.9 Hz, 2H), 4.44 (q, *J* = 7.1 Hz, 2H), 4.07 – 3.97 (m, 2H), 3.97 – 3.89 (m, 2H), 3.88 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H), 1.23 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 158.4, 139.6 (d, *J* = 2.4 Hz), 136.0, 132.3, 128.8, 115.2 (d, *J* = 3.1 Hz), 114.6, 65.0 (d, *J* = 6.8 Hz), 62.3, 55.7, 15.8 (d, *J* = 7.4 Hz), 14.2. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₇H₂₃N₂O₆PS: 415.1087; found: 415.1088. IR (film) v, cm⁻¹: 3124, 3079, 2981, 2935, 1727, 1608, 1511, 1496, 1384, 1301, 1253, 1186, 1180, 1041, 840, 838.

Ethyl 1-(4-chlorophenyl)-5-((diethoxyphosphoryl)thio)-1H-imidazole-4-carboxylate (5d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 2/1) with 51% isolated yield (106.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, *J* = 1.5 Hz, 1H), 7.44 (d, *J* = 8.7 Hz, 2H), 7.36 (d, *J* = 8.7 Hz, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 4.00 – 3.91 (m, 2H), 3.90 – 3.80 (m, 2H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.16 (td, *J* = 7.1, 0.7 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.8 (d, *J* = 2.6 Hz), 140.0 (d, *J* = 1.6 Hz), 138.7, 135.7, 133.4, 129.5, 129.4, 128.8, 64.5 (d, *J* = 6.5 Hz), 61.0, 15.9 (d, *J* = 7.4 Hz), 14.3. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₆H₂₀ClN₂O₅PS: 419.0592; found: 419.0590. IR (film) v, cm⁻¹: 3102, 3072, 2979, 2927, 1720, 1640, 1512, 1465, 1392, 1306, 1253, 1189, 1091, 1045, 835, 806.

Ethyl 1-(4-bromophenyl)-5-((diethoxyphosphoryl)thio)-1H-imidazole-4-carboxylate (6d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 2/1) with 49% isolated yield (113.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (s, 1H), 7.67 (d, *J* = 8.6 Hz, 2H), 7.37 (d, *J* = 8.6 Hz, 2H), 4.43 (q, *J* = 7.1 Hz, 2H), 4.07 – 3.98 (m, 2H), 3.97 – 3.88 (m, 2H), 1.44 (t, *J* = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.8, 140.0, 138.7 (d, J = 5.8 Hz), 133.9, 132.4, 129.1, 123.6, 120.5 (d, J = 8.7 Hz), 64.5 (d, J = 6.4 Hz), 61.0, 15.9 (d, J = 7.3 Hz), 14.3. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₆H₂₀BrN₂O₅PS: 463.0087; found: 463.0086. IR (film) v, cm⁻¹: 3106, 3073, 2983, 2923, 1720, 1643, 1515, 1494, 1398, 1309, 1251, 1186, 1071, 1047, 833, 784.

Ethyl 5-((diethoxyphosphoryl)thio)-1-(4-iodophenyl)-1H-imidazole-4-carboxylate (7d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 2/1) with 48% isolated yield (122.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.85 (s, 1H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.54 – 7.48 (m, 2H), 4.42 (q, *J* = 7.2 Hz, 2H), 4.01 – 3.91 (m, 2H), 3.88 – 3.78 (m, 2H), 1.43 (t, *J* = 7.1 Hz, 3H), 1.18 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.2, 140.4 (d, *J* = 10.5 Hz), 138.7, 129.5, 129.4, 129.1, 127.5, 95.5, 64.4 (d, *J* = 6.3 Hz), 61.2, 16.0 (d, *J* = 7.5 Hz), 14.4. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₆H₂₀IN₂O₅PS: 510.9948; found: 510.9948. IR (film) v, cm⁻¹: 3109, 3075, 2986, 2923, 1720, 1651, 1516, 1496 1399, 1308, 1251, 1185, 1080, 1047, 832, 802.

Ethyl 5-((diethoxyphosphoryl)thio) -1-(4-(trifluoromethoxy)phenyl)-1H-imidazole- 4carboxylate (8d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 50% isolated yield (117.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (s, 1H), 7.55 (d, J = 7.8 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 4.44 (q, J = 6.8 Hz, 2H), 4.04 – 3.96 (m, 2H), 3.94 – 3.85 (m, 2H), 1.44 (td, J = 7.0, 0.8 Hz, 3H), 1.22 (t, J = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.9 (d, J =2.2 Hz), 149.7 (d, J = 1.8 Hz), 140.1 (d, J = 1.7 Hz), 138.8 (q, J = 6.0 Hz), 133.4, 129.4, 121.7, 120.8 (q, J = 8.9 Hz), 120.4 (q, J = 258.8 Hz), 64.6 (d, J = 6.5 Hz), 61.1, 15.9 (d, J = 7.3 Hz), 14.4i (s). HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₇H₂₀F₃N₂O₆PS: 469.0805; found: 469.0805. IR (film) v, cm⁻¹: 3110, 3062, 2923, 2852, 1716, 1598, 1511, 1463 1378, 1302, 1249, 1205, 1184, 1047, 825, 804.

