SUPPORTING INFORMATION

for

Multimetallic Pd- and Ni-Catalyzed C(sp²)–P Cross-Coupling under Aqueous Micellar Conditions

Rafael Navrátil*1, Kristýna Kellovská1 and Ondřej Baszczyňski*1

¹ Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, The Czech Republic

Correspondence: navratilr@natur.cuni.cz, baszczyo@natur.cuni.cz

Table of Contents

General Information Optimization Experiments	S7 S8
Substrata Synthesis	S18
	510
4-lodophenyl trifluoromethanesulfonate (SI-1)	\$18
4-Iodo- <i>N</i> , <i>N</i> -dimethylaniline (SI-2)	S18
N,N-Dibenzyl-4-iodobenzenesulfonamide (SI-3)	S18
Ethyl (S)-2-((<i>tert</i> -butoxycarbonyl)amino)-3-(4-iodophenyl)propanoate (SI-4)	S18
Ethyl ((<i>S</i>)-2-((<i>tert</i> -butoxycarbonyl)amino)-3-(4-iodophenyl)propanoyl)-L-valinate (SI-	5). S18
Ethyl 2-(2-iodophenoxy)acetate (SI-6)	S19
Benzyl (2-iodophenyl)carbamate (6)	S19
Benzyl (2-bromophenyl)carbamate (SI-7)	S19
<i>N</i> -(2-iodophenyl)-4-toluenesulfonamide (SI-8)	S19
2,2,2-Trifluoro- <i>N</i> -(2-iodophenyl)acetamide (SI-9)	S19
N-Benzyl-2-iodoaniline (SI-10)	S20
<i>tert</i> -Butyl (2-iodophenyl)carbamate (SI-11)	S20
Benzyl (5-chloro-2-iodophenyl)carbamate (SI-12)	S20
N-(2-Fluoro-4-iodophenyl)benzamide (SI-13)	S20
N-(4-Iodo-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pivalamide (SI-14)	S20
Iodide SI-15	S20
<i>tert</i> -Butyl 3-iodo-1 <i>H</i> -indole-1-carboxylate (SI-16)	S21
tert-Butyl 3-iodo-1H-indole-1-carboxylate (SI-17)	S21
1-Tosyl-1 <i>H</i> -pyrrolo[3,2- <i>b</i>]pyridine (SI-18)	S21
6-Iodo-1-tosyl-1 <i>H</i> -pyrrolo[3,2- <i>b</i>]pyridine (SI-19)	S21
3-Iodo-1-tosyl-1 <i>H</i> -pyrrolo[3,2- <i>b</i>]pyridine (SI-20)	S21
3-Iodo-1-tosyl-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridine (SI-21)	S21
Ethyl 6-iodoimidazo[1,2- <i>a</i>]pyridine-2-carboxylate (SI-22)	S21
2,5-Dichloro-N-(4-iodophenyl)pyrimidin-4-amine (SI-23)	S22
Iodo-nimesulide SI-24	S22
Iodo-Ioratadine SI-25	S22
Iodide SI-26	
Iodo-strychnine SI-27	
<i>tert</i> -Butyl (2-((2-(2-6-dioxonineridin-3-yl)-1.3-dioxoisoindolin-4-yl)amino)ethyl)carbar	nate
(SI-28)	S23
N-(2-((2-(2-6-dioxonineridin-3-vl)-1,3-dioxoisoindolin-4-vl)amino)ethvl)-4-iodobenzan	nide
(SL29)	S74
(SI 2)) Quinolin-6-yl trifluoromethanesulfonate (SI-30)	S24
Quinolin-8-yl trifluoromethanesulfonate (SI-31)	S24
Triflate SL-32	S74
S-(2-hydroxyethyl) 2 2-dimethylnronanethioate (109)	S24
S(2 hydroxycenyr) 2,2 diffective particulate (109)	S25
6-Azidahavyl ethyl H-nhosnhanete (83)	\$25
H nhosnhonata 85	\$25 \$26
T-phosphonate of	S20
Ethyl ethyl H thionhogonhonoto (04)	520 627
General Procedures	S28
Preparation of the TPGS-750-M stock solution	S28
General procedure A (Conditions A, <i>multimetallic</i> C(sp ²)–P cross-coupling)	S28
General procedure B (Conditions B, dual-ligand C(sp ²)–P cross-coupling)	S28
Common Questions and Troubleshooting	S30
5	

Calculation of PMI Values and E Factors and Comparison With Those of Literature	
rocedures	S32
Phosphonate 6	\$32
Phosphonate 28	S33
Phosphonate 7	S33
Phosphonate 77	
Phosphonate 80	
CD Analysis	S2/
Results of the Pd and Ni ICP analysis	
p ²)-P Cross-Coupling Products	
Diethyl <i>p</i> -tolylphosphonate (5)	
Benzyl (2-(diethoxyphosphoryl)phenyl)carbamate (7)	
Diethyl (2-methoxyphenyl)phosphonate (9)	S36
Diethyl (4-methoxyphenyl)phosphonate (10)	S37
Diethyl (4-hydroxyphenyl)phosphonate (11)	S37
4-(Diethoxyphosphoryl)phenyl acetate (12)	S 37
Diethyl (4-aminophenyl)phosphonate (13)	S38
Diethyl (4-(dimethylamino)phenyl)phosphonate (14)	S38
tert-Butyl (4-(diethoxyphosphoryl)phenyl)carbamate (15)	S38
Diethyl (4-cyanophenyl)phosphonate (16)	S39
Methyl 4-(diethoxyphosphoryl)benzoate (17)	S39
Diethyl (4-carbamoylphenyl) phosphonate (18)	S39
4-(Diethoxyphosphoryl)benzoic acid (19)	S40
Diethyl (4-nitrophenyl)phosphonate (20)	S4(
Diethyl (4-fluorophenyl)phosphonate (21)	S4(
Diethyl (4-(trifluoromethyl)phenyl)phosphonate (22)	S4 1
Diethyl (4-(bromo)phenyl)phosphonate (23)	
4-(Diethoxyphosphoryl)phenyl trifluoromethanesulfonate (24)	
Diethyl (4-(4.4.5.5-tetramethyl-1.3.2-dioxaborolan-2-yl)nhenyl)nhosphonate (25)	
Diethyl (4-acetylnhenyl)nhosnhonate (26)	S42
Diethyl (4-(N N-dibenzylsulfamoyl)nhenyl)nhosnhonate (27)	S42
Fthyl (S)-2-((tart-hutovycarbony))amino)-3-(A-iodonbeny))nronanoste (28)	542 \$42
Compounds 20	
3 (Diethevynhesnheryl)henzeie eeid (30)	54. \/\S
Disthyl (2 chlorenhanyl)nhoenhanete (21)	-+0 24/
Diethyl 2 tolylphosphonate (32)	
Diethyl 2-tolylphosphonate (52)	
Dietnyl (2-nydroxypnenyl)phosphonate (55)	544 5.44
Dietnyl (2-(trifluorometnoxy)pnenyl)pnospnonate (34)	
Ethyl 2-(2-(diethoxyphosphoryl)phenoxy)acetate (35)	
Diethyl (2-fluorophenyl)phosphonate (36)	
Diethyl (2-((4-methylphenyl)sulfonamido)phenyl)phosphonate (37)	S46
Diethyl (2-(2,2,2-trifluoroacetamido)phenyl)phosphonate (38)	S40
Diethyl (2-(benzylamino)phenyl)phosphonate (39)	S47
tert-Butyl (2-(diethoxyphosphoryl)phenyl)carbamate (40)	S47
Benzyl (5-chloro-2-(diethoxyphosphoryl)phenyl)carbamate (41)	S48
Diethyl (2-cyanophenyl)phosphonate (42)	S48
Diethyl (4-benzamido-3-fluorophenyl)phosphonate (43)	S48
Diethyl (4-pivalamido-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)phosph	ionate
(44)	S49

Diethyl (3,4,5-trimethoxyphenyl)phosphonate (45)	. S49
Diethyl (3-fluoro-4-methylphenyl)phosphonate (46)	. S50
Tetraethyl 1,4-phenylenebis(phosphonate) (47)	. S50
Compound 48	. S50
Diethyl benzylphosphonate (49)	. \$51
Cross-coupling with boronic acid 50 and pinacol boronate 51	. S51
Diethyl pyridin-4-ylphosphonate (52)	. S51
Diethyl (2-chloropyridin-4-yl)phosphonate (53)	. \$52
Diethyl (2-fluoro-5-methylpyridin-4-yl)phosphonate (54)	. \$52
Diethyl (6-acetamidopyridin-3-yl)phosphonate hydrochloride (55·HCl)	. \$53
Diethyl (1-henzyl-1 <i>H</i> -nyrazol-4-yl)nhosnhonate (56)	. 853
Diethyl thiophen-3-ylphosphonate (57)	. 853
Diethyl thiophen-2-ylphosphonate (58)	. 854
<i>tert</i> -Butyl 3-(diethoxynhosnhoryl)-1 <i>H</i> -indole-1-carboxylate (59)	. 854
Diethyl (1-tosyl-1 <i>H</i> -nyrrolo[3,2-b]nyridin-6-yl)nhosnhonate (60)	S54
Diethyl (1-tosyl-11/H-nyrrolo[3,2-b]nyridin-3-yl)nhosphonate (61)	S55
Diethyl (1-tosyl-11/pyrrolo[0,2-0]pyrroln 0-yr)phosphonate (01) Diethyl (1-tosyl-1 <i>H</i> -nyrrolo[0,2-3-h]nyridin-3-yl)nhosnhonate (62)	S55
Fthyl 6_(diathoxynhosnhoryl)imidazo[1 2_a]nyridina_7_earboyylate (63)	S55
Diethyl (4-((2 5-dichloronyrimidin-4-yl)emino)nhenyl)nhosnhonete (64)	S50
Diethyl (4-((2,5-utchiolopyr midul) 5 nitronhonoxy)nhonyl)nhosnhonate (65)	. 530 857
Compound 66	857
Compound 67	. 557 659
Compound 69	C20
Compound 60	. 530 650
Compound 70	S59
Compound 70	539
Compound /1	500
Benzyl (2-(disopropoxypnospnoryl)pnenyl)carbamate (75)	. 500
Benzyi (2-(Dis(Denzyi0xy)phosphoryi)phenyi)cardamate (70)	. 500
BIS-SATE al cardamate //	. 501
BIS-SATE phosphonate /8	. 501
Compound /9·1FA	. 862
Bis-SATE phosphonate 80	. 862
	. 863
Compound 82	. 863
Azidothymidyl phosphonate 84	. 864
Compound 88	. 864
Ethyl phenyl(1-tosyl-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridin-3-yl)phosphinate (89)	. S65
Benzyl (2-(ethoxy(phenyl)phosphoryl)phenyl)carbamate (90)	. S65
Benzyl (2-(ethoxy(ethyl)phosphoryl)phenyl)carbamate (91)	. S66
Ethyl phenyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)phosphinate (92)	. S66
Compound 93	. S67
Benzyl (2-(dibutoxyphosphorothioyl)phenyl)carbamate (95)	. S67
<i>O,O</i> -Di- <i>n</i> -butyl (1-tosyl-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridin-3-yl)phosphonothioate (96)	. S68
Benzyl (2-(diphenylphosphoryl)phenyl)carbamate (99)	. S68
Benzyl (2-(dimethylphosphoryl)phenyl)carbamate (100)	. S 69
(4-Methoxyphenyl)dimethylphosphine oxide (101)	. S69
Compound 102·TFA	. S69
<i>tert</i> -Butyl (4-(diphenylphosphoryl)phenyl)carbamate (103)	. S70
<i>tert</i> -Butyl (4-(dimethylphosphoryl)phenyl)carbamate (104)	. S70
Dimethyl(4-(trifluoromethyl)phenyl)phosphine oxide (105)	. S71
Compound 106	. S71

Diethyl quinolin-6-ylphosphonate (126)	S72
Diethyl quinolin-8-ylphosphonate (127)	S72
Compound 128	S72
Scale-up experiments	S74
Benzyl (2-(diethoxyphosphoryl)phenyl)carbamate (7)	S74
Diethyl (1-tosyl-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridin-3-yl)phosphonate (62)	S74
tert-Butyl (4-(diethoxyphosphoryl)phenyl)carbamate (15)	S74
General procedure C (One-pot <i>H</i> -phosphonate synthesis and C(sp ²)–P coupling)	S75
Benzyl (2-(diethoxyphosphoryl)phenyl)carbamate (7)	\$75
Bis-SATE carbamate 77	S75
5,5-Dimethyl-2-(p-tolyl)-1,3,2-dioxaphosphinane 2-oxide (111)	S75
Benzyl (2-(5,5-dimethyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)phenyl)carbamate (112).	S76
5,5-Dimethyl-2-(1-tosyl-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridin-3-yl)-1,3,2-dioxaphosphinane 2-oxid	de
(113)	S76
Tandem processes involving C(sp ²)_P cross-coupling	\$77
randem processes involving C(sp) 1 cross-coupling	
NMR data	S80
Compound SI-5	S80
Compound SI-12	S 81
Compound SI-26	S82
Compound SI-29	S83
Compound 7	S84
Compound 18	S86
Compound 24	S88
Compound 27	S90
Compound 29	S92
Compound 30	S94
Compound 37	S96
Compound 39	S98
Compound 41	S100
Compound 43	S102
Compound 44	S104
Compound 45	S106
Compound 46	S108
Compound 48	S110
Compound 54	S112
Compound 55·HCl	S114
Compound 59	S116
Compound 60	S118
Compound 61	S120
Compound 62	S122
Compound 63	S124
Compound 64	S126
Compound 65	\$128
Compound 66	\$130
Compound 67	\$133
Compound 68	\$135
Compound 69	8138
Compound 70	S140

Compound 71
Compound 75
Compound 76
Compound 77
Compound 78
Compound 79·TFA
Compound 80
Compound 81
Compound 82
Compound 83
Compound 84
Compound 85
Compound 89
Compound 90
Compound 91
Compound 92
Compound 93
Compound 94
Compound 95
Compound 96
Compound 99
Compound 100
Compound 102·TFA
Compound 104
Compound 106
Compound 111
Compound 112
Compound 113
Compound 118
Compound 125
References

General Information

Reagents were purchased at the highest quality from commercial vendors (Sigma-Aldrich, TCI Europe, Strem, Fluorochem, Across (Europe), Acros Pharmatech Ltd. (China)) and used without further purification. Pd(OAc)₂ was purchased from Sigma-Aldrich (cat. no. 520764); Pd[P(*t*-Bu)₃]₂, from Sigma-Aldrich (cat. no. 676578) and TCI Europe (cat. no. B3161); NiCl₂.6H₂O, from Strem (cat. no. 93-2810); XantPhos, from TCI Europe (cat. no. B2709); 1,10-phenanthroline (phen), from Sigma-Aldrich (cat. no. 131377); Zn nanopowder (40-60 nm avg. part. size), from Sigma-Aldrich (cat. no. 578002); TPGS-750-M, from Sigma-Aldrich (cat. no. 763896); diethyl *H*-phosphonate (**3**, 98% purity), dibenzyl H-phosphonate (**73**, technical grade), ethyl phenyl *H*-phosphinate (**86**, 94% purity) and diphenylphosphine oxide (**97**, 97% purity), from Sigma-Aldrich (cat. no. D99234, D36607, 415642, 287881, respectively); di-*iso*-propyl *H*-phosphonate (**72**), from TCI Europe; and dimethylphosphine oxide (**98**, 95% purity), from BioSynth (UK, cat. no. FD166291).

Reaction progress was monitored by LC-MS analysis and/or thin-layer chromatography (TLC) using TLC 60G F_{254} glass plates (Merck) and short-wave UV light for visualization and/or KMnO₄ and heat as a developing agent. All yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous material, unless stated otherwise.

Flash column chromatography was performed using E. Merck silica (60, particle size 0.043–0.063 mm), and preparative TLC (pTLC) was performed on TLC 60G F_{254} glass plates (Merck) or PLC Silica gel 60 F_{254} glass plates (1 mm thickness, Merck). Preparative reverse-phase HPLC purification was performed on an Ecom ECS28P0X compact preparative system equipped with a TOY18DAD800 L DAD detector using a C18 column (Teledyne Isco, RediSep Gold® C18Aq 50g, cat. no. 692203561) or a C8 column (Interchim, puriFlash® 200 C8 15µM F0040, cat. no. PT-C8-F0040) and eluting with HPLC-grade water, methanol (VWR) and acetonitrile (VWR) containing 0.1 vol % trifluoroacetic acid.

NMR spectra were recorded on a Bruker Avance III HD spectrometer with a BBFI probe (operating at 400 MHz for ¹H, 100 MHz for ¹³C, 162 MHz for ³¹P, 376 MHz for ¹⁹F, and 128 MHz for ¹¹B) and a Bruker Avance III spectrometer with a cryo-probe (5 mm TCI ¹H/¹³C/¹⁵N/D Z/GRD, operating at 600 MHz for ¹H and 151 MHz for ¹³C) at a corrected temperature of 25 °C. All ¹³C and ³¹P spectra are proton decoupled. NMR spectra were calibrated using residual nondeuterated solvent (CHCl₃ at 7.26 ppm in ¹H NMR, 77.16 ppm in ¹³C NMR; CH₃CN at 1.94 ppm in ¹H NMR, 1.32 and 118.26 ppm in ¹³C NMR; CH₃OH at 3.31 ppm in ¹H NMR, 49.0 ppm in ¹³C NMR; benzene at 7.16 ppm in ¹H NMR, 128.06 ppm in ¹³C NMR). Chemical shifts in ³¹P, ¹⁹F, and ¹¹B NMR spectra were not referenced. Coupling constants (*J*) are reported in Hertz (Hz). The following abbreviations were used to explain signal multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. All NMR data were processed and interpreted using the software package MestReNova.

HRMS data were recorded on a LTQ Orbitrap XL spectrometer or Agilent 6530 accurate-mass QTOF.

Optimization Experiments

All screening and optimization experiments were performed at 0.25-mmol reaction scale following the procedure described in *General procedure* A/B.

	Initial Micellar Transition Metal-Catalyzed C(sp ²)–P Cross-Coupling in Water						
		metal salt (X mol %) ligand (Y mol %) base (2 eq.), additive			0 		
		H ^{-P} OEt OEt	2 wt % T	► PGS-750-M, <mark>H₂O</mark> (0.5 mL) 16 h. <i>T</i>	OEt	τ	
	1.2 eq.	0.25 mmol		, .	4		
entry	metal salt (X mol %)	ligand (Y mol %)	base (2 eq.)	additive/co-solvent	temperature	³¹ P NMR yield ^a	
1	SPhos Pd	G3 (5)	Et ₃ N		rt	traces	
2	Pd(OAc) ₂ (5)	XantPhos (10)	Et ₃ N		rt	30%	
3	Pd(OAc) ₂ (5)	XantPhos (10)	Et ₃ N		45 °C	21%	
4	Pd(OAc) ₂ (5)	XantPhos (10)	Et ₃ N	THF (0.05 mL)	45 °C	49%	
5	Pd(OAc) ₂ (5)	DavePhos (10)	Et ₃ N	THF (0.05 mL)	45 °C	12%	
6	Pd(OAc) ₂ (5)	P(t-Bu) ₃ .HBF ₄ (10)	Et ₃ N	THF (0.05 mL)	45 °C	53%	
7	Pd(OAc) ₂ (5)	dppp (10)	Et ₃ N	THF (0.05 mL)	45 °C	<5%	
8	Pd(OAc) ₂ (5)	dppf (10)	Et ₃ N	THF (0.05 mL)	45 °C	16%	
9	Pd(OAc) ₂ (5)	BPhen (10)	Et ₃ N	THF (0.05 mL)	45 °C	ND	
10	Pd(OAc) ₂ (5)	JohnPhos (10)	Et ₃ N	THF (0.05 mL)	45 °C	22%	
11	Pd(OAc) ₂ (1)	P(<i>t</i> -Bu) ₃ .HBF ₄ (2)	2,6-lutidine	THF (0.05 mL)	45 °C	45%	
12	Pd(OAc) ₂ (1)	$PCy_3.HBF_4$ (2)	2,6-lutidine	THF (0.05 mL)	45 °C	ND	
13	Pd(OAc) ₂ (1)	APhos (2)	2,6-lutidine	THF (0.05 mL)	45 °C	25%	
14	Pd(OAc) ₂ (1)	PEPPSI Pd IPr (1)	2,6-lutidine	THF (0.05 mL)	45 °C	ND	
15	Ni(XantPho	s)Cl ₂ (10)	Et ₃ N	Zn (2 eq.)	rt	ND	
16	NiBr ₂ .glyme (1)	phen (2 mol %)	2,6-lutidine	nano Zn (0.5 eq.), THF (0.05 mL)	45 °C	67%	
17	NiBr ₂ .glyme (2)	phen (4 mol %)	2,6-lutidine	nano Zn (0.5 eq.), THF (0.05 mL)	45 °C	quantitative (67%)	
18	NiBr ₂ .glyme (2)	dtbbpy (4 mol %)	2,6-lutidine	nano Zn (0.5 eq.), THF (0.05 mL)	45 °C	quantitative	
19	Cu(OAc) ₂ .H ₂ O (2.5)	DMEDA (10)	2,6-lutidine	THF (0.05 mL)	45 °C	ND	
20	Cu(OAc) ₂ .H ₂ O (2.5)	phen (5)	2,6-lutidine	THF (0.05 mL)	45 °C	ND	
21	Cu(MeCN) ₄ .BF ₄ (2.5)	DMEDA (10)	2,6-lutidine	THF (0.05 mL)	45 °C	ND	
22	Cu(MeCN) ₄ .BF ₄ (2.5)	phen (5)	2,6-lutidine	THF (0.05 mL)	45 °C	ND	

Figure S1. Combinations of $Pd(OAc)_2$ with XantPhos or $P(t-Bu)_3$ ligands were initially identified as the most efficient catalyst for micellar $C(sp^2)$ –P cross-coupling reaction in water, subsequently identifying effective Ni-catalyzed conditions (entries 15-18). No product was detected under the Cu-catalyzed conditions tested in this study (entries 19-22). ^{*a* 31}P NMR yields were determined by integrating all ³¹P resonances; this approach has been previously used by Montchamp *et al.* (please refer to *J. Am. Chem. Soc.* **2002**, *124*, 9386–9387 and *Org. Lett.* **2011**, *13*, 3270–3273). Isolated yields are reported in italics. ND = not detected.

Screening of Micellar Pd-Catalyzed C(sp²)–P Cross-Coupling in Water: Base Effect

		O II	me li	etal salt (5 mol %) gand (10 mol %) base (2 eq.)		
	1.2 eq.	H ^{-P} OEt OEt 0.25 mmol	2 wt % T	PGS-750-M, <mark>H₂O</mark> (0.5 mL) THF (0.05 mL) 16 h, 45 °C	4	
entry	metal salt (X mol %)	ligand (Y mol %)	base (2 eq.)	additive/co-solvent	temperature	³¹ P NMR yield ^a
1	Pd(OAc) ₂ (5)	XantPhos (10)	Et ₃ N	THF (0.05 mL)	45 °C	49%
2	Pd(OAc) ₂ (5)	XantPhos (10)	<i>t</i> -BuOK	THF (0.05 mL)	45 °C	ND
3	Pd(OAc) ₂ (5)	XantPhos (10)	Cs_2CO_3	THF (0.05 mL)	45 °C	traces
4	Pd(OAc) ₂ (5)	XantPhos (10)	K ₃ PO ₄	THF (0.05 mL)	45 °C	<5 %
5	Pd(OAc) ₂ (5)	XantPhos (10)	<i>i</i> -Pr ₂ NEt	THF (0.05 mL)	45 °C	26%
6	Pd(OAc) ₂ (5)	XantPhos (10)	DBU	THF (0.05 mL)	45 °C	<5%
7	Pd(OAc) ₂ (5)	XantPhos (10)	2,6-lutidine	THF (0.05 mL)	45 °C	88%
8	Pd(OAc) ₂ (2.5)	XantPhos (5)	(<i>n</i> -Bu)₃N	EtOAc (0.05 mL)	45 °C	57%
9	Pd(OAc) ₂ (2.5)	XantPhos (5)	Cy ₂ NMe	EtOAc (0.05 mL)	45 °C	ND

Figure S2. The highest yields of micellar $C(sp^2)$ –P cross-coupling reactions were achieved when using 2,6-lutidine base (entry 7). ^{*a* 31}P NMR yields were determined by integrating all ³¹P resonances. ND = not detected.

Screening of Micellar Pd-Catalyzed C(sp²)–P Cross-Coupling in Water: Pd Loading, Co-Solvent

		о Ц	metal salt (X mol %) ligand (Y mol %) 2,6-lutidine (2 eq.)			F 4
	1.2 eq.	H ^P OEt OEt	2 wt % TPGS- co-solv 16	750-M, <mark>H₂O</mark> (0.5 mL) ent (0.05 mL) h, 45 °C		EL 1
entry	metal salt (X mol %)	ligand (Y mol %)	base (2 eq.)	additive/co-solvent	temperature	³¹ P NMR yield ^a
1	Pd(OAc) ₂ (5)	XantPhos (10)	2,6-lutidine	THF (0.05 mL)	45 °C	88%
2	Pd(OAc) ₂ (2.5)	XantPhos (5)	2,6-lutidine	THF (0.05 mL)	45 °C	quantitative
3	Pd(OAc) ₂ (2.5)	XantPhos (2.5)	2,6-lutidine	THF (0.05 mL)	45 °C	quantitative
4	Pd(OAc) ₂ (1)	XantPhos (1)	2,6-lutidine	THF (0.05 mL)	45 °C	quantitative (91%)
5	Pd(OAc) ₂ (2.5)	XantPhos (5)	2,6-lutidine	toluene (0.05 mL)	45 °C	95%
6	Pd(OAc) ₂ (2.5)	XantPhos (5)	2,6-lutidine	1,4-dioxane (0.05 mL)	45 °C	80%
7#	Pd(OAc) ₂ (1)	XantPhos (1)	2,6-lutidine	THF (0.05 mL)	45 °C	88%
8*	Pd(OAc) ₂ (1)	XantPhos (1)	2,6-lutidine	THF (0.05 mL)	45 °C	50%

Figure S3. Decreasing the Pd catalyst loading increased the yield of the micellar $C(sp^2)$ –P cross-coupling reaction (entry 4). ^{*a* 31}P NMR yields were determined by integrating all ³¹P resonances. Isolated yields are reported in italics. ND = not detected. ^{*#*} The reaction was run at ambient temperature (~20 °C). * P(OEt)₃ was used instead of HP(O)(OEt)₂.

Figure S4. Screening of ligands in Ni-catalyzed micellar $C(sp^2)$ –P cross-coupling reactions showed that 1,10-phenanthroline is the most effective ligand. Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard. ND = not detected. * LiBr was used instead of LiCl.

Screening of Micellar Ni-Catalyzed C(sp²)-P Cross-Coupling in Water: Additives

			(Ni	
	^	.I 0	nano Zi	odditivo	
	I	+	base,		DEt
	Me	HOEt	2 wt % TPGS-750	-M, H ₂ O (0.5 mL)	
	0.25 mmol	3 (X eq.)	15 h, 4	40 °C 5	
entry	3 (Y og)	Nilligand (2 E/E mal 9/)	haaa	addition	·a
entry	J (X 84.)	Ni/liganu (2.5/5 mol %)	Dase	additives/deviation	yield
1	2	NiCl ₂ .glyme/phen	2,6-lutine (3 eq.)	LiCl (1 eq.)	68%
2	2	NiCl ₂ .glyme/phen	2,6-lutine (3 eq.)	LiBr (1 eq.)	82% (84%)
3	2	NiCl ₂ .glyme/phen	2,6-lutine (3 eq.)	Lil (1 eq.)	78%
4	2	NiCl ₂ .glyme/phen	2,6-lutine (3 eq.)	MgCl ₂ (1 eq.)	76%
5	2	NiCl ₂ .glyme/phen	2,6-lutine (3 eq.)	ZnBr ₂ (1 eq.)	41%
6	2	NiCl ₂ .glyme/phen	2,6-lutine (3 eq.)	KBr (1 eq.)	73%
7	2	NiCl ₂ .glyme/phen	2,6-lutine (3 eq.)	Nal (1 eq.)	74%
8	2	NiCl ₂ .glyme/phen	2,6-lutine (3 eq.)	LiCl (1 eq.), phthalimide (0.25 eq.)	80%
9	2	NiCl ₂ .glyme/-	2,6-lutine (3 eq.)	LiCl (1 eq.), dimethyl fumarate (0.1 eq.)	ND
10	2	NiCl ₂ .glyme/phen	Et ₃ N (3 eq.)	LiBr (1 eq.)	ND
11	2	Ni(acac) ₂ /phen	2,6-lutine (3 eq.)	LiBr (1 eq.)	82%
12	2	NiCl ₂ .6H ₂ O/phen	2,6-lutine (3 eq.)	LiBr (1 eq.)	78%
13	1.5	Ni(phen) ₃ Cl ₂	2,6-lutine (3 eq.)	LiBr (1 eq.)	77%
14	1.5	Ni(PPh ₃) ₂ Cl ₂ /phen	2,6-lutine (3 eq.)	LiBr (1 eq.)	71%
15	1.1	NiCl ₂ .glyme/phen	2,6-lutine (3 eq.)	LiBr (1 eq.)	83%
16	1.5	NiCl ₂ .glyme/phen	2,6-lutine (3 eq.)	LiBr (1 eq.), toluene (0.05 mL)	90% (84 %)
17	1.5	NiCl ₂ .glyme/phen	2,6-lutine (3 eq.)	LiBr (1 eq.), EtOAc (0.05 mL)	90% (81%)
18	1.5	NiCl ₂ .glyme/phen	2,6-lutine (3 eq.)	LiBr (1 eq.), no co-solvent	75%
19	2	Ni(COD)DQ/phen	2,6-lutine (3 eq.)	LiCl (1 eq.)	ND

Figure S5. Additive and co-solvent screening in Ni-catalyzed micellar $C(sp^2)$ –P cross-coupling reactions showed that LiBr (additive) and EtOAc (co-solvent) enhance the reaction. ^{*a*} Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard. Isolated yields are reported in italics. ND = not detected.

After identifying effective reactions conditions for Pd- and Ni-catalyzed micellar $C(sp^2)$ –P crosscoupling of 4-iodobenzene and 4-iodotoluene with **3**, we tested the cross-coupling of other (hetero)aryl halides under these conditions, albeit to no avail. Therefore, we screened combinations of Pd and Ni catalytic systems, eventually establishing effective *multimetallic* and *dual-ligand* micellar $C(sp^2)$ –P cross-coupling reaction conditions.

Additional Screening Experiments of Micellar C(sp ²)–P Cross-Coupling in Water						
			о Ц	Pd/ligand (Y mol %) Ni/ligand (Z mol %) 2,6-lutidine (2 eq.), additives		
	Bo (cHN 25 mmol scale	H ^P OEt OEt 3 (X eq.)	2 wt % TPGS-750-M, <mark>H₂O</mark> (0.5 n THF (0.05 mL) 16 h, 45 °C	nL) BocHN 15	
entry	3 (X eq.)	Pd cat. (Y mo	ol %)	Ni cat. (Z mol %)	additives	yield ^a
1	0.8 : 1	Pd(OAc) ₂ /XantPl	nos (1/1)		LiCl (1 eq.)	24%
2	2	Pd(OAc) ₂ /XantPl	nos (1/2)	NiCl ₂ .DME/Bphen (1/2.5)	nano Zn (0.5 eq.), LiCl (1 eq.)	49%
3	2	Pd[P(t-Bu) ₃] ₂	(2.5)		LiCl (1 eq.), KOAc (0.2 eq.)	traces
4	2.5	Pd(OAc) ₂ /dpp	f (1/1)	NiCl ₂ .DME/Bphen (1/2)	nano Zn (0.5 eq.), LiCl (1 eq.)	42%
5	2	Pd(OAc) ₂ /XantPho	s (2.5/2.5)	NiCl ₂ .DME/phen (2.5/5)	nano Zn (0.5 eq.), LiCl (1 eq.), KOAc (0.5 eq.)	98%
6*	2	Pd(OAc) ₂ /XantPho	s (2.5/2.5)	Ni(phen) ₃ Cl ₂ (1)	nano Zn (0.5 eg.), LiBr (1 eg.)	95%

Figure S6. ^{*a*} Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard. Isolated yields are reported in italics. ND = not detected. * 3 equivalents of 2,6-lutidine.

	Additional Screening Experiments of Micellar C(sp ²)–P Cross-Coupling in Water						
		+ U N + H ^{-P} OEt	Pd/ligand (Y mol %) Ni/ligand (Z mol %) nano Zn (0.5 eq.) 2,6-lutidine (2 eq.), additi 2 wt % TPGS-750-M, H ₂ O (1	1.0 mL)			
		0.25 mmol scale 3 (X eq.)	16 h, 45 °C	52			
entry	3 (X eq.)	Pd cat. (Y mol %)	Ni cat. (Z mol %)	additives/deviation	yield ^a		
1	2.5	Pd(OAc) ₂ /XantPhos (1/1)	NiCl ₂ .DME/Bphen (1/2)	LiCl (1 eq.)	15%		
2	2.5	Pd(OAc) ₂ /dppf (1/1)	NiCl ₂ .DME/Bphen (1/2)	LiCl (1 eq.)	ND		
3*	2.5	Pd(OAc) ₂ /Cy-XantPhos (2.5/2.5)	Ni(Bphen) ₂ Br ₂ (2.5)	LiCl (1 eq.), KOAc (0.1 eq.)	ND		
4*	2.5	Pd(OAc) ₂ /DPEphos (2.5/2.5)	Ni(Bphen) ₂ Br ₂ (2.5)	LiCl (1 eq.), KOAc (0.1 eq.)	12%		
5*	2.5	Pd(OAc) ₂ /dppb (2.5/2.5)	Ni(Bphen) ₂ Br ₂ (2.5)	LiCl (1 eq.), KOAc (0.1 eq.)	ND		
6*	2.5	Pd(OAc) ₂ /dtbpf (2.5/2.5)	Ni(Bphen) ₂ Br ₂ (2.5)	LiCl (1 eq.), KOAc (0.1 eq.)	ND		
7*	2.5	Pd(OAc) ₂ /XantPhos/PPh ₃ (2.5/2.5/5)	Ni(Bphen) ₂ Br ₂ (2.5)	LiCl (1 eq.), KOAc (0.1 eq.)	16%		
8*	2.5		NiCl ₂ .DME/phen (2.5/5)	LiBr (1 eq.)	ND		
9*	2	Pd(OAc) ₂ /XantPhos (2.5/2.5)	NiCl ₂ .DME/phen (2.5/5)	acetone (0.2 mL), LiBr (1 eq.)	33%		
10*	2	Pd(OAc) ₂ /XantPhos (2.5/2.5)	Ni(phen) ₃ Cl ₂ (5)	EtOAc (0.2 mL), LiBr (1 eq.), 55 °C	83% (89%)		
11*	2	Pd(OAc) ₂ /XantPhos (2.5/2.5)	Ni(phen) ₃ Cl ₂ (2.5) Et	tOAc (0.2 mL), LiBr (1 eq.), KOAc (0.2 eq.), 55 °C	82%		
12*	2	Pd(OAc) ₂ /XantPhos (2.5/2.5)	Ni(phen) ₃ Cl ₂ (2.5)	EtOAc (0.2 mL), LiBr (1 eq.)	42%		

Figure S7. ^{*a*} Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard. Isolated yields are reported in italics. ND = not detected. * 3 equivalents of 2,6-lutidine.

Figure S8. Cross-coupling of 1-iodo-4-nitrobenzene was challenging mainly due to its high crystallinity and thus poor solubility under micellar conditions. Optimal cross-coupling conditions (entry 1) were reached by increasing the reaction volume from 0.55 to 1.2 mL, using EtOAc co-solvent, and increasing the reaction temperature to 55 °C (*cf.* entry 2). ^{*a*} Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard. Isolated yields are reported in italics. ND = not detected. * More lipophilic HP(O)(On-Bu)₂ was used instead of HP(O)(OEt)₂ (**3**).

	Additional Screening Experiments of Micellar C(sp ²)–P Cross-Coupling in Water						
	Ac Br 0.25 mmol scale	+ H OEt Pd/ligand (Y mol %) 2,6-lutidine (2 eq.), additiv 2 wt % TPGS-750-M, H ₂ O (0. THF (0.05 mL) 15 h, 45 °C	es 5 mL) Ac 26				
entry	3 (X eq.)	Pd cat. (Y mol %)	additives/deviation	yield ^a			
1	2	Pd[P(<i>t</i> -Bu) ₃] ₂ (2.5)	LiCl (1 eq.)	11%			
2	2	Pd[P(<i>t</i> -Bu) ₃] ₂ (2.5)	LiCl (1 eq.), KOAc (0.1 eq.)	47%			
3	2	Pd[P(<i>t</i> -Bu) ₃] ₂ (2.5)	LiCl (1 eq.), KOAc (0.5 eq.)	72%			
4	2	Pd[P(<i>t</i> -Bu) ₃] ₂ (2.5)	LiCl (1 eq.), KOAc (1 eq.)	42%			
5	2	Pd[P(t-Bu) ₃] ₂ /Pd(OAc) ₂ (2.5/2.5)	LiCl (1 eq.)	76%			
6	2	Pd[P(<i>t</i> -Bu) ₃] ₂ /Pd(OAc) ₂ (1.25/1.25)	LiCl (1 eq.), KOAc (0.5 eq.)	18%			
7	2	Pd[P(t-Bu) ₃] ₂ /Pd(OAc) ₂ /XantPhos (2.5/1/1)	EtOAc (0.1 mL), LiBr (1 eq.)	89%			

Figure S9. Screening experiments with 4-bromoacetophenone (model aryl bromide) revealed that dual-ligand Pd-catalyzed conditions afford **26** in the highest yield (entry 7). Adding KOAc in the reaction also increased yields of **26** (entries 2-4). ^{*a*} Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard. Isolated yields are reported in italics.