Ethyl 5-((diethoxyphosphoryl)thio)-1-(m-tolyl)-1H-imidazole-4-carboxylate (9d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 2/1) with 71% isolated yield (141.3 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 1.8 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.31 (d, *J* = 7.7 Hz, 1H), 7.26 (t, *J* = 5.0 Hz, 2H), 4.43 (q, *J* = 7.1 Hz, 2H), 4.03 – 3.95 (m, 2H), 3.89 – 3.80 (m, 2H), 2.44 (s, 3H), 1.44 (t, *J* = 7.1 Hz, 3H), 1.19 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.0 (d, *J* = 2.3 Hz), 140.1 (d, *J* = 1.9 Hz), 139.5, 138.5 (d, *J* = 6.1 Hz), 134.9, 130.0, 129.0, 127.8, 124.3, 120.5 (d, *J* = 8.7 Hz), 64.2 (d, *J* = 6.2 Hz), 60.9, 21.2, 15.9 (d, *J* = 7.5 Hz), 14.4. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₇H₂₃N₂O₅PS: 399.1138; found: 399.1138. IR (film) v, cm⁻¹: 3114, 3056, 2978, 2927, 1716, 1619, 1477, 1488, 1386, 1306, 1257, 1197, 1035, 854, 852, 788, 694.

Ethyl 5-((diethoxyphosphoryl)thio)-1-(3-fluorophenyl)-1H-imidazole-4-carboxylate (10d): white oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 68% isolated yield (136.8 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.76 (s, 1H), 7.44 (dd, *J* = 14.2, 7.8 Hz, 1H), 7.25 – 7.15 (m, 3H), 4.36 (q, *J* = 7.1 Hz, 2H), 4.02 – 3.92 (m, 2H), 3.91 – 3.79 (m, 2H), 1.38 – 1.34 (m, 3H), 1.15 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.4 (d, *J* = 250.1 Hz), 161.8 (d, *J* = 2.3 Hz), 140.0 (d, *J* = 2.1 Hz), 138.7 (d, *J* = 6.2 Hz), 136.1 (d, *J* = 10.0 Hz), 130.5 (d, *J* = 8.9 Hz), 123.2 (d, *J* = 3.4 Hz), 120.5 (d, *J* = 8.7 Hz), 116.5 (d, *J* = 20.9 Hz), 115.2 (d, *J* = 24.4 Hz), 64.5 (d, *J* = 6.5 Hz), 61.0, 15.8 (d, *J* = 7.3 Hz), 14.3. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₆H₂₀FN₂O₅PS: 403.0887; found: 403.0888. IR (film) v, cm⁻¹: 3114, 3045, 2925, 2854, 1716, 1608, 1488, 1460, 1376, 1309, 1201, 1130, 1078, 1035, 860, 852, 780, 650.

Ethyl 5-((diethoxyphosphoryl)thio)-1-(m-tolyl)-1H-imidazole-4-carboxylate (11d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 2/1) with 77% isolated yield (161.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.75 (s, 1H), 7.49 (s, 1H), 7.44 – 7.39 (m, 2H), 7.31 (d, J = 7.5 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 4.02 – 3.92 (m, 2H), 3.92 – 3.80 (m, 2H), 1.36 (t, J = 7.1 Hz, 3H), 1.16 (t, J = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.8 (d, J = 2.2 Hz), 140.0 (d, J = 1.9 Hz),

138.7 (d, J = 6.3 Hz), 135.9, 134.9, 130.2, 129.6, 127.6, 125.7, 120.6 (d, J = 8.5 Hz), 76.8, 64.5 (d, J = 6.5 Hz), 61.0, 15.9 (d, J = 7.4 Hz), 14.3. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₁₆H₂₀ClN₂O₅PS: 419.0592; found: 419.0592. IR (film) v, cm⁻¹: 3115, 3077, 2976, 2923, 1720, 1639, 1511, 1492, 1389, 1308, 1253, 1189, 1090, 1044, 878, 840, 785, 693.