Micellar C(sp²)-P Cross-Coupling of Aryl Triflates in Water, part 1

OEt

³¹P NMR yield

ND ND

13%

traces

34%

ND

12%

11%

18%

ND

22%

ND

entry

1

2

3

4

5

6

7

8

9

10

11

12

metal

1.2 64.	0.25 mmol	4
netal salt (X mol %)	ligand (Y mol %)	additive/deviation
Pd(OAc) ₂ (2.5%)	XantPhos (2.5%)	
Pd(OAc) ₂ (2.5%)	dppp (2.5%)	
Pd(OAc) ₂ (2.5%)	dppf (2.5%)	
NiBr ₂ .glyme (2%)	phen (4%)	nano Zn (1 equiv)
Pd(OAc) ₂ (2.5%)	dppf (3%)	65 hours
Pd(OAc) ₂ (2.5%)	P(t-Bu) ₃ (2.5%)	
PdCl ₂ (2.5%)	dppf (3%)	
Pd(TFA) ₂ (2.5%)	dppf (3%)	
Pd(OAc) ₂ (2.5%)	dppf (2.5%), P(t-Bu) ₃ (2.5%)
Pd(OAc) ₂ (2.5%)	dppf (3%)	LiBr (0.5 equiv)
Pd(OAc) ₂ (2.5%)	dppf (3%)	KF (0.5 equiv)
Pd(OAc) ₂ (2.5%)	dppf (3%)	TBAI (0.5 equiv)
Pd(OAc) ₂ (2.5%)	dppf (3%)	t-BuTMG instead of 2,6-lut.
Pd(OAc) ₂ (2.5%)	dppf (3%)	N-Me-morpholine instead of 2,6-lut.
Pd(OAc) ₂ (2.5%)	dppf (9%)	
(2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), phen (7%)	nano Zn (0.5 equiv), KF (1 equiv)
(2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5 equiv), KF (1equiv)
(2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), bpy (7%)	nano Zn (0.5 equiv), KF (1 equiv)
(2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), phen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv)
(2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), phen (7%)	nano Zn (0.5 equiv)

13	Pd(OAc) ₂ (2.5%)	dppf (3%)	t-BuTMG instead of 2,6-lut.	traces
14	Pd(OAc) ₂ (2.5%)	dppf (3%)	N-Me-morpholine instead of 2,6-lut.	38%
15	Pd(OAc) ₂ (2.5%)	dppf (9%)		17%
16	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), phen (7%)	nano Zn (0.5 equiv), KF (1 equiv)	64%
17	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5 equiv), KF (1equiv)	73%
18	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), bpy (7%)	nano Zn (0.5 equiv), KF (1 equiv)	67%
19	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), phen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv)	94% (41%)
20	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), phen (7%)	nano Zn (0.5 equiv)	64%
21	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv)	82% (56%)
22	Pd(OAc) ₂ (2.5%), NiCl ₂ .glyme (2.5%)	dppf (3%), phen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv)	73%
23	Pd(OAc) ₂ (2.5%), NiCl ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv), 55 °C	traces
24	Pd(OAc) ₂ (2.5%), NiCl ₂ .glyme (2.5%)	XantPhos(3%), Bphen (7%)) nano Zn (0.5 equiv), LiCl (1 equiv), 55 °C	ND
25	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), PCy ₃ (7%)	nano Zn (0.5 equiv), LiCl (1 equiv)	7%
26	Pd(OAc) ₂ (2.5%), NiCl ₂ .XantPhos (2.5%)	dppf (3%)	nano Zn (0.5 equiv), LiCl (1 equiv)	trace
27	Pd(OAc) ₂ (2.5%), NiCl ₂ .dppf (2.5%)	dppf (3%)	nano Zn (0.5 equiv), LiCl (1 equiv)	20%
28	Pd(OAc) ₂ (2.5%), NiCl ₂ .dppp (2.5%)	dppf (3%)	nano Zn (0.5 equiv), LiCl (1 equiv)	ND
29	Pd(OAc) ₂ (2.5%), Ni(COD)DQ (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv)	80% (35% ¹ H NMR)
30	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	Pt-Bu ₃ (6%), Bphen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv)	ND
31	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), terpy (3%)	nano Zn (0.5 equiv), LiCl (1 equiv)	12/57% (12% ¹ H NMR)
32	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dtbpf (3%), Bphen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv)	ND
33	Pd(OAc) ₂ (2.5%), Fe(acac) ₃ (2.5%)	dppf (3%), dppBz (3%)	nano Zn (0.5 equiv), LiCl (1 equiv)	ND
34	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv)	93% (61% ¹ H NMR)
35	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	Mn (0.5 equiv), LiCl (1 equiv)	ND
36	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (1 equiv), LiCl (1 equiv)	89% (33% ¹ H NMR)
37	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.25 equiv), LiCl (1 equiv)	74% (34% ¹ H NMR)
38	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5 equiv), LiCl (3 equiv)	24%
39	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5equiv), MgCl ₂ (3 equiv)	24%
40	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5 equiv), NaCl (3 equiv)	14%
41	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv), 10 vol % HFIP	<5% (¹ H NMR)
42	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv), 10 vol % DME	11% (¹ H NMR)
43	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv), 10 vol % EG	40% (¹ H NMR)
44	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv), 10 vol % acetone	38% (¹ H NMR)
45	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv), 10 vol % toluene	traces (¹ H NMR)
46	Pd(OAc) ₂ (2.5%), NiBr ₂ .glyme (2.5%)	dppf (3%), Bphen (7%)	nano Zn (0.5 equiv), LiCl (1 equiv), 10 vol % 1,4-dioxar	ne 25% (¹ H NMR)

Figure S10. Screening experiments with phenyl trifluoromethanesulfonate (model aryl triflate), part 1. Yields were determined by ³¹P NMR spectroscopy and/or ¹H NMR with CH₂Br₂ as an internal standard. Isolated yields are reported in italics. HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol, DME = 1,2-dimethoxyethane, EG = ethylene glycol. The highest isolated yields were achieved under multimetallic Pd/Ni conditions using dppf and phen/Bphen ligands (entries 19 and 21).

Figure S11. Screening experiments with phenyl trifluoromethanesulfonate (model aryl triflate), part 2. Yields were determined by ³¹P NMR spectroscopy and/or ¹H NMR with CH₂Br₂ as an internal standard. Isolated yields are reported in italics. Weakly coordinating anions (OTf, PF₆) inhibit the reaction (entries 6-8).

	Micellar C(sp ²)–P Cross-Coupling of Aryl	Triflates in Water, part 3	
	Me 0.25 mmol	Pd catalys Ni catalys 2,6-lutidine (3 equiv), nar additive 2,6-lutidine (3 equiv), nar additive 1,2,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	tt to Zn (0.5 equiv) 750-M 0.45M) h 5	
entry	Pd catalyst (X mol %)	Ni catalyst (Y mol %)	additive/deviation	³¹ H NMR yield
1	Pd(OAc) ₂ /dppf (2.5/3%)	NiBr ₂ .DME/Bphen (2.5/7%)	LiCI (1 equiv)	49% (51%)
2	Pd(OAc) ₂ /dppf (1/1%)	NiBr ₂ .DME/Bphen (1/2%)	LiCI (1 equiv)	25%
3	Pd(OAc) ₂ /dppf (1/1%)	Ni(Bphen) ₂ Br ₂ (1%)	LiCI (1 equiv)	34%
4	Pd(OAc) ₂ /dppf (5/6%)	Ni(Bphen) ₂ Br ₂ (5%)	LiCI (1 equiv)	60%
5	Pd(OAc) ₂ /dppf (1/1%)	Ni(Bphen) ₂ Br ₂ (5%)	LiCI (1 equiv)	30%
6	Pd(OAc) ₂ /dppf (5/6%)	Ni(Bphen) ₂ Br ₂ (1%)	LiCI (1 equiv)	55%
7	Pd(OAc) ₂ /dppf (2.5/3%)	Ni(Bphen) ₂ Br ₂ (2%)	KF (0.5 equiv)	26%
8	Pd(OAc) ₂ /dppf (2.5/3%)	Ni(Bphen) ₂ Br ₂ (2%)	KF (0.5 equiv), LiCl (1 equiv)	52%
9	Pd(OAc) ₂ /dppf (2.5/3%)	Ni(Bphen) ₂ Br ₂ (2%)	LiCI (1 equiv), DMAP (0.25 equiv)	41%

Figure S12. Screening experiments with *p*-tolyl trifluoromethanesulfonate (model aryl triflate). Yields were determined by ¹H NMR with CH_2Br_2 as an internal standard. Isolated yields are reported in italics.

Figure S13. Dual-ligand $C(sp^2)$ –P cross-coupling conditions under micellar catalysis conditions (more detailed Table 3 of the manuscript). *a*Yields determined by ¹H NMR using CH₂Br₂ internal standard. *b*Isolated yield. The reactions were performed using *General procedure B* with the following modifications: **c3** (2 equiv), Pd(OAc)₂ (5 mol %), P(*t*-Bu)₃.HBF₄ (10 mol %), 18 h at 50 °C. *d***3** (2 equiv), Pd[(P(*t*-Bu)₃]₂ (5 mol %), KOAc (0.5 equiv), 18 h at 50 °C. *d***3** (2 equiv), Pd[(P(*t*-Bu)₃]₂ (2.5 mol %), KOAc (0.5 equiv), 18 h at 50 °C. *d***3** (2 equiv), Pd[(P(*t*-Bu)₃]₂ (2.5 mol %), Pd(OAc)₂ (2.5 mol %), XantPhos (2.5 mol %). *s***3** (2 equiv), Pd(OAc)₂ (5 mol %), PCy₃.HBF₄ of PMe(*t*-Bu)₂.HBF₄ (10 mol %), 18 h at 50 °C. RSM = recovered starting material. ND = not detected.

Figure S14. Comparison of optimized reaction conditions for multimetallic and dual-ligand $C(sp^2)$ –P cross-coupling with an initial reaction condition using ppm-level catalysis. For the latter, General procedure A/B were used with the following modification. The catalysts were added into the reaction mixture as a stock solution (0.1 mL; the stock solution was prepared by combining 2.5 mol % Pd(OAc)₂, 2.5 mol % XantPhos, and 1 mol % Ni(phen)₃Cl₂ in 1.0 mL of 2 wt % TPGS-750-M in H₂O and stirring at laboratory temperature for 1 hour under Ar before use). Stock catalyst solutions containing Pd[P(*t*-Bu)₃]₂/Pd(OAc)₂/XantPhos and Pd XantPhos G3/ Ni(phen)₃Cl₂ were prepared in a similar manner. ^{*a*}Isolated yield. ^{*b*}Determined by ¹H NMR analysis with CH₂Br₂ as an internal standard. ^{*c*}1.2 equiv of **3**. RSM = recovered starting material.

Figure S15. Plausible mechanism for A) multimetallic and B) dual-ligand $C(sp^2)$ –P cross-coupling reactions. Please note, that acetates [supplied in Pd(OAc)₂] also affect the reaction performance; however, their exact role (*e.g.*, being bound to Pd centers and facilitating coordination of phosphorus nucleophiles) in the *micellar* $C(sp^2)$ –P coupling mechanism currently remains unclear. Please refer to refs. 23c-d and 23h for mechanistic studies on $C(sp^2)$ –P coupling *in organic solvents*.

Substrate Synthesis

The nickel catalyst used in this study, $Ni(phen)_3Cl_2$,¹ is a free-flowing, non-hygroscopic complex prepared simply by mixing 1,10-phenanthroline (3 equiv) with NiCl_2.6H₂O (1 equiv) in refluxing anhydrous methanol for 1 hour. After cooling to laboratory temperature, the resulting pink precipitate was filtered and thoroughly dried under high-vacuum to afford Ni(phen)₃Cl₂.

4-Iodophenyl trifluoromethanesulfonate (SI-1)

SI-1 was prepared according to a previously reported procedure from 4-iodophenol.²

4-Iodo-N,N-dimethylaniline (SI-2)

SI-2 was prepared according to a previously reported procedure from 4-iodoaniline.³

N,N-Dibenzyl-4-iodobenzenesulfonamide (SI-3)

SI-3 was prepared according to a previously reported procedure from 4-iodobenzenesulfonyl chloride and dibenzylamine.⁴

Ethyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-iodophenyl)propanoate (SI-4)

SI-4 was prepared according to a previously reported procedure from N-Boc-4-iodophenylalanine.⁵

Ethyl ((S)-2-((tert-butoxycarbonyl)amino)-3-(4-iodophenyl)propanoyl)-L-valinate (SI-5)

SI-5 was prepared according to the micellar COMU-mediated peptide coupling procedure.⁶ A test-tube was charged with *N*-Boc-4-iodophenylalanine (430 mg, 1.1 mmol), 2,6-lutidine (361 μ L, 3.1 mmol), 2 wt % TPGS-750-M in H₂O (2.0 mL) and a magnetic stir bar. After stirring at laboratory temperature for 5 minutes, L-valine ethyl ester hydrochloride (182 mg, 1.0 mmol) and COMU (471 mg, 1.1 mmol) were added to the

reaction mixture. The reaction mixture was stirrer at laboratory temperature for 16 hours. The reaction mixture was then extracted with EtOAc (3×4 mL). Combined organic extracts were washed with 1M aq. HCl (3×10 mL), sat. aq. NaHCO₃ (4×10 mL), sat. aq. K₂CO₃ (3×10 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford **SI-5** as a light-yellow solid (432 mg, 83%), containing trace amounts of TPGS-750-M but **SI-5** was used with no further purification in the C(sp²)–P cross-coupling reaction.

¹**H NMR (400 MHz, CDCl₃):** δ 7.58 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.45 (d, *J* = 8.4 Hz, 1H), 5.08 (d, *J* = 8.4 Hz, 1H), 4.42 (dd, *J* = 8.8, 4.8 Hz, 1H), 4.34–4.29 (m, 1H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.05–2.96 (m, 2H), 2.14–2.06 (m, 1H), 1.40 (s, 9H), 1.25 (t, *J* = 7.2 Hz, 3H), 0.87 (d, *J* = 6.8 Hz, 3H, overlapped), 0.85 (d, *J* = 6.8 Hz, 3H, overlapped) ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.4, 170.9, 137.7, 136.4, 131.5, 92.4, 70.7, 61.4, 57.3, 55.7, 37.7, 31.4, 28.4, 18.9, 17.8, 14.3 ppm;

HRMS (ESI-TOF) calc'd for C₂₁H₃₂O₅N₂I [M+H]⁺: 519.13504, found 519.13493.

Ethyl 2-(2-iodophenoxy)acetate (SI-6)

SI-6 was prepared according to a previously reported procedure from 2-iodophenol and ethyl 2-bromoacetate.⁷

 $0 CO_2Et$

Benzyl (2-iodophenyl)carbamate (6)

6 was prepared according to a modified procedure using 2-iodoaniline instead of 2-bromoaniline.⁸ To a solution of 2-iodoaniline (3.0 g, 13.7 mmol) and pyridine (2.4 mL, 16.5 mmol) dropwise at 0 °C. The reaction mixture was then allowed to warm to laboratory temperature and stirred for 2 hours. The reaction mixture was then diluted with H₂O (50 mL) and EtOAc (20 mL), organic phase was separated, washed with 1M aq. HCl (2×50 mL), sat. aq. NaHCO₃ (50 mL), dried over Na₂SO₄ and concentrated under reduced pressure. Hexane (~20 mL) was added to the residue and the mixture was then placed in a freezer (-28 °C) overnight. The formed precipitate was then filtered, washed with cold hexane (2×5 mL) and dried to afford **6** as an off-white solid (3.8 g, 79%).

Spectral data match previously reported results,⁹ and ¹H NMR data are provided here for convenience. ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, J = 8.0 Hz, 1H), 7.76 (dd, J = 8.0, 1.6 Hz, 1H), 7.45–7.31 (m, 6H), 7.02 (br s, 1H), 6.80 (ddd, J = 9.2, 7.6, 1.6 Hz, 1H), 5.23 (s, 2H) ppm.

Benzyl (2-bromophenyl)carbamate (SI-7)

Br

SI-7 was prepared according to a previously reported procedure from 2-bromoaniline.⁸

N-(2-iodophenyl)-4-toluenesulfonamide (SI-8)

SI-8 was prepared according to a previously reported procedure from 2-iodoaniline.¹⁰

2,2,2-Trifluoro-*N*-(2-iodophenyl)acetamide (SI-9)

SI-9 was prepared according to a previously reported procedure from 2-iodoaniline.¹¹

N-Benzyl-2-iodoaniline (SI-10)

SI-10 was prepared according to a previously reported procedure from 2-iodoaniline.¹² NHBn

tert-Butyl (2-iodophenyl)carbamate (SI-11)

SI-11 was prepared according to a previously reported procedure from 2-iodoaniline.¹³

NHBoc

Benzyl (5-chloro-2-iodophenyl)carbamate (SI-12)

SI-12 was prepared according to a modified Cbz-protection procedure.⁸ To a solution of 5-chloro-2-iodoaniline (1.014 g, 4.0 mmol) and pyridine (451 µL, **NHCbz** 5.6 mmol) in EtOAc (10 mL) was slowly added benzyl chloroformate (685 μ L, 4.8 mmol) dropwise at laboratory temperature. After 2 hours, the reaction was diluted with H₂O (20 mL) and EtOAc (25 mL), organic phase was separated, washed with 1M aq. HCl (2×20 mL), sat. aq. NaHCO₃ (20 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The solid residue was dissolved in minimal amount of CH_2Cl_2 (1 vol) and hexane was added (4 vol). Upon stirring, precipitate formed and was then filtered, washed with hexane $(2 \times 10 \text{ mL})$ and hexane/CH₂Cl₂ (5:1, 5 mL) and dried to afford SI-12 as a white solid (550 mg, 35%).

¹**H NMR (400 MHz, CDCl₃):** δ 8.19 (d, J = 2.4 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.45–7.35 (m, 5H), 7.03 (br s, 1H), 6.81 (dd, J = 8.4, 2.4 Hz, 1H), 5.30 (s, 2H) ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.0, 139.47, 139.43, 135.7, 135.6, 128.8, 128.7, 128.6, 125.2, 120.1, 67.7 ppm;

HRMS (ESI-TOF) calc'd for C₁₄H₁₁O₂NClINa [M+Na]⁺: 409.94152, found 409.94145.

N-(2-Fluoro-4-iodophenyl)benzamide (SI-13)

SI-13 was prepared according to a previously reported procedure from 2-fluoro-4iodoaniline.14

N-(4-Iodo-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pivalamide (SI-14)

SI-14 was prepared according to a previously reported procedure from N-(4iodophenyl)pivalamide.15

Iodide SI-15

SI-15 was prepared according to a previously reported procedure.¹⁶

tert-Butyl 3-iodo-1H-indole-1-carboxylate (SI-16)

AcH

SI-16 was prepared according to a previously reported procedure from 2-amino-5-iodopyridine.¹⁷

tert-Butyl 3-iodo-1H-indole-1-carboxylate (SI-17)

SI-17 was prepared according to a previously reported procedure from indole.¹⁸

JOCN

1-Tosyl-1*H*-pyrrolo[3,2-*b*]pyridine (SI-18)

SI-18 was prepared according to a previously reported procedure.¹⁹

6-Iodo-1-tosyl-1*H*-pyrrolo[3,2-*b*]pyridine (SI-19)

SI-19 was prepared according to a previously reported procedure from **SI-18**.²⁰

3-Iodo-1-tosyl-1*H*-pyrrolo[3,2-*b*]pyridine (SI-20)

SI-20 was prepared according to a previously reported procedure procedure.²¹

3-Iodo-1-tosyl-1*H*-pyrrolo[2,3-*b*]pyridine (SI-21)

SI-21 was prepared according to a previously reported procedure.²¹

Ethyl 6-iodoimidazo[1,2-*a*]pyridine-2-carboxylate (SI-22)

SI-22 was prepared according to a previously reported procedure.²²

2,5-Dichloro-N-(4-iodophenyl)pyrimidin-4-amine (SI-23)

SI-23 was prepared according to a previously reported micellar S_NAr procedure.²³ A test-tube was charged with 4-iodoaniline (110 mg, 0.5 mmol), K_3PO_4 ·H₂O (115 mg, 0.5 mmol) and a magnetic stir bar. Then 2 wt % TPGS-750-M in H₂O (1.0 mL) was added, followed by 2,4,5-trichloropyrimidine (114, 57.3 µL, 0.5 mmol), and the reaction mixture

was stirred at laboratory temperature for 24 hours. The reaction mixture was extracted by EtOAc $(3 \times \sim 1 \text{ mL})$ and combined organic extracts were concentrated under reduced pressure. The residue was purified by pTLC (hexane/EtOAc 7:2) to afford **SI-23** as an off-white solid (159 mg, 87%).

Spectral data match previously reported results, 24 and $^{1}H/^{13}C$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.25$ (hexane/EtOAc 4:1). Stain: UV active, KMnO₄;

¹H NMR (400 MHz, CDCl₃): δ 8.17 (s, 1H), 7.69–7.65 (m, 2H), 7.41–7.37 (m, 2H), 7.24 (bs, 1H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.1, 156.2, 154.8, 138.1, 136.7, 122.9, 113.9, 88.7 ppm;

Iodo-nimesulide SI-24

SI-24 was prepared according to a previously reported procedure from nimesulide.²⁵

Iodo-loratadine SI-25

SI-25 was prepared according to a previously reported procedure from loratadine.²⁰

SI-26 was prepared according to the micellar COMU-mediated peptide coupling procedure.⁶ A small vial was charged with 4-iodobenzoic acid (273 mg, 1.0 mmol), 2,6-lutidine (361 μ L, 3.1 mmol), 2 wt % TPGS-750-M in H₂O (4.0 mL), THF (0.5 mL) and a magnetic stir bar. After stirring at laboratory temperature for 5 minutes,

des-acetylketoconazole²⁶ (531 mg, 1.0 mmol) and COMU (471 mg, 1.1 mmol) were added to the reaction mixture. The reaction mixture was vigorously stirrer at 40 °C for 15 hours. Then the reaction mixture was extracted with EtOAc (3×10 mL). Combined organic extracts were washed with sat. aq.

 K_2CO_3 (6 × 10 mL), dried over MgSO₄ and concentrated under reduced pressure. The solid residue was purified by flash column chromatography (2.5% MeOH in EtOAc/CH₂Cl₂ 1:1 → 5% MeOH in CH₂Cl₂ \rightarrow 10% MeOH in CH₂Cl₂) to afford **SI-26** as a solid (597 mg) contaminated with traces of TPGS-750-M. The solid was further purified by dissolving in EtOAc (10 mL) and washing with dist. H₂O (3 × 10 mL), organic phase was dried over MgSO₄ and concentrated under reduced pressure to afford **SI-26** as an offwhite foamy solid (486 mg, 68%), containing traces of TPGS-750-M which is difficult to remove. Therefore; **SI-26** was used with no further purification in the C(sp²)–P cross-coupling reaction.

$\mathbf{R}_{f} = 0.26$ (5% MeOH in CH₂Cl₂). Stain: UV active, KMnO₄;

¹**H NMR (400 MHz, CDCl₃):** δ 7.76 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 1H), 7.50 (s, 1H), 7.45 (d, J = 2.0 Hz, 1H), 7.24 (dd, J = 8.4, 2.0 Hz, 1H), 7.16 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 9.2 Hz, 2H), 6.75 (d, J = 9.2 Hz, 2H), 4.48 (d, J = 14.8 Hz, 1H), 4.41 (d, J = 14.8 Hz, 1H), 4.34–4.30 (m, 1H), 3.88 (br s, 2H, overlapped), 3.87–3.83 (m, 1H, overlapped), 3.73–3.67 (m, 3H), 3.53 (br s, 1H), 3.26 (dd, J = 9.6, 6.8 Hz, 1H), 3.10 (br s, 2H), 2.99 (br s, 2H) ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.5, 153.1, 145.7, 138.9, 137.8, 135.9, 135.1, 134.7, 133.1, 131.4, 129.6, 128.9, 128.6, 127.3, 121.3, 118.9, 115.3, 108.1, 74.8, 70.6, 67.7, 67.6, 51.3, 51.1 (br, 2 × C), 47.9 (br), 42.4 (br) ppm;

HRMS (ESI-TOF) calc'd for C₃₁H₃₀O₄N₄Cl₂I [M+H]⁺: 719.06833, found 719.06810.

Iodo-strychnine SI-27

SI-27 was prepared according to a previously reported procedure from strychnine. $^{\rm 25}$

tert-Butyl (2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethyl)carbamate (SI-28)

SI-28 was prepared according to a modified procedure.²⁷ To a solution of 4-fluorothalidomide (207.2 mg, 0.75 mmol) in anhydrous dioxane (10 ml) was added *N*-Boc-ethylenediamine (130.6 μ L, 0.83 mmol) and (*i*-Pr)₂NEt (392.0 μ L, 2.25 mmol) under argon. The reaction mixture was heated at 100 °C for 17 hours under argon. The color of the reaction mixture

gradually changed from yellow to dark green. Then the reaction solution was then diluted with dist. H₂O (20 mL) and extracted with EtOAc (3 × 20 mL). The combined organic phases were washed with 10 wt % aq. citric acid (30 mL), sat. aq. NaHCO₃ (30 mL), brine (30 mL), dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flask column chromatography (hexane/EtOAc 1:1, $R_f = 0.25$, visible yellow spot, KMnO₄ stain) to afford **SI-28** as a yellow solid (103 mg, 33%). Spectroscopic data match previously reported results.²⁷

N-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethyl)-4-iodobenzamide (SI-29)

Trifluoroacetic acid (0.5 mL) was dropwise added to a solution of **SI-28** (103 mg, 0.25 mmol) in CH₂Cl₂ (2 mL) at 0 °C. The reaction mixture was then allowed to warm to laboratory temperature and stirred for 3 hours. The reaction progress was monitored by TLC. Upon completion, the reaction mixture was concentrated under

reduced pressure and co-evaporated with CH_2Cl_2 (2 × 1 mL) and toluene (2 × 1 mL). The crude product was used directly in the next step. To a solution of 4-iodobenzoic acid (72 mg, 0.29 mmol) and (*i*-Pr)₂NEt (217 µL, 1.25 mmol) in anhydrous DMF (5 mL) cooled at 0 °C under argon was added HATU (110 mg, 0.29 mmol) and the reaction was stirred at laboratory temperature for 1 hour. Then, a solution of the deprotected amine in anhydrous DMF (2 mL) was added dropwise over 1 min and the reaction mixture was stirred at laboratory temperature for 18 hours. The reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography (hexane/EtOAc 1:3) to afford **SI-29** as a yellow solid (128 mg, 94%).

 $\mathbf{R}_f = 0.50$ (hexane/EtOAc 1:3). Stain: UV active, visible yellow spot.

¹**H** NMR (600 MHz, CDCl₃/DMSO-*d*₆ ~ 5:1): δ 10.92 (s, 1H), 8.52 (s, 1H), 7.68 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 8.3 Hz, 2H), 7.43 (t, J = 7.2 Hz, 1H), 7.03 (d, J = 8.6 Hz, 1H), 6.95 (d, J = 7.0 Hz, 1H), 6.6 (s, 1H), 4.87 (dd, J = 12.6, 5.4 Hz, 1H), 3.49 (s, 4H), 2.76–2.59 (m, 4H) ppm; ¹³C{¹H} NMR (151 MHz, CDCl₃/DMSO-*d*₆ ~ 5:1): δ 171.8, 169.0, 168.6, 166.9, 166.5, 146.1, 136.7, 135.5, 133.5, 132.0, 128.7, 116.3, 110.5, 109.6, 97.7, 48.3, 41.1, 38.8, 31.0, 22.13 ppm; HRMS (ESI-TOF) calc'd for C₂₂H₂₀O₅N₄I [M+H]⁺: 547.04729, found 547.04680.

Quinolin-6-yl trifluoromethanesulfonate (SI-30)

SI-30 was prepared according to a previously reported procedure.²⁸

SI-32 was prepared according to a previously reported procedure.³⁰

Quinolin-8-yl trifluoromethanesulfonate (SI-31)

SI-31 was prepared according to a previously reported procedure.²⁹

Triflate SI-32

S-(2-hydroxyethyl) 2,2-dimethylpropanethioate (109)

HO SPiv 109 was prepared according to a previously reported procedure.³¹

Bis-SATE *H*-phosphonate 74

S-(2-Hydroxyethyl) 2,2-dimethylpropanethioate (**109**, 2.0 g, 12.33 mmol) was added dropwise to diphenyl *H*-phosphonate (**108**, 1.19 mL, 5.60 mmol, technical grade) at room temperature under argon, followed by the addition of anhydrous pyridine (993 μ L, 12.33 mmol). The reaction mixture was stirred at laboratory

temperature for 24 hours. Purification by flash column chromatography (hexane/EtOAc $3:1 \rightarrow 1:1$) afforded 74 as a colorless oil (1.794 g, 86%).

Spectral data match previously reported results, 32 and $^{1}H^{/31}P$ NMR data are provided here for convenience.

¹**H** NMR (400 MHz, CDCl₃): δ 6.86 (d, J_{P-H} = 708.0 Hz, 1H), 4.20–4.08 (m, 4H), 3.14 (t, J = 6.8 Hz, 4H), 1.23 (s, 18H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 7.63 ppm.

6-Azidohexyl ethyl H-phosphonate (83)

A solution of 6-azidohexan-1-ol (425.3 μ L, 3.0 mmol) and pyridine (604.1 μ L, 7.5 mmol) in anhydrous dioxane (5 mL) was slowly added dropwise to a solution of ethyl dichlorophosphite (342.8 μ L, 3.0 mmol)

in anhydrous dioxane (3 mL) at 0 °C under argon. The reaction mixture was then allowed to warm to laboratory temperature and stirred for 1.5 hours. Dist. H₂O (59.4 μ L, 3.3 mmol) in dioxane (3 mL) was added dropwise into the reaction mixture which was then stirred for additional 30 minutes at laboratory temperature. Resulting reaction mixture with white precipitate was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc 1:1) to afford **83** as a colorless oil (317 mg, 45%). Efforts to further purify **83** by chromatography failed due to its decomposition on silica gel.

 $\mathbf{R}_{f} = 0.25$ (hexane/EtOAc 1:1). Stain: KMnO₄;

¹**H NMR (400 MHz, CDCl₃):** δ 6.79 (d, *J*_{P-H} = 693.0 Hz, 1H), 4.17–4.01 (m, 4H), 3.25 (t, *J* = 6.8 Hz, 2H), 1.73–1.53 (m, 4H), 1.40 (m, 4H), 1.34 (t, *J* = 7.1 Hz, 3H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 7.54 ppm;

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 65.6 (d, J = 6.2 Hz), 61.9 (d, J = 5.8 Hz), 51.37, 30.3 (d, J = 6.2 Hz), 28.8, 26.3, 25.2, 16.4 (d, J = 6.2 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₈H₁₈O₃N₃NaP [M+Na]⁺: 258.09780, found 258.09776.

Note: Compound **83** decomposes during column chromatography and pTLC so we advise to perform its purification rapidly and store **83** in a refrigerator.

H-phosphonate 85

Ethyl dichlorophosphite (143 µL, 1.25 mmol) was added to anhydrous dioxane (1.5 ml) and anhydrous THF (2.0 ml) under argon and the resulting mixture was cooled to -20 °C. To this mixture, a solution of AZT (334.1 mg, 1.25 mmol) and anhydrous pyridine (252 µL, 3.13 mmol) in anhydrous dioxane (2.5 mL) and anhydrous THF (2.0 mL) was added dropwise over 10 minutes. The reaction mixture

was then allowed to warm to laboratory temperature and stirred for 1 hour. Dist. H₂O (25 μ L, 38 mmol) in THF (1.5 mL) was then added dropwise and the reaction was stirred at laboratory temperature for 40 minutes. The reaction mixture was concentrated under reduced pressure, the residue was dissolved in CH₂Cl₂ (15 mL), washed with 1M aq. HCl (10 mL), brine (10 mL), dried over MgSO₄ and reduced pressure. Purification by flash concentrated under column chromatography $(CH_2Cl_2 \rightarrow CH_2Cl_2/EtOAc 3:2)$ afforded 85 as a colorless oil (309 mg, 69%) as a mixture of diastereomers in 1:1.1 ratio (determined by ³¹P NMR).

 $\mathbf{R}_{f} = 0.33$ (DCM/EtOAc 1:2). Stain: UV active, KMnO₄;

¹H NMR (mixture of diastereoisomers, 400 MHz, CDCl₃): δ 9.38 (br s, 2H), 6.92* and 6.91* $(2 \times d, 2 \times J = 705.0 \text{ Hz}, 2 \times 1\text{H}), 7.35 \text{ (dd, } J = 11.2, 1.2 \text{ Hz}, 2\text{H}), 6.18 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 6.18 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 6.18 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 6.18 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 6.18 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 6.18 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 6.18 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 6.18 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 6.18 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 6.18 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 6.18 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 6.18 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{H}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}, 2\text{Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz}), 7.35 \text{ (td, } J = 6.5, 2.7 \text{ Hz$ 4.38-4.15 (m, 10H), 4.04-4.00 (m, 2H), 2.48-2.32 (m, 4H), 1.93 and 1.92 (s, 2 × 3H), 1.37 (td, J = 7.1, 2.6 Hz, 6H) ppm;

³¹P{¹H} NMR (mixture of diastereoisomers, 162 MHz, CDCl₃): δ 8.38* and 7.84* ppm;

¹³C{¹H} NMR (mixture of diastereoisomers, 100 MHz, CDCl₃): δ 163.9, 150.4, 135.4 (d, J = 12.6 Hz), 111.7 (d, J = 5.6 Hz), 85.23* and 85.21*, 82.29* and 82.28* (2 × d, 2 × J = 6.6 Hz), 64.35* and 64.25* (2 × d, 2 × J = 5.6 Hz), 62.86* and 62.81* (2 × d, 2 × J = 5.1 Hz), 60.1 (d, J = 1.6 Hz), 37.5 (d, J = 3.3 Hz), 16.4 (d, J = 5.8 Hz), 12.5 (d, J = 2.8 Hz) ppm;HRMS (ESI-TOF) calc'd for C₁₂H₁₉O₆N₅P [M+H]⁺: 360.10675, found 360.10668.

Note: ¹³C signals were only tentatively assigned to each of the diastereomers, which are difficult to distinguish.

Ethyl ethyl-H-phosphinate (87)

Prepared according to a modified previously reported procedure.³³ A flame-dried round H^{∽^Ř∕_OEt} bottom flask with a magnetic stir bar was charged with P(OEt)₃ (10.0 mL, 58.0 mmol) and anhydrous THF (50 mL) under argon. Then EtMgBr (3.0M in Et₂O, 19.3 mL, 58.0 mmol) was added dropwise over 10 minutes at laboratory temperature. The reaction mixture was heated at 65 °C over 4 hours and then, upon cooling to laboratory temperature, quenched by slowly adding 6M aq. HCl (~12 mL) and pH was adjusted to 2. The reaction mixture was then concentrated under reduced pressure to remove THF. The resulting oily residue was dissolved in CH₂Cl₂ (100 mL) and washed with dist. H₂O (2 \times 60 mL). The organic phase was dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by short-path vacuum distillation and the fractions containing the product (100-130 °C/25 mbar) were combined to afford 87 as a colorless liquid (1.558 g, 22%).

Spectral data match the previous report³³ and the ¹H/³¹P NMR data are provided here for convenience. ¹H NMR (400 MHz, CDCl₃): δ 7.01 (d, J_{P-H} = 528.0 Hz, 1H), 4.18–3.98 (m, 2H), 1.79–1.68 (m, 2H), 1.34–3.30 (m, 3H), 1.16–1.07 (m, 3H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 40.73 ppm.

Di-n-butyl H-thiophosphonate (94)

S H $\stackrel{\bullet}{}$ \stackrel

The compound **94** has been previously prepared and described in multiple reports,³⁴ and ${}^{1}H/{}^{31}P/{}^{13}C$ NMR data are provided here for convenience.

 $\mathbf{R}_{f} = 0.14$ (hexane). Stain: KMnO₄;

¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, $J_{P-H} = 648.0$ Hz, 1H), 4.14–4.00 (m, 4H), 1.66 (quintet, J = 8.0 Hz, 4H), 1.40 (sextet, J = 7.6 Hz, 4H), 0.93 (t, J = 7.2 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 69.93 ppm;

 ${}^{12}P{}^{1}H{}$ NMR (102 MHz, CDCl₃): 0 09.95 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 66.1 (d, J = 7.0 Hz), 32.3 (d, J = 7.1 Hz), 18.9, 13.7 ppm.

General Procedures

Preparation of the TPGS-750-M stock solution

TPGS-750-M (2 wt %) was weighted into a larger vial to which a rod-shape magnetic stirring bar was added. The vial was capped with a septum and evacuated/back-filled with Ar three times and fitted with an Ar balloon. HPLC-grade water (98 wt %), previously degassed by sparging Ar while sonicating for at least 1 hour, was then added using a syringe. The contents of the flask were then vigorously stirred at room temperature under Ar for >6 hours (overnight at larger scales), forming a homogenous solution. The TPGS-750-M solution can be used for at least 1 week if kept under argon atmosphere.

General procedure A (Conditions A, *multimetallic* C(sp²)–P cross-coupling)

A test tube or a small vial containing aryl iodide/bromide (0.25 mmol, if solid), H–P(O) compound (0.50 mmol, if solid), Pd(OAc)₂ (1.4 mg, 6.25 µmol, 2.5 mol %), XantPhos (3.6 mg, 6.25 µmol, 2.5 mol %), Ni(phen)₃Cl₂ (1.7 mg, 2.50 µmol, 1 mol %), nano Zn powder (8.1 mg, 0.125 mmol) and LiBr (21.7 mg, 0.25 mmol) and a magnetic stirring bar was capped with a septum, evacuated/back-filled with argon three times and fitted with an Ar balloon. Then, degassed EtOAc (0.1 mL, degassed by bubbling Ar for at least 15 minutes) and 2 wt % aqueous solution of TPGS-750-M (0.5 mL) were added. Lastly, under positive Ar pressure, the vial was quickly opened and aryl iodide/bromide (0.25 mmol, if liquid), 2,6-lutidine (58.0 µL, 0.50 mmol), and H-P(O) compound (0.50 mmol, if liquid) were added using a micropipette. The vial was capped with the septum again, sealed with electrical tape, and placed in a pre-heated oil bath set at 40-45 °C and 850 rpm (both temperature and vigorous stirring are crucial for the reaction; splashing and depositing of solids on walls may result in incomplete conversion). After 15 hours, the reaction mixture was diluted with 1M aq. HCl (~1 mL), except for compounds containing basic functional groups, and extracted with EtOAc ($3 \times -1-2$ mL). Combined organic extracts were evaporated to dryness (40 °C, <30 mbar). If required, excess 2,6-lutidine and 3 can be removed under high vacuum (b.p.(2,6-lutidine, atm. pressure) = 143-145 °C, b.p.(3, atm. pressure) = 187-188 °C). The crude products were analyzed by ¹H/³¹P NMR using CH₂Br₂ as an internal standard and/or directly purified by chromatography.