Ethyl 5-((diethoxyphosphoryl)thio)-1-(3-(trifluoromethyl)phenyl)-1H-imidazole-4carboxylate (12d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 75% isolated yield (169.5 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 1.6 Hz, 1H), 7.76 (s, 1H), 7.72 (dd, *J* = 4.4, 3.5 Hz, 1H), 7.63 (d, *J* = 5.2 Hz, 2H), 4.37 (q, *J* = 7.1 Hz, 2H), 3.99 - 3.90 (m, 2H), 3.88 - 3.79 (m, 2H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.14 (td, *J* = 7.0, 0.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.7 (d, *J* = 2.4 Hz), 140.4, 140.0 (d, *J* = 2.1 Hz), 135.3 (d, *J* = 32.0 Hz), 131.8 (qd, *J* = 33.3, 5.5 Hz), 130.9 (d, *J* = 25.2 Hz), 130.0 (d, *J* = 10.3 Hz), 126.3 (dq, *J* = 34.5, 7.1 Hz), 124.5 (q, *J* = 3.7 Hz), 123.2 (q, *J* = 273.6 Hz), 120.6 (d, *J* = 8.6 Hz), 64.5 (d, *J* = 6.6 Hz), 61.0, 15.7 (d, *J* = 7.3 Hz), 14.3. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₇H₂₀F₃N₂O₅PS: 453.0855; found: 453.0857. IR (film) v, cm⁻¹: 3112, 3048, 2925, 2854, 1718, 1621, 1498, 1473, 1382, 1322, 1263, 1201, 1178, 1049, 862, 806, 701, 659.

Ethyl 5-((diethoxyphosphoryl)thio)-1-(o-tolyl)-1H-imidazole-4-carboxylate (13d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 2/1) with 76% isolated yield (151.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 1.7 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.28 (dd, *J* = 14.7, 7.1 Hz, 2H), 4.37 (q, *J* = 7.1 Hz, 2H), 3.99 – 3.91 (m, 1H), 3.90 – 3.83 (m, 1H), 3.82 – 3.75 (m, 1H), 3.71 – 3.64 (m, 1H), 2.03 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.16 (t, *J* = 7.0 Hz, 3H), 1.09 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.0 (d, *J* = 2.1 Hz), 140.0 (d, *J* = 1.7 Hz), 138.0 (d, *J* = 6.2 Hz), 136.0, 133.9, 130.9, 129.9, 129.3, 126.5, 121.2 (d, *J* = 8.6 Hz), 64.2 (d, *J* = 22.6 Hz), 60.9, 17.7, 15.8 (d, *J* = 14.4 Hz), 15.8 14.3. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₇H₂₃N₂O₅PS: 399.1138; found: 399.1138. IR (film) v, cm⁻¹: 3110, 3070, 2977, 2929, 1720, 1579, 1500, 1477, 1382, 1305,

1249, 1187, 1041, 815, 767.

Ethyl 1-(2-bromophenyl)-5-((diethoxyphosphoryl)thio)-1H-imidazole-4-carboxylate (14d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 2/1) with 70% isolated yield (162.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.67 (m, 2H), 7.60 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.44 (td, *J* = 7.7, 1.2 Hz, 1H), 7.36 (td, *J* = 7.8, 1.6 Hz, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 4.17 – 4.01 (m, 2H), 3.82 – 3.62 (m, 2H), 1.39 (t, *J* = 7.1 Hz, 3H), 1.24 (t, *J* = 7.0 Hz, 3H), 1.09 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.8 (d, *J* = 2.4 Hz), 139.9 (d, *J* = 2.2 Hz), 138.1 (d, *J* = 6.4 Hz), 134.1, 133.2, 131.3, 131.2, 128.0, 122.8, 121.3 (d, *J* = 8.6 Hz), 64.4 (d, *J* = 67.8 Hz), 64.4 (d, *J* = 67.5 Hz), 60.9, 15.9 (d, *J* = 16.0 Hz), 15.8 (d, *J* = 15.6 Hz), 14.3. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₆H₂₀BrN₂O₅PS: 463.0087; found: 463.0087. IR (film) v, cm⁻¹: 3106, 3073, 2983, 2923, 1720, 1643, 1515, 1494, 1398, 1309, 1251, 1186, 1043, 1039, 833, 784.

Ethyl 5-((diethoxyphosphoryl)thio)-1-(3,5-dimethylphenyl)-1H-imidazole-4-carboxylate (15d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 72% isolated yield (148.3 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 1.8 Hz, 1H), 7.05 (s, 1H), 6.98 (s, 2H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.98 – 3.86 (m, 2H), 3.77 -3.79 (m, 2H), 2.31 (s, 6H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.12 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.0 (d, *J* = 2.3 Hz), 140.1 (d, *J* = 2.1 Hz), 139.1, 138.4 (d, *J* = 6.3 Hz), 134.7, 130.9, 130.8, 124.7, 124.6, 120.4 (d, *J* = 8.8 Hz), 64.1 (d, *J* = 6.1 Hz), 60.8, 21.1, 15.8 (d, *J* = 7.5 Hz), 14.3. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₈H₂₅N₂O₅PS: 413.1295; found: 413.1295. IR (film) v, cm⁻¹: 3112, 3031, 2983, 2927, 1720, 1612, 1484, 1382, 1378, 1222, 1184, 1037, 850, 786, 696.