General procedure B (Conditions B, *dual-ligand* C(sp²)–P cross-coupling)

A test tube or a small vial containing aryl iodide/bromide (0.25 mmol, *if solid*), H–P(O) compound (0.50 mmol, *if solid*), Pd[P(*t*-Bu)₃]₂ (3.2 mg, 6.25 µmol, 2.5 mol %), Pd(OAc)₂ (0.6 mg, 2.50 µmol, 1 mol %), XantPhos (1.4 mg, 2.50 µmol, 1 mol %) and LiBr (21.7 mg, 0.25 mmol) and a magnetic stirring bar was capped with a septum, evacuated/back-filled with argon three times and fitted with an Ar balloon. Then, degassed EtOAc (0.1 mL, degassed by bubbling Ar for at least 15 minutes) and 2 wt % aqueous solution of TPGS-750-M (0.5 mL) were added. Lastly, under positive Ar pressure, the vial was quickly opened and aryl iodide/bromide (0.25 mmol, *if liquid*), 2,6-lutidine (58.0 µL, 0.50 mmol), and H–P(O) compound (0.50 mmol, *if liquid*) were added using a micropipette. The vial was capped with the septum again, sealed with electrical tape, and placed in a pre-heated oil bath set at 40-45 °C and 850 rpm (both temperature and vigorous stirring are *crucial* for the reaction; splashing and depositing of solids on walls may result in incomplete conversion). After 15 hours, the reaction mixture was diluted with 1M aq. HCl (~1 mL), *except for compounds containing basic functional groups*, and extracted with EtOAc (3 × ~1-2 mL). Combined organic extracts were evaporated to dryness (40 °C, <30 mbar). If required, excess 2,6-lutidine and **3** can be removed under high vacuum (b.p.(2,6-lutidine, atm. pressure)

= 143-145 °C, b.p.(3, atm. pressure) = 187-188 °C). The crude products were analyzed by ${}^{1}H/{}^{31}P$ NMR using CH₂Br₂ as an internal standard and/or directly purified by chromatography.

Minor modifications are indicated in the procedures for each substrate. These modifications most commonly involve performing the reaction at a higher dilution (*e.g.*, 0.25 mmol of substrate in 1.0 mL of 2 wt % TPGS-750-M in H₂O and 0.2 mL EtOAc) to improve solubilization, using 1.2 equivalents of **3** (instead of 2 equivalents), using 3 equivalents of 2,6-lutidine (instead of 2 equivalents), and heating at 50-55 °C (instead of 40-45°C).

Common Questions and Troubleshooting

How do I monitor the reaction?

Micellar C(sp²)–P cross-coupling reactions can be monitored by standard TLC and (preferably) LC-MS analysis as the products are readily protonated in conventional electrospray ion sources.

How do I choose between Conditions A and Conditions B?

With the current knowledge of the catalytic systems, the choice is mostly empirical. Conditions A provided good yields across a wide range of substrates and phosphorus nucleophiles. Moreover, under Conditions A, reactions with heteroaryl halides and cross-couplings with 97 performed better than under Conditions B. We suggest using Conditions B for the reactions of aryl bromides, *ortho*-substituted iodobenzenes, and 98. When conversion is low, increasing the reaction temperature to 55 °C may be helpful. In a few cases (*e.g.*, cross-coupling reactions of 50 and 51 with 3 and 3-iodo-7-azaindole derivative SI-21 with 98), we observed virtually quantitative catalytic transfer hydrogenation, affording the corresponding Ar–H by-products. All our attempts to avoid this side-reactions have failed so far.

How do I select the reaction volume?

In most cases, we run 0.25-mmol scale reactions in 0.5 mL of 2 wt %TPGS-750-M in H₂O and 0.1 mL of EtOAc (0.42M concertation of the substrate). However, highly crystalline substates (*e.g.*, 1-nitro-4-nitrobenzene, 4-iodopyridine) and/or with a mass exceeding approximately 100 mg (at 0.25 mmol scale) do not readily dissolve. Instead, they tend to stick to the walls, ultimately decreasing the reaction conversion and yield. In these cases, we suggest decreasing the concentration to 0.21M by using 1.0 mL of 2 wt % TPGS-750-M in H₂O and 0.2 mL of EtOAc and/or increasing the reaction temperature to 55 °C to facilitate solubilization. Alternatively, other co-solvents may be used, such as *n*-butanol, which outperformed EtOAc in difficult C(sp²)–P cross-coupling reactions (data not included in this manuscript).

How do I purify the product?

The C(sp²)–P cross-coupling products can be isolated by standard flash column chromatography or pTLC using short-wave UV light and/or KMnO₄ stain for visualization. If needed, trace amounts of **3** or 2,6-lutidine can be removed under high vacuum (b.p.(2,6-lutidine, atm. pressure) = 143-145 °C, b.p.(**3**, atm. pressure) = 187-188 °C).

How do I isolate highly polar aryl dimethyl phosphine oxide products?

Cross-coupling reactions with dimethylphosphine oxide (98) afford highly polar phosphine oxides, which are also considerably soluble in water, thereby decreasing the isolated yields, in some cases, upon EtOAc extraction during work-up. Instead of extraction, we suggest subjecting the entire reaction mixture to preparative C8 or C18 HPLC.

Does the reaction work with no surfactant?

In some cases, the reaction still works with no surfactant (*i.e.*, "on-water"), albeit with low yields, depending on the substrate.

Can I increase the reaction temperature above 55 °C?

We run micellar $C(sp^2)$ –P cross-coupling reactions with **98** at 60 °C to increase reaction conversion rates and yields. However, temperatures ranging from 45 to 55 °C are most often sufficient for this purpose. Some reactions worked efficiently even at room temperature (15-20 °C). When using PEG-containing surfactants (including TPGS-750-M), increasing the reaction temperature above a specific temperature (approximately 75 °C for TPGS-750-M) weakens hydrogen bonds between the PEG chains and water, eventually precipitating the surfactant.

Is the micellar $C(sp^2)$ –P cross-coupling scalable?

Yes, we have included 3 examples of reactions performed at larger scales (see the corresponding section below). The scale-up experiments were performed with no modifications to the used General procedures.

What are the current limitations of this methodology in terms of scope?

Our method showed a broad substrate scope and functional group-tolerance. However, we encountered some limitations. In particular, *ortho*-substituted iodobenzenes bearing OH, NH₂, NO₂ and CO₂H groups provided phosphonate products in poor yields (<20% by ¹H NMR with CH₂Br₂ as an internal standard). Similarly, 2-iodopyridine and 2-iodopyrazine afforded no cross-coupling products. Despite affording the target products in serviceable yields (40-86%), cross-coupling reactions with some phosphorus nucleophiles (**87**, **97**, and **98**) still require further optimization to reach their full efficiency. Nevertheless, the recently reported surfactant Savie,³⁵ which enhances the efficiency of many transformations under micellar conditions in water, may enable us to perform C(sp²)–P cross-coupling reactions at higher temperatures, at which the TPGS-750-M surfactant reaches its cloud point. These more forcing conditions may be the key to efficient cross-coupling reactions with poorly reactive (hetero)aryl halides and with strongly coordinating phosphorus nucleophiles (such as **87**, **97**, and **98**), and our laboratory is actively pursuing this line of research.

Calculation of PMI Values and E Factors and Comparison With Those of Literature Procedures

Densities (at 25 °C): EtOAc 0.897 g/mL; THF 0.889 g/mL; MeCN 0.796 g/mL; toluene 0.867 g/mL; Et₂O 0.713 g/mL; 1,4-dioxane 1.033 g/mL, CH₂Cl₂ 1.326 g/mL; water 1.0 g/mL.

Phosphonate 6

Comparison with literature (ref. 36 from the main text, J. Am. Chem. Soc. 1990, 4324):

$$PMI = \frac{0.448 + (0.378 + 0.303) + (0.313) + (5.0 \times 0.796) + (10.0 \times 1.0) + (mass of waste_{extraction})}{0.480} = \frac{15.422}{0.480} = 32.1 \ g \ g^{-1} \ (see \ note)$$

$$E \ factor \ (exc. \ extration) = \frac{(5.0 \times 0.796) + (10.0 \times 1.0)}{0.480} = 29.1$$

$$E \ factor \ (inc. \ extration) = \frac{(5.0 \times 0.796) + (10.0 \times 1.0) + (mass \ of \ waste_{extraction})}{0.480} = not \ determined^*$$

*Volumes of benzene and Et2O used for extractions were not disclosed. Thus, the actual PMI is higher.

Comparison with literature (ref. 25b from the main text, J. Org. Chem. 2006, 5020):

$$PMI = \frac{0.2180 + (0.1519 + 0.6516) + (0.0191 + 0.0461) + (3.0 \times 0.867) + (10.0 \times 0.713)}{0.1552} = \frac{10.8177}{0.1552} = 69.7 \ g \ g^{-1}$$
$$E \ factor = \frac{(3.0 \times 0.867) + (10.0 \times 0.713)}{0.1552} = 62.7$$

Comparison with literature (Angew. Chem. Int. Ed. 2017, 12718):

$$PMI = \frac{0.0463 + (0.0138 + 0.0152) + (0.0011 + 0.0043) + (0.8 \times 1.033) + (1.0 \times 1.326)}{0.0219} = \frac{2.2331}{0.0219} = 102.0 \ g \ g^{-1}$$
$$E \ factor = \frac{(0.8 \times 1.033) + (1.0 \times 1.326)}{0.0219} = 98.3$$

Phosphonate 28

$$PMI = \frac{0.1048 + (0.0691 + 0.0536 + 0.0081 + 0.0217) + (0.0014 + 0.0036 + 0.0017) + (3.1 \times 0.897) + (0.5 \times 1.0)}{0.0940} = \frac{3.5447}{0.0940} = 37.7 \ g \ g^{-1}$$

$$E \ factor \ (inc. water, exc. \ extration) = \frac{(0.1 \times 0.897) + (0.5 \times 1.0)}{0.0940} = 6.3$$

$$E \ factor \ (inc. water \ and \ extration) = \frac{(3.1 \times 0.897) + (0.5 \times 1.0)}{0.0940} = 34.9$$

Comparison with literature (ref. 45, Tetrahedron Lett. 2007, 4051):

$$PMI = \frac{2.4 + (1.2 + 1.2) + (0.1982) + (100 \times 0.796) + (250 \times 1.0) + (100 \times 0.897)}{2.1} = \frac{424.298}{2.1} = 202.0 \ g \ g^{-1}$$
$$E \ factor \ (exc. \ extration \ workup) = \frac{(100 \times 0.796)}{2.1} = 37.9$$
$$E \ factor \ (inc. \ extration \ workup) = \frac{(100 \times 0.796) + (250 \times 1.0) + (100 \times 0.897)}{2.1} = 199.7$$

Phosphonate 7

Phosphonate 77

Phosphonate 80

ICP Analysis

Measuring procedure

Analysis was conducted at IOCB Prague, The Czech Republic, using inductively coupled plasma optical emission spectroscopy (ICP-OES) with electrothermal vaporization of sample (ETV). Samples were accurately weighed (weighing accuracy 1 μ g, single dose about 1 -2 mg) into graphite boats and inserted into a graphite furnace of the ETV unit (ETV 4000c, Spectral Systems, Fürstenfeldbruck, Germany), where a predefined temperature program was run. The temperature program consisted of a pyrolytic phase (45 s, Tmax 550 °C), fast heating phase (5 s, 2200°C) and a prolonged evaporating phase (15 s, 2200 °C). The analytes evaporated and were transferred to plasma, and the emitted characteristic radiation was processed with the ICP-OES spectrometer (SPECTRO Arcos SOP, SPECTRO Analytical Instruments, Kleve, Germany). Four analytical lines of nickel and five lines of palladium with different sensitivity were observed and evaluated according to measured concentration. Samples were analyzed at minimum in duplicate, more measurements were carried out when sufficient amount of material was available. Calibration was performed with standard aqueous solutions in range from 0 to 0,2 μ g/kg absolute quantity (prepared from certified solutions (Analytika s r.o., Prague, The Czech Republic)) depending on the content of analytes in the sample and the sensitivity of their analytical lines. LODs were up to 0.01 mg/kg for Pd and 0.002 mg/kg for Ni.

Optical emission spectrometry with inductively coupled plasma and electrothermal vaporization (ETV-ICP-OES)

Method principle: Electrothermal vaporization represents an alternative way of sample introduction to ICP-OES. The sample is weighted into graphite boats and inserted into a graphite furnace. In the furnace, sample is heated according to chosen temperature program up to a maximum of $3000 \,^{\circ}$ C. During this heating the sample decomposes and analytes evaporate. A small amount of CCl_2F_2 (2 ml/min) is added to the furnace during heating to transform elements into their more volatile compounds. A stream of argon flows through the furnace, carrying vapors and dry aerosol to a high-temperature plasma.

Unlike in the common ICP-OES, when ETV is used, element's signal is not constant during the analysis (compounds evaporate at different temperatures and therefore at different moments) and therefore transient signal needs to be recorded.

Electrothermal vaporization improves limits of detection of ICP-OES (up to units of $\mu g/kg$ in the material itself), lowers sample consumption and enables analysis without sample preparation. Another advantage is removal of interferences by optimization of temperature program so that interfering elements evaporate at different moments.

Depending on sample type and content of elements to be determined, one analysis needs 0.5-5 mg of sample. Analysis of such small amounts brings higher demands on sample homogeneity.

Results of the Pd and Ni ICP analysis

Compound 79

ci	
	0 Pa o (P
	O <i>i</i> -Pr O <i>i</i> -Pr

	Calculated 26-Sep-23 12:19:31 PM				
sample mass (mg)				1.362	1.478
Integration Window	Unit	Mean	Rsd	- 2 -	- 1 -
Ni-231.604-53	mg/kg	4.81	0.69	4.83	4.78
Ni-232.003-54	mg/kg	4.61	1.69	4.66	4.55
Pd-324.270-54	mg/kg	50.6	2.7	51.5	49.6
Pd-340.458-54	mg/kg	51.1	3.23	52.2	49.9
Pd-344.140-54	mg/kg	48.4	0.94	48.1	48.8
Pd-360.955-54	mg/kg	51.4	0.25	51.5	51.3

Compound 102

	O II Me
--	---------------

	Calculated 26-Sep-23 12:20:16 PM				
sample mass (mg)				1.651	1.823
Integration Window	Unit	Mean	Rsd	- 2 -	- 1 -
Ni-231.604-53	mg/kg	0.366	2.83	0.358	0.373
Pd-324.270-54	mg/kg	36.8	9.04	34.4	39.1
Pd-340.458-54	mg/kg	36.9	9.05	34.5	39.2
Pd-344.140-54	mg/kg	33.6	8.02	31.7	35.5
Pd-360.955-54	mg/kg	34.5	8.99	32.3	36.7
Pd-324.270-54 Pd-340.458-54 Pd-344.140-54 Pd-360.955-54	mg/kg mg/kg mg/kg mg/kg	36.8 36.9 33.6 34.5	9.04 9.05 8.02 8.99	34.4 34.5 31.7 32.3	39.1 39.2 35.5 36.7

Compound 66

CI	
HN	о Ш
	P,−OEt OEt

	Calculated 26-Sep-23 12:21:16 PM						
sample mass (mg)		1.818 1.458					
Integration Window	Unit	Mean	Rsd	- 2 -	- 1 -		
Ni-174.828-53	mg/kg	11.1	47.22	7.39	14.8		
Ni-231.604-53	mg/kg	11	61.94	6.15	15.7		
Pd-344.140-54	mg/kg	67.9	3.83	69.7	66.1		

Compound 81

	Calculated 26-Sep-23 12:21:40 PM				
sample mass (mg)				1.471	1.247
Integration Window	Unit	Mean	Rsd	- 2 -	- 1 -
Ni-231.604-53	mg/kg	0.897	21.38	1.03	0.761
Pd-324.270-54	mg/kg	14.1	23.92	16.5	11.7
Pd-340.458-54	mg/kg	14.1	23.84	16.5	11.8
Pd-344.140-54	mg/kg	14.6	18.17	16.4	12.7
Pd-360.955-54	mg/kg	13.8	22.28	16	11.6

C(sp²)–P Cross-Coupling Products

Diethyl *p*-tolylphosphonate (5)

Prepared according to General procedure A using 4-iodotoluene (2, 54.5 mg, 0.25 mmol) and diethyl *H*-phosphonate (3, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 1:1) to afford 5 as a viscous light-yellow oil (55.0 mg, 96%).

Spectral data match previously reported results, 36 and ${}^{1}\text{H}/{}^{31}\text{P}$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.20$ (hexane/EtOAc 1:1). Stain: UV active, KMnO₄;

¹**H NMR (400 MHz, CDCl₃):** δ 7.72–7.67 (m, 2H), 7.28–7.25 (m, 2H), 4.17–4.00 (m, 4H), 2.39 (s, 3H), 1.31 (t, *J* = 6.8 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 19.54 ppm.

Benzyl (2-(diethoxyphosphoryl)phenyl)carbamate (7)

Prepared according to General procedure A using benzyl (2-iodophenyl)carbamate (6, 88.3 mg, 0.25 mmol) and diethyl *H*-phosphonate (3, 38.6 μ L, 0.30 mmol). The crude product was purified by pTLC (hexane/EtOAc 2:1) to afford 7 as a viscous light-yellow oil (85.0 mg, 94%).

The compound has been prepared previously;³⁷ however, no spectral data has been reported yet. $\mathbf{R}_f = 0.43$ (hexane/EtOAc 2:1). Stain: UV active, KMnO₄;

¹**H** NMR (400 MHz, CDCl₃): δ 10.05 (s, 1H), 8.37 (t, *J* = 7.2 Hz, 1H), 7.59–7.50 (m, 2H), 7.43–7.41 (m, 2H), 7.37–7.29 (m, 3H), 7.09–7.05 (m, 1H), 5.21 (s, 2H), 4.19–3.99 (m, 4H), 1.31 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 19.46 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.6, 142.9 (d, J = 7.1 Hz), 136.3, 134.1 (d, J = 2.0 Hz), 132.6 (d, J = 6.1 Hz), 128.5, 128.3, 128.2, 122.2 (d, J = 14.1 Hz), 119.3 (d, J = 12.1 Hz), 113.3 (d, J = 179.0 Hz), 66.8, 62.6 (d, J = 6.1 Hz), 16.3 (d, J = 7.1 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₁₈H₂₃O₅NP [M+H]⁺: 364.13084, found 364.13063.

7 was also prepared according to General procedure B using benzyl (2-bromophenyl)carbamate (SI-7, 76.5 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The reaction was performed at 55 °C. The crude product was purified by pTLC (hexane/EtOAc 2:1) to afford 7 as a light-yellow oil (41.0 mg, 45%). General procedure A using SI-7 and 3 afforded no product (96% RSM by ¹H NMR with CH₂Br₂ as an internal standard).

Diethyl (2-methoxyphenyl)phosphonate (9)

Prepared according to General procedure B using 2-iodoanisole (32.5 μ L, 58.5 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 38.6 μ L, 0.30 mmol). The crude product was purified by pTLC (hexane/EtOAc 2:1) to afford **9** as a light-yellow oil (61.0 mg, 99%).

Spectral data match previously reported results, 38 and $^{1}H/^{31}P$ NMR data are provided here for convenience.
$\mathbf{R}_f = 0.45$ (hexane/EtOAc 2:1). Stain: UV active;

¹**H** NMR (400 MHz, CDCl₃): δ 7.81 (ddd, J = 14.8, 7.6, 1.6 Hz, 1H), 7.52–7.48 (m, 1H), 7.01 (ddd, J = 7.6, 3.6, 1.2 Hz, 1H), 6.96–6.92 (m, 1H), 4.23–4.07 (m, 4H), 3.90 (s, 3H), 1.33 (t, J = 6.8 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 17.17 ppm.

Diethyl (4-methoxyphenyl)phosphonate (10)

Prepared according to General procedure A using 4-iodoanisole (58.5 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 38.6 μ L, 0.30 mmol). The crude product was purified by pTLC (hexane/EtOAc 2:3) to afford **10** as a light-yellow oil (55.0 mg, 90%).

Spectral data match previously reported results,³⁶ and ${}^{1}\text{H}/{}^{31}\text{P}$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.40$ (hexane/EtOAc 2:3). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 7.77–7.71 (m, 2H), 6.97–6.94 (m, 2H), 4.16–3.99 (m, 4H), 3.84 (s, 3H), 1.30 (t, *J* = 6.8 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 19.71 ppm.

10 was also prepared according to General procedure B using benzyl 4-bromoanisole (31.4 μ L, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The reaction was performed at 55 °C. The crude product was purified by pTLC (hexane/EtOAc 2:3) to afford **10** as a light-yellow oil (29.0 mg, 47%).

Diethyl (4-hydroxyphenyl)phosphonate (11)

Prepared according to General procedure A using 4-iodophenol (55.0 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 1:4) to afford **11** as a light-yellow solid (38.0 mg, 66%).

Spectral data match previously reported results, 38 and $^{1}H^{/31}P$ NMR data are provided here for convenience.

 $\mathbf{R}_{f} = 0.20 - 0.25$ (hexane/EtOAc 1:4). Stain: UV active, KMnO₄;

¹**H NMR (400 MHz, CDCl₃):** δ 7.60–7.54 (m, 2H), 6.89–6.86 (m, 2H), 4.09–3.93 (m, 4H), 2.39 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 21.01 ppm.

4-(Diethoxyphosphoryl)phenyl acetate (12)

Prepared according to General procedure B using 4-iodophenyl acetate (65.5 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 1:1) to afford **12** as a light-brown oil (68.0 mg, 99%).

Spectral data match previously reported results,³⁹ and ${}^{1}\text{H}/{}^{31}\text{P}$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.34$ (hexane/EtOAc 1:1). Stain: UV active;

¹H NMR (400 MHz, CDCl₃): δ 7.86–7.80 (m, 2H), 7.21–7.18 (m, 2H), 4.19–4.02 (m, 4H), 2.31 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 17.89 ppm.

Diethyl (4-aminophenyl)phosphonate (13)

Prepared according to modified General procedure B using 4-iodoaniline (54.8 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), Pd[P(*t*-Bu)₃]₂ (6.6 mg, 12.5 μ mol), KOAc (12.5 mg, 0.125 mmol), LiBr (21.7 mg, 0.25 mmol), 2,6-lutidine (58.0 μ L, 0.50 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL).

The reaction was performed at 60 °C. The crude product was purified by pTLC (7% MeOH in CH_2Cl_2) to afford **13** as a white solid (34.0 mg, 59%).

Spectral data match previously reported results, 38 and $^1\mathrm{H}/^{31}\mathrm{P}$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.43$ (7% MeOH in CH₂Cl₂). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 7.59–7.54 (m, 2H), 6.69–6.66 (m, 2H), 4.13–3.96 (m, 4H), 1.29 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 20.97 ppm.

Diethyl (4-(dimethylamino)phenyl)phosphonate (14)

Prepared according to modified General procedure B using 4-iodo-*N*,*N*-dimethylaniline (**SI-2**, 61.8 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), Pd[P(*t*-Bu)₃]₂ (6.6 mg, 12.5 μ mol), KOAc (12.5 mg, 0.125 mmol), LiBr (21.7 mg, 0.25 mmol), 2,6-lutidine (58.0 μ L, 0.50 mmol), 2 wt % TPGS-750-M in

 H_2O (0.5 mL) and EtOAc (0.1 mL). The reaction was performed at 55 °C. The crude product was purified by pTLC (hexane/EtOAc 1:2) to afford 14 as a clear crystalline solid (43.0 mg, 70%, 97% brsm) and starting 4-iodo-*N*,*N*-dimethylaniline (19.0 mg).

Spectral data match previously reported results,⁴⁰ and ${}^{1}H/{}^{31}P$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.33$ (hexane/EtOAc 1:2). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 7.66–7.61 (m, 2H), 6.71–6.68 (m, 2H), 4.14–3.96 (m, 4H), 3.01 (s, 6H), 1.29 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 21.88 ppm.

Note: Cross-coupling of SI-2 with 3 using General procedure A afforded 14 in 40% yield (1 H NMR with CH₂Br₂ as an internal standard).

tert-Butyl (4-(diethoxyphosphoryl)phenyl)carbamate (15)

Prepared according to modified General procedure A using *tert*-butyl (4-iodophenyl)carbamate (79.8 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), 2,6-lutidine (87.0 μ L, 0.75 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and THF (0.05 mL). The crude product was purified by pTLC

(hexane/EtOAc 3:2) to afford 15 as a beige solid (78.0 mg, 95%).

Spectral data match previously reported results,⁴¹ and ${}^{1}H/{}^{31}P$ NMR data are provided here for convenience.

 $\mathbf{R}_{f} = 0.41$ (hexane/EtOAc 2:3). Stain: UV active, KMnO₄;

¹H NMR (400 MHz, CDCl₃): δ 7.74–7.69 (m, 2H), 7.50–7.47 (m, 2H), 6.92 (br s, 1H), 4.15–3.98 (m, 4H), 1.51 (s, 9H), 1.29 (t, *J* = 7.2 Hz, 6H) ppm; ³IP(IH) NMP (1(2 MHz, CDCl)): δ 10.18 mms

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 19.18 ppm.

Diethyl (4-cyanophenyl)phosphonate (16)

Prepared according to General procedure A using 4-iodobenzonitrile (57.3 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 38.6 μ L, 0.275 mmol). The crude product was purified by pTLC (hexane/EtOAc 2:3) to afford **16** as a colorless crystalline solid (43.0 mg, 72%).

Spectral data match previously reported results,⁴¹ and ${}^{1}H/{}^{31}P$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.44$ (hexane/EtOAc 2:3). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 7.94–7.89 (m, 2H), 7.77–7.74 (m, 2H), 4.23–4.06 (m, 4H), 1.33 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 15.33 ppm.

16 was also prepared according to modified General procedure B using 4-bromobenzonitrile (45.5 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed at 55 °C. The crude product was purified by pTLC (hexane/EtOAc 2:3) to afford **16** as a colorless crystalline solid (59.0 mg, 99%).

Methyl 4-(diethoxyphosphoryl)benzoate (17)

Prepared according to General procedure A using methyl 4-iodobenzoate (65.5 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 38.6 μ L, 0.30 mmol). The crude product was purified by pTLC (hexane/EtOAc 2:3) to afford **17** as a clear crystalline solid (57.0 mg, 84%).

Spectral data match previously reported results,³⁶ and ${}^{1}\text{H}/{}^{31}\text{P}$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.42$ (hexane/EtOAc 2:3). Stain: UV active;

¹**H** NMR (400 MHz, CDCl₃): $\delta 8.12-8.09 \text{ (m, 2H)}$, 7.91–7.85 (m, 2H), 4.21–4.03 (m, 4H), 3.94 (s, 3H), 1.32 (t, J = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 17.00 ppm.

Diethyl (4-carbamoylphenyl) phosphonate (18)

Prepared according to General procedure A using 4-iodobenzamide (61.8 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (7% MeOH in CH₂Cl₂) to afford **18** as a colorless crystalline solid (46.0 mg, 72%).

 $\mathbf{R}_f = 0.50$ (10% MeOH in CH₂Cl₂). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 7.92–7.83 (m, 4H), 6.50 (br s, 1H), 5.91 (br s, 2H), 4.20–4.04 (m, 4H), 1.32 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 16.94 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃/CD₃OD ~10:1): δ 169.2 (d, J = 4.0 Hz), 137.2 (d, J = 6.0 Hz), 131.8 (d, J = 10.1 Hz), 131.3 (d, J = 187.0 Hz), 127.6 (d, J = 15.2 Hz), 62.6 (d, J = 5.1 Hz), 16.1 (d, J = 6.1 Hz) ppm;

HRMS (ESI-TOF) calc'd for $C_{11}H_{17}NO_4P$ [M+H]⁺: 258.08897, found 258.08918; calc'd for $C_{11}H_{16}NO_4PNa$ [M+Na]⁺: 280.07092, found 280.07111.

4-(Diethoxyphosphoryl)benzoic acid (19)

Prepared according to modified General procedure A using methyl 4-iodobenzoic acid (62.0 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 38.6 μ L, 0.275 mmol) and 2,6-lutidine (87.0 μ L, 0.75 mmol). The crude product was purified by pTLC (2.5% MeOH + 1% AcOH in CH₂Cl₂) to afford **19** as a white solid (65.0 mg, quantitative).

Spectral data match previously reported results,⁴² and ${}^{1}H/{}^{31}P$ NMR data are provided here for convenience.

 $\mathbf{R}_{f} = 0.15$ (2.5% MeOH + 1% AcOH in CH₂Cl₂). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 8.97 (br s), 8.18–7.97 (m, 2H), 7.89–7.72 (m, 2H), 4.22–4.01 (m, 4H), 1.28 (t, *J* = 6.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 17.45 ppm.

Diethyl (4-nitrophenyl)phosphonate (20)

Prepared according to modified General procedure A using 1-iodo-4-nitrobenzene (62.3 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 38.6 μ L, 0.275 mmol), Pd(OAc)₂ (1.4 mg, 6.25 μ mol), XantPhos (3.6 mg, 6.25 μ mol), Ni(phen)₃Cl₂ (4.2 mg, 6.25 μ mol), LiBr (21.7 mg, 0.25 mmol), nano Zn (8.1 mg, 0.125 mmol), 2,6-lutidine

(87.0 μ L, 0.75 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed at 55 °C. The crude product was purified by pTLC (2.5% MeOH in CH₂Cl₂) to afford **20** as a light-yellow oil (56.0 mg, 86%).

Spectral data match previously reported results,⁴³ and ${}^{1}H/{}^{31}P$ NMR data are provided here for convenience.

 $\mathbf{R}_{f} = 0.56$ (4% MeOH in CH₂Cl₂). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 8.31–7.28 (m, 2H), 8.02–7.97 (m, 2H), 4.24–4.08 (m, 4H), 1.34 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 14.93 ppm.

Diethyl (4-fluorophenyl)phosphonate (21)

Prepared according to General procedure A using 4-fluoroiodobenzene (28.8 μ L, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 1:1) to afford **21** as a light-yellow oil (56.0 mg, 97%).

Spectral data match previously reported results,³⁶ and ${}^{1}H/{}^{31}P/{}^{19}F$ NMR data are provided here for convenience.

R_f = 0.36 (hexane/EtOAc 1:1). Stain: UV active; ¹**H NMR (400 MHz, CDCl₃):** δ 7.85–7.78 (m, 2H), 7.17–7.12 (m, 2H), 4.19–4.02 (m, 4H), 1.32 (t, J = 6.8 Hz, 6H) ppm; ³¹P{¹H} **NMR (162 MHz, CDCl₃):** δ 17.80 ppm; ¹⁹**F NMR (376 MHz, CDCl₃):** δ -106.1 (m) ppm.

Diethyl (4-(trifluoromethyl)phenyl)phosphonate (22)

Prepared according to General procedure A using 4-iodobenzotrifluoride (36.7 μ L, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 1:1) to afford **22** as a light-yellow oil (61.0 mg, 86%).

Spectral data match previously reported results,³⁶ and ${}^{1}H/{}^{31}P/{}^{19}F$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.47$ (hexane/EtOAc 1:1). Stain: UV active;

¹**H** NMR (400 MHz, CDCl₃): δ 7.94 (dd, J = 12.8, 8.4 Hz, 2H), 7.72 (dd, J = 8.0, 3.2 Hz, 2H), 4.22–4.05 (m, 4H), 1.33 (t, J = 6.8 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 16.26 ppm;

¹⁹F NMR (376 MHz, CDCl₃): δ -63.3 (m) ppm.

Diethyl (4-(bromo)phenyl)phosphonate (23)

Prepared according to modified General procedure A using 1-bromo-4-iodobenzene (70.7 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 38.6 μ L, 0.30 mmol). The reaction was performed at 35 °C. The crude product was purified by pTLC (hexane/EtOAc 1:1) to afford **23** as a yellowish oil (33.2 mg, 45%), and bis-coupling

product 47 as a yellow oil (31.0 mg, 36%).

Spectral data of 23 match previously reported results,⁴⁴ and ${}^{1}H/{}^{31}P$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.37$ (hexane/EtOAc 1:1). Stain: UV active;

¹H NMR (400 MHz, CDCl₃): δ 7.70–7.59 (m, 4H), 4.19–4.03 (m, 4H), 1.32 (t, *J* = 6.8 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 17.74 ppm.

4-(Diethoxyphosphoryl)phenyl trifluoromethanesulfonate (24)

Prepared on 0.50 mmol-scale according to General procedure A using 4-iodophenyl trifluoromethanesulfonate (SI-1, 99.6 μ L, 0.50 mmol) and diethyl *H*-phosphonate (3, 77.2 μ L, 0.60 mmol). The crude product was purified by pTLC (EtOAc/CH₂Cl₂ 3:2) to afford 24 as a colorless oil (114.0 mg, 63%), and bis-coupling product 47 as a

waxy solid (42.0 mg, 24%).

R $_{f} = 0.62$ (EtOAc/CH₂Cl₂ 3:2). Stain: weakly UV active, KMnO₄; ¹**H NMR** (400 MHz, CDCl₃): δ 7.92 (dd, *J* = 12.8, 8.4 Hz, 2H), 7.38 (dd, *J* = 8.8, 2.8 Hz, 2H), 4.23–4.06 (m, 4H), 1.34 (t, *J* = 7.2 Hz, 6H) ppm; ³¹P{¹H} **NMR** (162 MHz, CDCl₃): δ 15.94 ppm; ¹⁹F **NMR** (376 MHz, CDCl₃): δ -72.8 (m) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 152.1 (d, J = 4.1 Hz), 134.1 (d J = 11.0 Hz), 129.6 (d, J = 189.0 Hz), 121.5 (d, J = 15.9 Hz), 118.6 (q, J = 319.0 Hz), 62.5 (d, J = 5.7 Hz), 16.2 (d, J = 6.1 Hz) ppm;

HRMS (ESI-TOF) calc'd for $C_{11}H_{15}O_6F_3PS$ [M+H]⁺: 363.02736, found 363.02768; calc'd for $C_{11}H_{14}O_6F_3NaPS$ [M+Na]⁺: 385.00930, found 385.00952.

Diethyl (4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)phosphonate (25)

Prepared according to General procedure A using 2-(4-iodophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (82.5 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 1:2) to afford **25** as a white solid (72.0 mg, 85%).

Spectral data match previously reported results,⁴¹ and ${}^{1}H/{}^{31}P/{}^{11}B$ NMR data are provided here for convenience.

 $\mathbf{R}_{f} = 0.30 - 0.50$ (hexane/EtOAc 1:2). Stain: weakly UV active, KMnO₄;

¹H NMR (400 MHz, CDCl₃): δ 7.90–7.87 (m, 2H), 7.82–7.77 (m, 2H), 7.83–7.73 (m, 1H), 4.18–4.00 (m, 4H), 1.34 (s, 12H), 1.30 (t, *J* = 7.2 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 18.59 ppm;

¹¹B NMR (128 MHz, CDCl₃): 31.03 pm.

Diethyl (4-acetylphenyl)phosphonate (26)

Prepared according to General procedure B using 4-bromoacetophenone (50.0 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 1:4) to afford **26** as a colorless oil (57.0 mg, 89%).

Spectral data match previously reported results,³⁸ and ${}^{1}\text{H}/{}^{31}\text{P}$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.30$ (hexane/EtOAc 1:4). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 8.04–8.01 (m, 2H), 7.94–7.89 (m, 2H), 4.22–4.05 (m, 4H), 2.64 (s, 3H), 1.21 (t, *J* = 6.8 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 16.85 ppm.

Diethyl (4-(*N*,*N*-dibenzylsulfamoyl)phenyl)phosphonate (27)

Prepared according to modified General procedure A using *N*,*N*-dibenzyl-4iodobenzenesulfonamide (SI-3, 115.8 mg, 0.25 mmol) and diethyl *H*-phosphonate (3, 66.0 μ L, 0.50 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The crude product was purified by pTLC (hexane/EtOAc

3:7) to afford **27** as a colorless solid (102.0 mg, 86%).

 $\mathbf{R}_{f} = 0.34$ (hexane/EtOAc 1:2). Stain: UV active; ¹H NMR (400 MHz, CDCl₃): δ 7.95–7.86 (m, 4H), 7.24–7.20 (m, 6H), 7.07–7.03 (m, 4H), 4.36 (s, 4H), 4.24–3.07 (m, 4H), 1.35 (t, J = 7.2 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 15.89 ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 144.6 (d, J = 3.5 Hz), 135.4, 133.5 (d, J = 186.0 Hz), 132.6 (d, J = 10.3 Hz), 128.8, 128.7, 128.1, 127.1 (d, J = 15.2 Hz), 62.8 (d, J = 6.1 Hz), 50.8, 16.6 (d, J = 6.1 Hz) ppm;

HRMS (ESI-TOF) calc'd for $C_{24}H_{29}O_5NPS$ [M+H]⁺: 474.14986, found 474.15015; calc'd for $C_{24}H_{28}O_5NNaPS$ [M+Na]⁺: 496.13180, found 496.13196.

Ethyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-iodophenyl)propanoate (28)

Prepared according to General procedure A using ethyl (S)-2-((*tert*-butoxycarbonyl)amino)-3-(4-iodophenyl)propanoate (SI-4, 104.8 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (EtOAc/CH₂Cl₂ 1:1) to afford **28** as a white solid (94.0 mg, 88%).

Spectral data match previously reported results,⁴⁵ and ${}^{1}H/{}^{31}P/{}^{13}C$ NMR data are provided here for convenience.

 $\mathbf{R}_{f} = 0.60$ (EtOAc/CH₂Cl₂ 1:1). Stain: weakly UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 7.75–7.70 (m, 2H), 7.25–7.23 (m, 2H), 5.01 (br s, 1H), 4.59 (br s, 1H), 4.18–4.01 (m, 6H), 3.19–3.07 (m, 2H), 1.41 (s, 9H), 1.31 (t, *J* = 7.2 Hz, 6H), 1.22 (t, *J* = 7.2 Hz, 3H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 18.81 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.5, 155.0, 141.2, 131.9 (d, J = 10.1 Hz), 129.6 (d, J = 14.9 Hz), 126.9 (d, J = 189.0 Hz), 80.0, 62.1 (d, J = 5.4 Hz), 61.5, 54.3, 38.5, 28.3, 16.3 (d, J = 6.1 Hz), 14.1 ppm.

Note: $C(sp^2)$ –P cross-coupling of *N*-Boc-4-iodophenylalanine with **3** afforded the corresponding phosphonate product in nearly quantitative yield (¹H NMR using CH₂Br₂ as an internal standard); however, its high polarity caused considerable streaking ($R_f = 0.05-0.60$), hampering its isolation. For this reason, the carboxylate group was protected and afforded **28** by C(sp²)–P cross-coupling reaction.

Compounds 29

Prepared on 0.125 mmol-scale according to General procedure A using SI-5 (64.8 mg, 0.125 mmol) and diethyl *H*-phosphonate (**3**, 33.0 μ L, 0.25 mmol). The crude product was purified by pTLC (EtOAc/CH₂Cl₂ 1:1) to afford **29** as an off-white solid (55.0 mg, 83%).