Ethyl 5-((diethoxyphosphoryl)thio)-1-(naphthalen-2-yl)-1H-imidazole-4-carboxylate (16d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with

50% isolated yield (108.5 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.3 Hz, 1H), 7.90 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 1.8 Hz, 1H), 7.63 (dd, *J* = 7.3, 1.1 Hz, 1H), 7.55 (d, *J* = 8.2 Hz, 1H), 7.54 – 7.42 (m, 3H), 4.41 (q, *J* = 7.1 Hz, 2H), 3.92 – 3.76 (m, 2H), 3.72 – 3.62 (m, 1H), 3.54 – 3.45 (m, 1H), 1.41 (t, *J* = 7.1 Hz, 3H), 1.08 (t, *J* = 7.1 Hz, 3H), 0.94 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.0 (d, *J* = 2.2 Hz), 141.1 (d, *J* = 11.3 Hz), 138.5, 133.8 (d, *J* = 15.7 Hz), 130.3 (d, *J* = 2.8 Hz), 128.2, 127.9, 127.1, 127.1, 126.9, 125.1, 124.9, 122.3, 121.7, 64.3 (d, *J* = 6.4 Hz), 64.0 (d, *J* = 6.3 Hz), 61.0, 15.7 (d, *J* = 7.6 Hz), 15.6 (d, *J* = 7.2 Hz), 14.4. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₂₀H₂₃N₂O₅PS: 435.1138; found: 435.1138. IR (film) v, cm⁻¹: 3110, 3062, 2981, 2931, 1718, 1598, 1508, 1479, 1369, 1309, 1249, 1189, 1035, 806, 844, 775.

5-((diethoxyphosphoryl)thio)-1-(pyridin-3-yl)-1H-imidazole-4-carboxylic acid (17d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 61% isolated yield (109.0 mg). ¹H NMR (500 MHz, CDCl₃) δ 10.85 (s, 1H), 8.98 (s, 1H), 8.63 (d, *J* = 8.3 Hz, 1H), 8.53 (d, *J* = 4.7 Hz, 1H), 7.91 (s, 1H), 7.37 (dd, *J* = 8.3, 4.8 Hz, 1H), 4.34 – 4.23 (m, 4H), 1.38 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 192.0, 149.0, 147.9, 143.9, 130.4, 129.2, 128.4 (d, *J* = 8.7 Hz), 126.3, 123.3, 65.5 (d, *J* = 6.9 Hz), 16.2 (d, *J* = 6.3 Hz). HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₃H₁₆N₃O₅PS: 358.0621; found: 358.0621. IR (film) v, cm⁻¹: 3403, 3081, 3070, 2977, 2929, 1718, 1509, 1479, 1332, 1242, 1230, 1045, 808.

ethyl 5-((diethoxyphosphoryl)thio)-1-ethyl-1H-imidazole-4-carboxylate (18d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/2) with 36% isolated yield (60.5 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.84 (s, 1H), 4.45 – 4.35 (m, 4H), 3.72 (q, *J* = 7.0 Hz, 2H), 3.35 – 3.20 (m, 2H), 1.41 (t, *J* = 7.1 Hz, 6H), 1.34 (t, *J* = 7.2 Hz, 3H), 1.24 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.9, 133.7, 128.4 (d, *J* = 8.2 Hz), 119.6, 61.4, 60.3, 58.4, 44.1 18.4, 14.5 (d, *J* = 8.3 Hz), 14.2. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₂H₂₁N₂O₅PS: 337.0982; found: 337.0980. IR (film) v, cm⁻¹: 3085, 2975, 2923, 1741, 1546, 1301, 1225, 1187, 1029, 838.

Ethyl 1-(tert-butyl)-5-((ethoxyphosphoryl)thio)-1H-imidazole-4-carboxylate (19d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/2) with 42% isolated yield (67.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.67 (s, 1H), 4.40 (q, *J* = 7.1 Hz, 2H), 3.03 (q, *J* = 7.5 Hz, 2H), 1.77 (s, 9H), 1.41 (t, *J* = 7.1 Hz, 3H), 1.26 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.4, 137.8, 136.0, 130.0, 60.6, 58.7, 31.8, 30.2, 14.4, 13.8. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₂H₂₂N₂O₄PS: 321.1032; found: 321.1030. IR (film) v, cm⁻¹: 3084, 2973, 2920, 1741, 1546, 1300, 1227, 1187, 1029, 828.