 $\mathbf{R}_f = 0.45 - 0.50$ (EtOAc/CH₂Cl₂ 1:1). Stain: weakly UV active;

¹H NMR (400 MHz, CDCl₃): δ 7.71–7.66 (m, 2H), 7.31–7.28 (m, 2H), 6.60 (br d, 1H), 5.17 (br d, 1H), 4.45–4.35 (m, 2H, overlapped), 4.17–4.00 (m, 6H, overlapped), 3.18–3.01 (m, 2H), 2.10 (m, 1H), 1.36 (s, 9H), 1.28 (t, J = 7.2 Hz, 6H), 1.23 (t, J = 7.2 Hz, 3H), 0.86 (d, J = 7.2 Hz, 3H), 0.83 (d, J = 6.8 Hz, 3H) ppm;

³¹**P**{¹**H**} **NMR (162 MHz, CDCl₃):** δ 18.79 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.4, 171.0, 155.5, 141.2, 132.1 (d, J = 10.1 Hz), 129.6 (d, J = 15.2 Hz), 126.8 (d, J = 188.0 Hz), 80.3, 62.1 (d, J = 5.1 Hz), 61.3, 57.3, 55.5 (br), 38.0 (br), 31.3, 28.3, 18.9, 17.8, 16.4 (d, J = 7.1 Hz), 14.3 ppm;

HRMS (ESI-TOF) calc'd for C₂₅H₄₂O₈N₂P [M+H]⁺: 529.26733, found 529.26692.

3-(Diethoxyphosphoryl)benzoic acid (30)

Prepared according to General procedure A using 3-iodobenzoic acid (62.0 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol) and 2,6-lutidine (87.0 μ L, 0.75 mmol). The crude product was purified by pTLC (2.5% MeOH/1% AcOH in CH₂Cl₂) to afford **30** as a white solid (64.0 mg, 99%).

 $\mathbf{R}_{f} = 0.05 - 0.15$ (2.5% MeOH + 1% AcOH in CH₂Cl₂). Stain: UV active;

¹**H NMR (400 MHz, CD₃OD):** δ 8.42 (dt, *J* = 14.0, 1.2 Hz, 1H), 8.29–8.25 (m, 1H), 8.03–7.95 (m, 1H), 7.67 (td, *J* = 7.6, 4.0 Hz, 1H), 4.21–4.08 (m, 4H), 1.34 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CD₃OD): δ 17.68 ppm;

¹³C{¹H} NMR (100 MHz, CD₃OD): δ 168.3 (d, J = 2.2 Hz), 136.7 (d, J = 10.1 Hz), 134.9 (d, J = 2.9 Hz), 133.7 (d, J = 10.9 Hz), 132.7 (d, J = 14.9 Hz), 130.2 (d, J = 15.0 Hz), 129.7 (d, J = 194.8 Hz), 64.1 (d, J = 5.8 Hz), 16.6 (d, J = 6.2 Hz) ppm;

HRMS (ESI-TOF) calc'd for $C_{11}H_{16}O_5P$ [M+H]⁺: 259.07299, found 259.07319; calc'd for $C_{11}H_{15}O_5NaP$ [M+Na]⁺: 281.05493, found 281.05521.

Diethyl (3-chlorophenyl)phosphonate (31)

Prepared according to General procedure A using 1-chloro-3-iodobenzene (31.0 μ L, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 38.6 μ L, 0.30 mmol). The crude product was purified by pTLC (hexane/EtOAc 1:1) to afford **31** as a colorless oil (50.0 mg, 80%).

Spectral data match previously reported results,³⁶ and ${}^{1}H/{}^{31}P$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.25$ (hexane/EtOAc 1:1). Stain: weakly UV active;

¹H NMR (400 MHz, CDCl₃): δ 7.78 (dt, J = 13.6, Hz, 1H), 8.20–8.14 (m, 1H), 7.83–7.73 (m, 1H), 7.50–7.41 (m, 1H), 4.10–3.90 (m, 4H), 1.21 (t, J = 6.8 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 16.55 ppm.

Diethyl 2-tolylphosphonate (32)

Prepared according to General procedure A using 2-iodotoluene (31.8 μ L, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 1:1) to afford **32** as a colorless viscous oil (22.0 mg, 39%).

Spectral data match previously reported results,⁴¹ and ${}^{1}H/{}^{31}P$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.25$ (hexane/EtOAc 1:1). Stain: UV active, KMnO₄;

¹H NMR (400 MHz, CDCl₃): δ 7.90 (dd, J = 14.4, 7.6 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.28–7.23 (m, 2H), 4.20–4.03 (m, 4H), 2.57 (s, 3H), 1.32 (t, J = 6.8 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 19.45 ppm.

Diethyl (2-hydroxyphenyl)phosphonate (33)

Prepared according to General procedure B using (2-iodophenoxy)trimethylsilane (50.5 μ L, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 1:4) to afford **33** as a yellow oil (49.0 mg, 85%). Trimethylsilyl group hydrolyzed during the reaction.

Spectral data match previously reported results,⁴⁶ and ${}^{1}\text{H}/{}^{31}\text{P}$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.90$ (hexane/EtOAc 1:4). Stain: UV active, visible yellow spot;

¹H NMR (400 MHz, CDCl₃): δ 10.24 (s, 1H), 7.46 (dt, J = 8.4, 1.8 Hz, 1H), 7.90 (dd, J = 14.4, 8.0, 2.0 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.94 (td, J = 8.0, 2.4 Hz, 1H), 4.23–4.01 (m, 4H), 1.34 (t, J = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 22.41 ppm.

Note: Cross-coupling of 2-iodophenol with **3** afforded **33** in <10% yield (¹H NMR with CH₂Br₂ as an interval standard) regardless of used reaction conditions.

Diethyl (2-(trifluoromethoxy)phenyl)phosphonate (34)

Prepared according to General procedure B using 1-iodo-2-(trifluoromethoxy)benzene (72.0 mg, 38.5 μ L, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 1:1) to afford **34** as a colorless oil (53.0 mg, 71%).

Spectral data match previously reported results,⁴⁷ and ${}^{1}H/{}^{31}P/{}^{19}F$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.43$ (hexane/EtOAc 1:1). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 8.00 (ddd, *J* = 14.4, 7.6, 1.6 Hz, 1H), 7.58 (br t, *J* = 8.0 Hz, 1H), 7.38–7.32 (m, 2H), 4.26–4.07 (m, 4H), 1.33 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 13.56 ppm;

¹⁹**F NMR (376 MHz, CDCl₃):** δ -56.2 (d, J = 1.5 Hz) ppm.

Ethyl 2-(2-(diethoxyphosphoryl)phenoxy)acetate (35)

Prepared according to General procedure B using ethyl 2-(2-iodophenoxy)acetate (**SI-6**, 55.2 μ L, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 5:7) to afford **35** as a light-yellow oil (47.0 mg, 60%).

Spectral data match previously reported results, 48 and $^1\mathrm{H}/^{31}\mathrm{P}/^{13}\mathrm{C}$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.47$ (hexane/EtOAc 5:7). Stain: UV active;

¹**H** NMR (400 MHz, CDCl₃): δ 7.88 (ddd, J = 14.4, 7.2, 1.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.06 (td, J = 7.2, 3.2 Hz, 1H), 6.80 (t, J = 7.6 Hz, 1H), 4.73 (s, 2H), 4.25 (q, J = 7.2 Hz, 2H), 4.27–4.09 (m, 4H, overlapped), 1.33 (t, J = 7.2 Hz, 6H), 1.28 (t, J = 7.2 Hz, 3H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 16.32 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 168.3, 159.5 (d, J = 2.2 Hz), 136.6 (d, J = 6.9 Hz), 134.2 (d, J = 2.1 Hz), 121.4 (d, J = 14.3 Hz), 117.3 (d, J = 185.0 Hz), 112.1 (d, J = 9.3 Hz), 65.8, 62.3 (d, J = 5.4 Hz), 61.4, 16.4 (d, J = 6.7 Hz), 14.2 ppm.

Diethyl (2-fluorophenyl)phosphonate (36)

Prepared according to General procedure A using 2-fluoroiodobenzene (29.2 μ L, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 1:1) to afford **36** as a yellowish oil (26.0 mg, 44%).

Spectral data match previously reported results,³⁶ and ${}^{1}H/{}^{31}P/{}^{19}F$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.35$ (hexane/EtOAc 1:1). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 7.90–7.82 (m, 1H), 7.57–7.51 (m, 1H), 7.26–7.21 (m, 1H), 7.15–7.09 (m, 1H), 4.25–4.09 (m, 4H), 1.34 (t, *J* = 6.8 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 13.65 ppm;

¹⁹F NMR (376 MHz, CDCl₃): δ -103.73 (m) ppm.

Diethyl (2-((4-methylphenyl)sulfonamido)phenyl)phosphonate (37)

Prepared according to General procedure B using *N*-(2-iodophenyl)-toluenesulfonamide (**SI-8**, 93.3 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 3:2) to afford **37** as a light-yellow solid (34.0 mg, 35%).

 $\mathbf{R}_f = 0.30$ (hexane/EtOAc 3:2). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 10.26 (s, 1H), 7.80–7.76 (m, 1H, overlapped), 7.76 (d, *J* = 8.4 Hz, 2H), 7.48–7.42 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.10–7.05 (m, 1H), 4.01–3.92 (m, 2H), 3.86–3.76 (m, 2H) 2.35 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 19.15 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.7, 142.2 (d, J = 7.9 Hz), 136.9, 134.1 (d, J = 2.3 Hz), 132.9 (d, J = 5.9 Hz), 129.6, 127.5, 123.5 (d, J = 13.3 Hz), 119.9 (d, J = 11.6 Hz), 114.7 (d, J = 178.0 Hz), 62.6 (d, J = 4.9 Hz), 21.6, 16.2 (d, J = 6.7 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₁₇H₂₃O₅NPS [M+H]⁺: 384.10291, found 384.10265.

Note: Cross-coupling of SI-8 with 3 following General procedure A (performed at 55 $^{\circ}$ C) afforded 37 in 30% yield.

Diethyl (2-(2,2,2-trifluoroacetamido)phenyl)phosphonate (38)

Prepared according to General procedure A using 2,2,2-trifluoro-*N*-(2-iodophenyl)acetamide (**SI-9**, 78.8 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude reaction mixture was analyzed by ³¹P and by ¹H NMR spectroscopy with CH₂Br₂ as an internal standard (18.2 mg, spectrum shown below).

The yield of **38** was determined to be 24%.

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 18.62 ppm.

¹H NMR (400 MHz, CDCl₃) of the crude reaction mixture using CH₂Br₂ as an internal standard (δ 4.93 ppm, 18.2 mg). The signal at δ 8.57 ppm was assigned to **38**, and the signal at δ 6.98 ppm corresponds to the starting compound **SI-9**. ³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum is shown in the black box, the signal at δ 18.62 ppm corresponds to **38**.

Diethyl (2-(benzylamino)phenyl)phosphonate (39)

Prepared according to General procedure B using *N*-benzyl-2-iodoaniline (SI-10, $48.3 \mu L$, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μL , 0.50 mmol). The reaction was performed at 55 °C. The crude product was purified by pTLC (hexane/EtOAc 2:1) to afford **39** as a light-yellow oil (36.0 mg, 45%).

 $\mathbf{R}_{f} = 0.55$ (hexane/EtOAc 2:1). Stain: UV active, KMnO₄ stain;

¹**H** NMR (400 MHz, CDCl₃): δ 7.48 (ddd, J = 14.8, 7.6, 1.6 Hz, 1H), 7.37–7.22 (m, 6H, overlapped with CHCl₃), 7.13 (t, J = 5.2 Hz, 1H), 6.65 (ddd, J = 7.6, 3.2, 0.8 Hz, 1H), 6.57 (t, J = 7.6 Hz, 1H), 4.40 (d, J = 5.6 Hz, 2H), 4.17–4.01 (m, 4H), 1.33 (t, J = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 21.76 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 151.8 (d, J = 8.9 Hz), 139.1, 134.3 (d, J = 2.2 Hz), 133.6 (d, J = 7.2 Hz), 128.7, 127.1, 127.0, 115.7 (d, J = 14.2 Hz), 111.5 (d, J = 12.2 Hz), 108.0 (d, J = 182.0 Hz), 62.1 (d, J = 5.1 Hz), 47.3, 16.4 (d, J = 6.7 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₁₇H₂₃O₃NP [M+H]⁺: 320.14101, found 320.14079.

Note: Cross-coupling of SI-10 with 3 following General procedure A afforded 39 in 35% yield.

tert-Butyl (2-(diethoxyphosphoryl)phenyl)carbamate (40)

Prepared according to General procedure B using *tert*-butyl (2-iodophenyl)carbamate (**SI-11**, 79.8 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The reaction was performed at 55 °C. The crude product was purified by pTLC (hexane/EtOAc 7:2) to afford **40** as a viscous colorless oil (62.0 mg, 75%).

Spectral data match previously reported results,⁴⁹ and ${}^{1}H/{}^{31}P$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.50$ (hexane/EtOAc 7:2). Stain: UV active;

¹H NMR (400 MHz, CDCl₃): δ 9.64 (s, 1H), 8.24 (t, J = 7.6 Hz, 1H), 7.56–7.46 (m, 2H), 7.03 (td, J = 7.6, 2.8 Hz, 1H), 4.19–3.99 (m, 4H), 1.51 (s, 9H), 1.31 (t, J = 7.2 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 19.54 ppm.

Note: Cross-coupling of SI-11 with 3 following General procedure A afforded 40 in 43% yield.

Benzyl (5-chloro-2-(diethoxyphosphoryl)phenyl)carbamate (41)

Prepared according to modified General procedure A using benzyl (5-chloro-2iodophenyl)carbamate (SI-12, 96.9 mg, 0.25 mmol), diethyl *H*-phosphonate (3, 66.0 μ L, 0.50 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The crude product was purified by pTLC (hexane/EtOAc 2:1) to afford **41** as an off-

white solid (84.0 mg, 85%).

 $\mathbf{R}_{f} = 0.50$ (hexane/EtOAc 2:1). Stain: UV active, KMnO₄ stain;

¹H NMR (400 MHz, CDCl₃): δ 10.15 (s, 1H), 8.48 (dd, J = 5.6, 2.0 Hz, 1H), 7.49–7.32 (m, 6H), 7.05 (dt, J = 8.0, 2.0 Hz, 1H), 5.21 (s, 2H), 4.19–3.98 (m, 4H), 1.31 (dt, J = 7.2, 0.8 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 18.65 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.3, 144.0 (d, J = 8.5 Hz), 140.5 (d, J = 3.4 Hz), 136.1, 133.7 (d, J = 6.7 Hz), 128.6, 128.3, 128.2, 122.5 (d, J = 14.3 Hz), 119.2 (d, J = 12.1 Hz), 111.4 (d, J = 181.0 Hz), 67.1, 62.8 (d, J = 5.3 Hz), 16.4 (d, J = 6.6 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₁₈H₂₂O₅NClP [M+H]⁺: 398.09186, found 398.09162.

Diethyl (2-cyanophenyl)phosphonate (42)

Prepared according to modified General procedure A using 2-iodobenzonitrile (57.3 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed at 55 °C. The crude product was purified by pTLC (hexane/EtOAc 2:3) to afford **42** as a beige solid (19.0 mg,

32%).

Spectral data match previously reported results, 50 and $^1\mathrm{H}/^{31}\mathrm{P}$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.35$ (hexane/EtOAc 2:3). Stain: UV active;

¹H NMR (400 MHz, CDCl₃): δ 8.11 (ddd, J = 14.4, 7.6, 1.6 Hz, 1H), 7.82–7.79 (m, 1H), 7.56–7.46 (m, 2H), 4.32–4.15 (m, 4H), 1.38 (t, J = 6.8 Hz, 6H) ppm; ³¹P(1H) NMP (162 MHz, CDCl.): δ 12.60 ppm

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 12.60 ppm.

Diethyl (4-benzamido-3-fluorophenyl)phosphonate (43)

Prepared according to modified General procedure A using *N*-(2-fluoro-4iodophenyl)benzamide (**SI-13**, 85.3 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 38.6 μ L, 0.30 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The crude product was purified by pTLC (hexane/EtOAc 1:1) to afford **43** as

a colorless crystalline solid (72.0 mg, 82%).

 $\mathbf{R}_f = 0.41$ (hexane/EtOAc 1:1). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 8.66 (td, *J* = 8.0, 4.8 Hz, 1H), 8.24 (br d, *J* = 2.8 Hz, 1H), 7.91–7.88 (m, 2H), 7.65–7.50 (m, 5H), 4.20–4.04 (m, 4H), 1.33 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 16.69 (d, *J* = 7.9 Hz) ppm;

¹⁹F NMR (376 MHz, CDCl₃): δ -130.6 (m) ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 165.7, 152.0 (dd, J = 244.7, 24.1 Hz), 134.1, 132.6, 130.5 (dd, J = 9.8, 3.4 Hz), 129.0, 128.7 (dd, J = 9.2, 3.1 Hz), 127.3, 124.3 (dd, J = 193.0, 6.1 Hz), 121.5 (d, J = 16.2 Hz, broadened), 118.3 (dd, J = 20.7, 11.4 Hz), 62.4 (d, J = 5.5 Hz), 16.4 (d, J = 6.5 Hz) ppm; HRMS (ESI-TOF) calc'd for C₁₇H₂₀O₄NFP [M+H]⁺: 352.11085, found 352.11064.

Diethyl (4-pivalamido-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)phosphonate (44)

Prepared according to modified General procedure A using *N*-(4-iodo-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pivalamide (SI-14, 107.3 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.30 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The crude product was purified by pTLC (2.5% MeOH in EtOAc/CH₂Cl₂ 1:1) to afford **44** as an off-white

solid (83.0 mg, 76%).

 $\mathbf{R}_{f} = 0.56$ (2.5% MeOH in EtOAc/CH₂Cl₂ 1:1). Stain: UV active;

¹**H** NMR (400 MHz, CDCl₃): δ 9.70 (s, 1H), 8.68 (dd, *J* = 8.8, 3.6 Hz, 1H), 8.27 (dd, *J* = 13.2, 2.0 Hz, 1H), 7.84 (ddd, *J* = 12.8, 8.8, 2.0 Hz, 1H), 4.17–3.99 (m, 4H), 1.38 (s, 9H), 1.33 (s, 12H, overlapped), 1.31 (t, *J* = 6.8 Hz, 6H, overlapped) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 19.16 ppm;

¹¹**B NMR (128 MHz, CDCl₃):** δ 29.94 pm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 177.7, 148.5 (d, J = 2.8 Hz), 140.6 (d, J = 11.1 Hz), 136.3 (d, J = 10.8 Hz), 121.6 (d, J = 191.0 Hz), 118.7 (d, J = 14.0 Hz), 84.7, 62.1 (d, J = 5.3 Hz), 40.4, 27.6, 25.1, 16.4 (d, J = 6.6 Hz) ppm;*

HRMS (ESI-TOF) calc'd for C₂₁H₃₆O₆NBP [M+H]⁺: 440.23678, found 440.23701.

Note: *One carbon (C_{Ar}–B) signal is missing in the ¹³C NRM spectrum due to quadrupolar relaxation.

Diethyl (3,4,5-trimethoxyphenyl)phosphonate (45)

Prepared according to General procedure B using 5-iodo-1,2,3-trimethoxybenzene (73.5 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (EtOAc) to afford **45** as a viscous light-yellow oil (73.0 mg, 96%).

Spectral data partially match previously reported results,⁵¹ and the ${}^{1}H/{}^{31}P/{}^{13}C$ NMR data are provided here for convenience. In the previous report, the ${}^{31}P$ NMR chemical shift of -7.84 ppm does not match our value of +19.28 ppm. Moreover, other ${}^{31}P$ NMR shifts reported in the previous study do not match typical ${}^{31}P$ NMR shifts of dialkyl arylphosphonates (25–10 ppm).