Methyl 5-((diethoxyphosphoryl)thio)-1-phenyl-1H-imidazole-4-carboxylate (20d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 2/1) with 73% isolated yield (135.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (s, 1H), 7.52 (t, *J* = 7.2 Hz, 3H), 7.49 – 7.44 (m, 2H), 3.95 (s, 3H), 3.90 – 3.79 (m, 2H), 1.19 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.3, 149.0, 140.2, 134.9, 129.4, 129.2, 128.4 (d, *J* = 8.2 Hz), 127.4, 64.3 (d, *J* = 6.3 Hz), 51.9, 15.8 (d, *J* = 7.3 Hz). HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₅H₁₉N₂O₅PS: 371.0825; found: 371.0826. IR (film) v, cm⁻¹: 3112, 3072, 2979, 2931, 1720, 1596, 1500, 1455, 1396, 1301, 1251, 1197, 1047, 809, 769, 698.

Ethyl 5-{[(benzyloxy)phosphonoyl]sulfanyl}-1-phenyl-1H-imidazole-4-carboxylate (21d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/3) with 81% isolated yield (163.0 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.60 (s, 1H), 7.43 – 7.40 (m, 1H), 7.37 – 7.32 (m, 2H), 7.21 – 7.11 (m, 3H), 6.90 (d, *J* = 7.0 Hz, 2H), 6.75 (d, *J* = 7.2 Hz, 2H), 4.49 (q, *J* = 7.1 Hz, 2H), 4.01 (s, 2H), 1.48 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.5, 138.8, 137.3, 137.1, 134.8, 129.8, 129.0, 128.9, 128.8, 128.4, 127.2, 126.8, 74.2, 60.9, 14.4. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₉H₁₉N₂O₄PS: 403.0876; found: 403.0876. IR (film) v, cm⁻¹: 3104, 3062, 2983, 2929, 2346, 1708, 1598, 1498, 1455, 1378, 1317, 1249, 1186, 1052, 836, 767, 698.

Ethyl 5-((dimethoxyphosphoryl)thio)-1-phenyl-1H-imidazole-4-carboxylate (22d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 2/1) with 72% isolated yield (128.3 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.76 (s, 1H), 7.51 – 7.47 (m, 3H), 7.36 (d, *J* = 3.0 Hz, 2H), 4.28 (q, *J* = 7.1 Hz, 2H), 3.54 (s, 3H), 3.52 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.3, 140.2, 134.9, 129.4, 129.2, 128.4 (d, *J* = 8.0 Hz), 127.4, 120.7 (d, *J* = 8.8 Hz), 64.3 (d, *J* = 6.4 Hz), 51.9, 15.8 (d, *J* = 7.5 Hz). HRMS (ESI) *m/z*: [M+H] + calcd for C₁₄H₁₇N₂O₅PS: 357.0669; found: 357.0669. IR (film) v, cm⁻¹: 3112, 3041, 2979, 2927, 1702, 1592, 1498, 1463, 1380, 1307, 1251, 1193, 1054, 854, 773, 698.

Ethyl 5-((dibutoxyphosphoryl)thio)-1-phenyl-1H-imidazole-4-carboxylate (23d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 75% isolated yield (165.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.84 (s, 1H), 7.54 – 7.49 (m, 3H), 7.48 – 7.44 (m, 2H), 4.41 (q, *J* = 7.1 Hz, 2H), 3.66 – 3.60 (m, 2H), 3.53 – 3.46 (m, 2H), 1.85 – 1.75 (m, 2H), 1.42 (t, *J* = 7.1 Hz, 3H), 0.82 (d, *J* = 6.7 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 161.8, 140.1, 138.3 (d, *J* = 5.5 Hz), 135.0 (d, *J* = 4.0 Hz), 129.4, 129.2, 127.5, 120.7 (d, *J* = 5.6 Hz), 73.7 (d, *J* = 7.0 Hz), 60.9, 28.8 (d, *J* = 7.4 Hz), 18.5, 18.5, 14.3. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₂₀H₂₉N₂O₅PS: 441.1608; found: 441.1606. IR (film) v, cm⁻¹: 3110, 3066, 2962, 2935, 1720, 1596, 1500, 1471, 1382, 1307, 1187, 1027, 875, 765, 696.

Ethyl 5-((diphenoxyphosphoryl)thio)-1-phenyl-1H-imidazole-4-carboxylate (24d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 56% isolated yield (134.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.90 (s, 1H), 7.42 – 7.37 (m, 3H), 7.35 – 7.32 (m, 2H), 7.30 – 7.27 (m, 4H), 7.23 – 7.17 (m, 3H), 7.02 (d, *J* = 8.2 Hz, 3H), 4.30 (q, *J* = 7.1 Hz, 2H), 1.34 (t, *J* =

7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.9, 150.1 (d, J = 9.4 Hz), 144.7, 140.8 (d, J = 1.6 Hz), 134.5, 130.4, 129.7, 129.4 (d, J = 2.4 Hz), 129.2, 128.4, 127.1, 125.6, 120.2 (d, J = 5.0 Hz), 61.1, 14.2. HRMS (ESI) m/z: [M+H] ⁺ calcd for C₂₄H₂₁N₂O₅PS: 481.0982; found: 481.0982. IR (film) v, cm⁻¹: 3102, 3064, 2923, 2852, 1720, 1594, 1492, 1454, 1378, 1245, 1205, 1313, 1083, 842, 763, 692.

Ethyl 5-((diethoxyphosphoryl)selanyl)-1-phenyl-1H-imidazole-4-carboxylate (25d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 2/1) with 52% isolated yield (112.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.87 (s, 1H), 7.53 (d, *J* = 7.1 Hz, 3H), 7.45 (dd, *J* = 7.7, 1.8 Hz, 2H), 4.43 (q, *J* = 7.1 Hz, 2H), 4.02 – 3.94 (m, 2H), 3.86 – 3.78 (m, 2H), 1.44 (t, *J* = 7.1 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.1 (d, *J* = 2.1 Hz), 140.7 (d, *J* = 0.8 Hz), 138.9 (d, *J* = 5.0 Hz), 135.7, 129.4, 129.2, 127.5, 116.7 (d, *J* = 10.9 Hz), 64.0 (d, *J* = 5.8 Hz), 61.0 (s), 15.8 (d, *J* = 7.6 Hz), 14.3. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₆H₂₁N₂O₅PSe: 433.0426; found: 433.0426. IR (film) v, cm⁻¹: 3112, 3064, 2981, 2927, 1716, 1637, 1598, 1496, 1390, 1249, 1184, 1041, 815, 767, 696.

Ethyl 5-((diethoxyphosphoryl)selanyl)-1-(2-iodophenyl)-1H-imidazole-4-carboxylate (26d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 59% isolated yield (164.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 7.9 Hz, 1H), 7.77 (d, *J* = 1.4 Hz, 1H), 7.75 (s, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.27 – 7.20 (m, 2H), 4.47 – 4.40 (m, 2H), 4.20 – 4.08 (m, 2H), 3.90 – 3.74 (m, 2H), 1.45 (t, *J* = 7.1 Hz, 3H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.3, 140.4, 139.5, 138.5 (d, *J* = 10.7 Hz), 131.4 (d, *J* = 9.8 Hz), 130.7, 130.2, 129.3, 129.0, 98.8 (d, *J* = 48.1 Hz), 64.3 (dd, *J* = 54.1, 6.2 Hz), 61.1, 15.9 (dd, *J* = 15.3, 7.5 Hz), 14.4. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₆H₂₀IN₂O₅PSe: 558.9392; found: 558.9393. IR (film) v, cm⁻¹: 3110, 3075, 2981, 2923, 1716, 1621, 1510, 1492, 1389, 1241, 1185, 1083, 1040, 809, 800.

1-(4-chloro-2-iodophenyl)-5-((diethoxyphosphoryl)selanyl)-1H-imidazole-4-

Ethyl

carboxylate (27d): rufous oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 2/1) with 38% isolated yield (112.5 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 2.2 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 9.5 Hz, 1H), 7.53 – 7.49 (m, 1H), 4.48 – 4.30 (m, 2H), 4.25 (q, *J* = 6.9 Hz, 2H), 4.22 – 4.15 (m, 1H), 3.97 – 3.75 (m, 1H), 1.39 (t, *J* = 7.1 Hz, 3H), 1.30 (t, *J* = 7.0 Hz, 3H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.4, 140.2, 138.7 (d, *J* = 4.1 Hz), 137.3, 136.6 (d, *J* = 4.0 Hz), 130.8, 129.4, 129.0, 120.8, 99.2 (d, *J* = 46.3 Hz), 64.4 (dd, *J* = 54.3, 6.3 Hz), 61.0, 60.3, 15.8 (d, *J* = 7.8 Hz), 14.4. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₆H₁₉ClIN₂O₅PSe: 592.9003; found: 592.9004. IR (film) v, cm⁻¹: 3110, 3070, 2983, 2923, 1716, 1631, 1521, 1496, 1398, 1249, 1184, 1091, 1086, 1041, 817, 769, 696.

Ethyl 5-((diethoxyphosphoryl)selanyl)-1-(4-fluoro-2-iodophenyl)-1H-imidazole-4carboxylate (28d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 2/1) with 41% isolated yield (118.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 1.5 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.24 – 7.18 (m, 1H), 4.44 – 4.37 (m, 2H), 4.20 – 4.03 (m, 2H), 3.96 – 3.74 (m, 2H), 1.42 (t, *J* = 7.1 Hz, 3H), 1.29 (t, *J* = 7.1 Hz, 3H), 1.19 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 162.4 (d, *J* = 250.8 Hz), 161.6 (dd, *J* = 82.4, 3.3 Hz), 140.4, 138.9 (d, *J* = 5.4 Hz), 134.8 (dd, *J* = 11.1, 3.4 Hz), 131.7 (d, *J* = 8.9 Hz), 126.3 (dd, *J* = 25.0, 4.7 Hz), 116.0 (dd, *J* = 53.0, 22.3 Hz), 98.9 (dd, *J* = 50.9, 8.8 Hz), 64.4 (dd, *J* = 57.5, 6.4 Hz), 61.0, 15.8 (d, *J* = 7.5 Hz), 14.3. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₆H₁₉FIN₂O₅PSe: 576.9298; found: 576.9298. IR (film) v, cm⁻¹: 3100, 3054, 2925, 2857, 1710, 1631, 1581, 1490, 1372, 1261, 1201, 1092, 1060, 1054, 863, 784, 669.

Ethyl 5-((diethoxyphosphoryl)selanyl)-1-(2-iodo-5-methylphenyl)-1H-imidazole-4carboxylate (29d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 2/1) with 60% isolated yield (171.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 8.1 Hz, 1H), 7.66 (s, 1H), 7.42 (s, 1H), 7.01 (d, *J* = 8.1 Hz, 1H), 4.42 (q, *J* = 7.1 Hz, 2H), 4.20 – 4.07 (m, 2H), 3.90 – 3.73 (m, 2H), 2.38 (s, 3H), 1.44 (t, *J* = 7.2 Hz, 3H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.6, 140.1, 139.5 (d, J = 3.5 Hz), 139.0, 138.3 (d, J = 13.5 Hz), 132.2 (d, J = 11.5 Hz), 131.2, 130.7, 130.3, 94.3 (d, J = 49.2 Hz), 64.1 (dd, J = 63.3, 6.0 Hz), 60.9, 20.7, 15.8 (dd, J = 17.9, 7.4 Hz), 14.4. HRMS (ESI) *m/z:* [M+H] ⁺ calcd for C₁₇H₂₂IN₂O₅PSe: 572.9549; found: 572.9549. IR (film) v, cm⁻¹: 3118, 3054, 2977, 2923, 1716, 1589, 1508, 1479, 1378, 1241, 1178, 1092, 1033, 813, 705, 659.

Ethyl 1-(benzo[d][1,3]dioxol-5-yl)-5-((diethoxyphosphoryl)selanyl)-1H-imidazole-4carboxylate (30d): yellow oil was obtained by column chromatography (eluent: EtOAc/petroleum ether = 1/1) with 59% isolated yield (140.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.78 (s, 1H), 6.94 (s, 1H), 6.88 (s, 2H), 6.06 (s, 2H), 4.40 (q, *J* = 7.1 Hz, 2H), 4.14 – 4.01 (m, 2H), 4.00 – 3.91 (m, 2H), 1.41 (t, *J* = 7.1 Hz, 3H), 1.24 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.1, 148.5, 147.9, 140.9, 129.4, 129.2, 127.4, 121.3, 108.8, 108.0, 102.1, 64.2 (d, *J* = 6.3 Hz), 60.9, 15.8 (d, *J* = 7.5 Hz), 14.3. HRMS (ESI) *m/z*: [M+H] ⁺ calcd for C₁₇H₂₁N₂O₇PSe: 477.0324; found: 477.0324. IR (film) v, cm⁻ ¹: 3112, 3054, 2979, 2919, 1712, 1612, 1488, 1452, 1378, 1243, 1218, 1182, 1037, 815, 705, 659.

8. Copies of product NMR Spectra

¹H NMR

1d

f1 (ppm)

N	700070
0	740400
N	0001-44
3	-1001000
N	0000000
(O	000000
~	TTTTTT
	~~/////
	7 1 / ICC

<14.5114 <14.3976

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

<162.0144 <161.9957	140.2302 139.6232 139.6232 138.372 138.372 129.7682 122.1335 -120.6131	₹77.3145 ₹77.0604 76.8060	<pre>64.3083 64.2581 60.9120</pre>	∼21.1536 71.1536 713.8458 ∼14.3856
------------------------	---	---------------------------------	--	---

110 100 90 80 f1 (ppm)

<pre><162.0455 <162.0326</pre>	-152.7816	∠140.1979 138.4712 138.4712 138.4242 133.3550 √126.9206 √126.9206 √120.6171 ₹120.6171	77.3564 77.1018 76.8474	<pre>64.1271 <64.0793 </pre>	34.8380 31.2674	<pre><15.9105 <15.8508 </pre>
--------------------------------------	-----------	---	-------------------------------	---------------------------------	--------------------	-------------------------------------

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

-- 161.1799

-158.4817	^{139.6770} ^{139.6580} ^{139.6580} ^{136.0482} ^{136.0482} ^{136.0482} ^{128.8126}	115.2156 115.1907 114.6611	77.3128 77.0584 76.8041	65.0974 65.0435 62.3514 -55.7638	L15.8646 15.8053 14.0577
-----------	---	----------------------------------	-------------------------------	---	--------------------------------

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

-161.8544	(138,7438,9992) (138,7438,6973 (138,6973,9143,9138,6973) (132,91426) (123,6240) (123,6240) (120,5687) (120,5687) (120,4997)	77,4146 77,1598 76,9054 64,5618 64,5618 64,5610 0,0210	て 15.9296 人 15.8715 14.3806
-----------	---	--	---

100 90 80 f1 (ppm)

8.0 7.5

7.0

6.5

6.0 5.5

.5 9.0 8.5

339	920 920 920 920 920 920 920 920	802 82 82 82	33 00 1	0.0.2
0,0		100	1205	2005
161		12	225	15
Y	Y When and the second s	\checkmark	Y Z	42

5.0 4.5 f1 (ppm)

4.0 3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0 -0

110 100 90 f1 (ppm) 0 180 170 160 150 140 130 120 80 70 60 50 40 30 20 10

9d

5

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

10d

N

-0

12d

$<^{162.0256}_{162.0093}$	140.0973 140.0841 138.1111 138.0525 138.0525 138.0525 138.0525 138.0525 138.0525 138.0525 121.128.2395 121.1943	77.3432 77.0889 76.8344	<pre>64.3269 <64.1475 <60.9204</pre>	17.7023 15.9126 15.7981 14.3883
---------------------------	--	-------------------------------	--	--

¹³C NMR

(O IN	000000000000000000000000000000000000000		
m st	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00700700700	0000
O O	04000400000000	0001-401-0	C C 7 00 C
000	0000000-40	-00400VV	00000
		4-01-00-0	00000
inin		NNMTTTTO	
<u>a</u> <u>a</u>	000000000000000000000000000000000000000		47 47 47 47 4
\sim			

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

COOEt

¹³C NMR

Me

-162.0174 -161.9991	140.1270 139.1670 138.1402 138.2402 138.2402 138.2402 138.2402 138.2402 138.2402 138.2402 138.2402 138.2402 138.2402 138.2402 138.2402 138.2402 138.2402 138.2402 138.2402 138.2458 138.2458 138.2458 138.2458 138.2458 138.2458 138.2458 138.2458 138.2458 138.2458 138.2458 138.2458 138.2458 139.2458 120.3780 120.3780	-77,4145 -77,1596 \76.9050	-64.1760 -64.1272 -60.8398	721.1184 715.8848 714.3625
Y		\checkmark	Y/	ノイン

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

¹³C NMR

110 100 f1 (ppm)

16d

17d

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

140 130 120 110 100 90 f1 (ppm) 170 160 150

	138 8505 137 3475 137 3475 137 1388 137 1388 128 9852 128 9552 128 9552 128 9552 128 9552 128 8932 127 2418 127 2618	77.3431 77.0885 76.8337 74.2852	-60.9635	
--	--	--	----------	--

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

21d

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) 24d

¹H NMR

¹³C NMR

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

<pre><162.1502 <162.1502 162.1338 140.7509 140.7509 138.9877 138.9877 138.9877 138.6974 112.7580 <116.8152 <116.7289 <116.7289</pre>	 77.3367 77.0824 76.8281 76.8281 76.0969 60.9954 €0.9954 	15.8622 15.8018 14.3935
---	---	-------------------------

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

-161.3992

140 2192 138.7653 138.7328 138.7328 137.3027 136.6586 136.6586 136.6586 136.6586 136.6586 136.6586 136.6586 120.88508 120.8860	99.3884	77 2901 76.7818 64.6704 64.1885 64.1885 64.1885 61.0193 60.3939	15.8834 15.8217 14.4249
	Y		46

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 C f1 (ppm)

¹³C NMR

110 100 90 f1 (ppm) 160 150 140 130

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

-162.1502	<pre><148.5178 <!--147.9801 -140.9266</pre--></pre>	129.4302 129.2534 127.4069 121.3634	108.8699 108.0416 -102.1620	(77.3096 (77.3096 (76.8011	<pre>64.2698 64.2201 60.9306</pre>	15.8936 14.3936
-----------	--	--	-----------------------------------	----------------------------------	--	--------------------