R $_f = 0.36$ (EtOAc). Stain: UV active; ¹**H** NMR (400 MHz, CDCl₃): δ 7.02 (d, J = 14.8 Hz, 2H), 4.20–4.02 (m, 4H), 3.90 (s, 6H), 3.89 (s, 3H), 1.34 (t, J = 6.8 Hz, 12H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 19.28 ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.4 (d, J = 22.1 Hz), 141.5 (d, J = 3.7 Hz), 122.9 (d, J = 190.0 Hz), 108.8 (d, J = 11.3 Hz), 62.1 (d, J = 5.4 Hz), 60.8, 56.3, 16.3 (d, J = 6.6 Hz) ppm.

Diethyl (3-fluoro-4-methylphenyl)phosphonate (46)

Prepared according to General procedure A using 2-fluoro-4-iodotoluene (33.7 μ L, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 3:2) to afford **46** as a clear oil (50.0 mg, 81%).

 $\mathbf{R}_f = 0.30$ (hexane/EtOAc 3:2). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 7.47–7.36 (m, 2H), 7.28–7.23 (m, 1H), 4.15–3.99 (m, 4H), 2.28 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 6H) ppm;

³¹**P**{¹**H**} **NMR (162 MHz, CDCl₃):** δ 17.26 (d, *J* = 7.9 Hz) ppm;

¹⁹F NMR (376 MHz, CDCl₃): δ -116.2 (m) ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.0 (dd, J = 248.8, 21.7 Hz), 131.9 (dd, J = 17.6, 4.7 Hz), 130.1 (dd, J = 17.2, 3.1 Hz), 127.9 (dd, J = 189.7, 6.4 Hz), 127.4 (dd, J = 9.3, 3.7 Hz), 118.2 (dd, J = 23.3, 10.8 Hz), 62.3 (d, J = 5.4 Hz), 16.4 (d, J = 6.6 Hz), 14.8 (d, J = 3.6 Hz) ppm;

HRMS (ESI-TOF) calc'd for $C_{11}H_{17}O_3FP$ [M+H]⁺: 247.08939, found 247.08958; calc'd for $C_{11}H_{16}O_3FNaP$ [M+Na]⁺: 269.07133, found 269.07149.

Tetraethyl 1,4-phenylenebis(phosphonate) (47)

Prepared according to General procedure A using 1,4-diiodobenzene (82.5 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 99.0 μ L, 0.75 mmol) and 2,6-lutidine (87.0 μ L, 0.75 mmol). The crude product was purified by pTLC (5% MeOH + 1% AcOH in EtOAc) to afford **47** as a waxy solid (86.0 mg, 98%).

Spectral data match previously reported results, 52 and $^{1}\text{H}/^{31}\text{P}$ NMR data are provided here for convenience.

 $\mathbf{R}_{f} = 0.30-0.45$ (5% MeOH + 1% AcOH in EtOAc). Stain: weakly UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 7.92–7.88 (m, 4H), 4.22–4.05 (m, 8H), 1.33 (t, *J* = 6.8 Hz, 12H) ppm; ³¹**P**{¹**H**} **NMR (162 MHz, CDCl₃):** δ 16.82 ppm.

Compound 48

Prepared on 0.125 mmol-scale according to modified General procedure A using iodide **SI-15** (55.5 mg, 0.125 mmol), diethyl *H*-phosphonate (**3**, 33.0 μ L, 0.25 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and EtOAc (0.1 mL). The crude product was purified by pTLC (5% MeOH in

EtOAc/CH₂Cl₂ 1:1) to afford **48** as a white solid (51.0 mg, 90%).

 $\mathbf{R}_f = 0.55$ (5% MeOH in EtOAc/CH₂Cl₂ 1:1). Stain: UV active;

¹H NMR (400 MHz, CDCl₃): δ 8.02 (br s, 1H), 7.64 (dd, J = 12.8, 8.4 Hz, 1H), 7.56 (d, J = 12.8 Hz, 1H), 6.25 (d, J = 6.0 Hz, 1H), 4.58 (br d, J = 7.2 Hz, 1H), 4.12–3.95 (m, 5H, overlapped), 3.68 (s, 3H), 3.12 (s, 3H), 2.71–2.51 (m, 5H, overlapped), 1.27 (dt, J = 6.8, 6.4 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 18.64 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.0, 155.1, 146.7, 133.0 (d, J = 10.8 Hz), 131.7 (d, J = 15.8 Hz), 127.6 (d, J = 11.3 Hz), 123.7 (d, J = 189.5 Hz), 118.5 (d, J = 15.6 Hz), 78.7 (br), 62.1

(d, J = 5.4 Hz), 62.0 (d, J = 5.6 Hz), 59.6 (br), 53.2, 52.1, 45.2 (br), 33.6 (br), 23.7 (br), 16.4 (d, J = 6.7 Hz) ppm; HRMS (ESI-TOF) calc'd for C₂₀H₂₈O₈N₂P [M+H]⁺: 455.15778, found 455.15810.

Diethyl benzylphosphonate (49)

Prepared according to modified General procedure A using benzyl bromide (29.7 μ L, 0.25 mmol), diethyl *H*-phosphonate (**3**, 38.6 μ L, 0.30 mmol), Pd(OAc)₂ (0.6 mg, 2.50 μ mol), XantPhos (1.4 mg, 2.50 μ mol), LiCl (10.7 mg, 0.25 mmol), 2,6-lutidine (58.0 μ L, 0.50 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and deoxygenated THF (50 μ L). The crude product was purified by pTLC (hexane/EtOAc 1:1) to afford **49** as a vellowish oil (56.0 mg, 98%).

Spectral data match previously reported results,⁵³ and ${}^{1}\text{H}/{}^{31}\text{P}$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.4$ (hexane/EtOAc 1:1). Stain: UV active, KMnO₄; ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.22 (m, 5H), 4.06–3.93 (m, 4H), 3.14 (d, J = 21.6 Hz, 2H), 1.23 (t, J = 7.2 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 26.44 ppm.

Note: Control experiment with no Pd catalyst afforded no product, thus excluding S_N2 reaction pathway. Cross-coupling with benzyl chloride afforded **49** in 24% yield (¹H NMR with CH₂Br₂ as an internal standard).

Cross-coupling with boronic acid 50 and pinacol boronate 51

 $C(sp^2)$ -P cross-coupling reactions 50 and 51 afforded protodeborylation product 21 instead of the expected product containing intact boronic acid and pinacol boronate, respectively.

Representative procedure: Performed according to General procedure A using pinacol boronate **51** (87.0 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 39.6 μ L, 0.30 mmol), Pd(OAc)₂ (1.4 mg, 6.25 μ mol), XantPhos (3.6 mg, 6.25 μ mol), Ni(phen)₃Cl₂ (1.7 mg, 2.50 μ mol), LiBr (21.7 mg, 0.25 mmol), nano Zn (8.1 mg, 0.125 mmol), 2,6-lutidine (34.8 μ L, 0.30 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed at 45 °C. Analysis of the crude reaction mixture by ¹H NMR with CH₂Br₂ as an internal standard revealed the formation of **21** in 67% yield (90% yield from **50**).

Diethyl pyridin-4-ylphosphonate (52)

Prepared according to modified General procedure A using 4-iodopyridine (51.3 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), Pd(OAc)₂ (1.4 mg, 6.25 μ mol), XantPhos (3.6 mg, 6.25 μ mol), Ni(phen)₃Cl₂ (8.2 mg, 12.50 μ mol), LiBr (21.7 mg, 0.25 mmol), nano Zn (8.1 mg, 0.125 mmol), 2,6-lutidine (87.0 μ L, 0.75 mmol), 2 wt %

TPGS-750-M in H_2O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed at 55 °C. The crude product was purified by pTLC (4% MeOH on CH_2Cl_2) to afford **52** as a light-yellow oil (48.0 mg, 89%).

Spectral data match previously reported results,⁵⁴ and ${}^{1}H/{}^{31}P$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.22$ (4% MeOH on CH₂Cl₂). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 8.77–8.74 (m, 2H), 7.66–7.62 (m, 2H), 4.23–4.07 (m, 4H), 1.33 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 14.61 ppm.

Diethyl (2-chloropyridin-4-yl)phosphonate (53)

Prepared according to General procedure A using 2-chloro-4-iodopyridine (59.9 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), Pd(OAc)₂ (1.4 mg, 6.25 μ mol), XantPhos (3.6 mg, 6.25 μ mol), Ni(phen)₃Cl₂ (4.2 mg, 6.25 μ mol), LiBr (21.7 mg, 0.25 mmol), nano Zn (8.1 mg, 0.125 mmol), 2,6-lutidine (87.0 μ L, 0.75 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed

at 55 °C. The crude product was purified by pTLC (EtOAc/CH₂Cl₂ 1:1) to afford **53** as a light-yellow oil (47.0 mg, 76%).

Spectral data match previously reported results,⁵⁵ and ${}^{1}H/{}^{31}P/{}^{13}C$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.44$ (EtOAc/CH₂Cl₂ 1:1). Stain: UV active;

¹H NMR (400 MHz, CDCl₃): δ 8.54–8.52 (m, 1H), 7.69 (dt, *J* =13.6, 0.8 Hz, 1H), 7.78 (ddd, *J* = 12.8, 4.8, 1.2 Hz, 1H), 4.25–4.09 (m, 4H), 1.35 (dt, *J* = 6.8, 0.4 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 12.55 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 152.2 (d, J = 18.3 Hz), 150.2 (d, J = 13.8 Hz), 141.2 (d, J = 184.1 Hz), 126.3 (d, J = 9.4 Hz), 123.8 (d, J = 8.0 Hz), 63.1 (d, J = 5.7 Hz), 16.4 (d, J = 6.2 Hz) ppm.

Diethyl (2-fluoro-5-methylpyridin-4-yl)phosphonate (54)

Prepared according to modified General procedure A using 2-fluoro-4-iodo-5methylpyridine (59.3 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), 2,6-lutidine (87.0 μ L, 0.75 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed at 55 °C. The crude product was purified by pTLC (hexane/EtOAc 1:1) to afford **54** as a colorless oil (26.0 mg, 42%).

 $\mathbf{R}_f = 0.47$ (hexane/EtOAc 1:1). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 8.10 (d, *J* = 6.8 Hz, 1H), 7.37 (d, *J* = 15.2, 3.2 Hz, 1H), 4.24–4.08 (m, 4H), 2.49 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 6H) ppm;

³¹**P**{¹**H**} **NMR (162 MHz, CDCl₃):** δ 13.1 (d, *J* = 12.3 Hz) ppm;

¹⁹F NMR (376 MHz, CDCl₃): δ -71.4 (d, *J* = 12.4 Hz) ppm;

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 162.2 (dd, J = 240.2, 20.4 Hz), 149.5 (dd, J = 14.5, 13.4 Hz), 141.8 (dd, J = 182.6, 6.0 Hz), 133.0 (dd, J = 8.5, 5.1 Hz), 113.2 (dd, J = 38.7, 10.0 Hz), 63.0 (d, J = 5.7 Hz), 17.2 (d, J = 2.0 Hz), 16.4 (d, J = 6.2 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₁₀H₁₆O₃NFP [M+H]⁺: 248.08463, found 248.08488.

Diethyl (6-acetamidopyridin-3-yl)phosphonate hydrochloride (55·HCl)

Prepared according to modified General procedure A using *N*-(5-iodopyridin-2-yl)acetamide **SI-16** (65.5 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), 2,6-lutidine (87.0 μ L, 0.75 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed at 55 °C. The crude

product was purified by pTLC (5% MeOH in EtOAc/CH₂Cl₂ 1:1) to afford **55** as a yellow oil (57.0 mg, 84%), containing trace amounts of TPGS-750-M surfactant. Analytically pure product was obtained by dissolving the oil in 1,4-dioxane (2 mL) and adding ~3M HCl in dioxane (200 μ L). After adding Et₂O (2 mL) a white precipitate formed and the mixture was centrifuged (6000 rpm, 6 minutes), filtered and the precipitate was washed with 1,4-dioxane/Et₂O (1:1, 2 × 2 mL). The precipitate was dried to afford **55·HCl** as a white amorphous solid.

R_f(free base) = 0.36 (5% MeOH in EtOAc/CH₂Cl₂ 1:1). Stain: UV active;

¹**H** NMR (55·HCl, 600 MHz, CDCl₃): δ 10.49 (br s, 1H), 8.63–8.58 (m, 2H, overlapped), 8.32 (d, J = 10.2 Hz, 1H), 4.24–4.12 (m, 4H), 2.37 (s, 3H), 1.35 (t, J = 6.6 Hz, 6H) ppm;

³¹P{¹H} NMR (55·HCl, 162 MHz, CDCl₃): δ 11.55 ppm;

¹³C{¹H} NMR (55·HCl, 151 MHz, CDCl₃): δ 170.7, 151.9, 146.4 (d, J = 7.8 Hz), 143.8 (d, J = 15.9 Hz), 121.6 (d, J = 199.0 Hz), 116.0 (d, J = 11.6 Hz), 63.4 (d, J = 5.6 Hz), 25.1, 16.5 (d, J = 6.0 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₁₁H₁₈O₄N₂P [M–Cl+H]⁺: 273.09987, found 273.09974.

Diethyl (1-benzyl-1*H*-pyrazol-4-yl)phosphonate (56)

Prepared according to modified General procedure A using 1-benzyl-4-iodo-1*H*pyrazole (71.0 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), Pd(OAc)₂ (1.4 mg, 6.25 μ mol), XantPhos (3.6 mg, 6.25 μ mol), Ni(phen)₃Cl₂ (4.2 mg, 6.25 μ mol), LiBr (21.7 mg, 0.25 mmol), nano Zn (8.1 mg, 0.125 mmol), 2,6-lutidine (87.0 μ L, 0.75 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and EtOAc (0.1 mL).

The crude product was purified by pTLC (5% MeOH in CH_2Cl_2) to afford **56** as a viscous light-yellow oil (55.0 mg, 75%).

Spectral data match previously reported results,³³ and ${}^{1}\text{H}/{}^{31}\text{P}$ NMR data are provided here for convenience.

 $\mathbf{R}_{f} = 0.35$ (5% MeOH in CH₂Cl₂). Stain: UV active, KMnO₄ stain;

¹H NMR (400 MHz, CDCl₃): δ 7.75 (s, 1H), 7.72 (d, J = 2.0 Hz, 1H), 7.39–7.33 (m, 3H), 7.29–7.24 (m, 2H), 5.31 (s, 2H), 4.15–4.00 (m, 4H), 1.31 (t, J = 7.2 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 13.77 ppm.

Note: Cross-coupling of unprotected 4-iodo-1H-pyrazole with **3** afforded no detectable phosphonate product.

Diethyl thiophen-3-ylphosphonate (57)

Prepared according to General procedure A using 3-iodothiophene (25.4 μ L, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 2:3) to afford **57** as a yellow oil (47.0 mg, 85%).

Spectral data match previously reported results,⁴¹ and ${}^{1}H/{}^{31}P$ NMR data are provided here for convenience.

 $\mathbf{R}_{f} = 0.46$ (hexane/EtOAc 2:3). Stain: UV active;

¹H NMR (400 MHz, CDCl₃): δ 7.98 (ddd, J = 11.2, 8.4, 2.8, 1.2 Hz, 1H), 7.44–7.41 (m, 1H), 7.34–7.32 (m, 1H), 4.19–4.03 (m, 4H), 1.32 (t, J = 7.2 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 13.20 ppm.

Diethyl thiophen-2-ylphosphonate (58)

Prepared according to General procedure A using 2-iodothiophene (27.6 μ L, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 2:3) to afford **58** as a yellow oil (50.0 mg, 91%).

Spectral data match previously reported results,³⁶ and ${}^{1}\text{H}/{}^{31}\text{P}$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.63$ (hexane/EtOAc 2:3). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 7.70–7.64 (m, 2H), 7.19–7.16 (m, 1H), 4.22–4.05 (m, 4H), 1.33 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 11.90 ppm.

Note: **58** was also prepared according to General procedure B using 2-bromothiophene (24.2 μ L, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The reaction was performed at 55 °C. The crude product was purified by pTLC (hexane/EtOAc 2:3) to afford **58** as a yellow oil (21.0 mg, 38%).

tert-Butyl 3-(diethoxyphosphoryl)-1*H*-indole-1-carboxylate (59)

Prepared according to General procedure A using *tert*-butyl 3-iodo-1*H*-indole-1carboxylate (**SI-17**, 85.8 mg, 0.25 mmol) and diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 1:1) to afford **59** as a light-yellow oil (62.0 mg, 70%).

 $\mathbf{R}_f = 0.39$ (hexane/EtOAc 1:1). Stain: UV active;

¹**H** NMR (400 MHz, CDCl₃): δ 8.21 (br d, J = 8.0 Hz, 1H), 8.16 (d, J = 5.2 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.38 (dt, J = 7.2, 1.2 Hz, 1H), 7.31 (dt, J = 8.0, 1.2 Hz, 1H), 4.24–4.02 (m, 4H), 1.67 (s, 9H), 1.32 (t, J = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 14.67 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 148.9, 136.1 (d, J = 9.6 Hz), 135.0 (d, J = 23.9 Hz), 129.1 (d, J = 11.0 Hz), 125.3, 123.8, 121.2, 115.5, 107.1 (d, J = 211.6 Hz), 85.1, 62.1 (d, J = 4.9 Hz), 28.2, 16.5 (d, J = 6.8 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₁₇H₂₅O₅NP [M+H]⁺: 354.14649, found 354.14634.

Diethyl (1-tosyl-1*H*-pyrrolo[3,2-*b*]pyridin-6-yl)phosphonate (60)

Prepared on 0.125-mmol scale according to General procedure A using 6-iodo-1-tosyl-1*H*-pyrrolo[3,2-*b*]pyridine (**SI-19**, 49.8 mg, 0.125 mmol) and diethyl *H*-phosphonate (**3**, 33.0 μ L, 0.25 mmol). The reaction was performed at 55 °C. The crude product was purified by pTLC (100% EtOAc) to afford **60** as an off-white

wax (29.0 mg, 57%).

 $\mathbf{R}_{f} = 0.39$ (hexane/EtOAc 1:1), 0.55 (100% EtOAc). Stain: UV active, KMnO₄;

¹**H NMR (600 MHz, C₆D₆):** δ 9.22 (d, *J* = 5.4 Hz, 1H), 9.11 (d, *J* = 15.6 Hz, 1H), 7.60–7.56 (m, 3H), 6.63 (d, *J* = 3.6 Hz, 1H), 6.48 (d, *J* = 7.8 Hz, 2H), 3.98–3.91 (m, 2H), 3.87–3.80 (m, 2H), 1.66 (s, 3H), 0.97 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, C₆D₆): δ 17.02 ppm;

¹³C{¹H} NMR (151 MHz, C₆D₆): δ 151.8, 149.0 (d, J = 12.4 Hz), 145.4, 135.3, 132.0, 130.2, 128.4, 127.1, 124.6 (d, J = 10.9 Hz), 121.0 (d, J = 188.9 Hz), 110.2, 62.3 (d, J = 5.1 Hz), 21.1, 16.3 (d, J = 6.0 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₁₈H₂₂O₅N₂PS [M+H]⁺: 409.09816, found 409.09792.

Note: Cross-coupling of **SI-19** with **3** following General procedure B afforded no detectable amounts of **60**.

Diethyl (1-tosyl-1*H*-pyrrolo[3,2-b]pyridin-3-yl)phosphonate (61)

Prepared on 0.125-mmol scale according to General procedure B using 3-iodo-1-tosyl-1*H*-pyrrolo[3,2-*b*]pyridine (**SI-20**, 49.8 mg, 0.125 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), Pd[P(*t*-Bu)₃]₂ (1.7 mg, 3.125 μ mmol), Pd(OAc)₂ (0.7 mg, 3.125 μ mmol), XantPhos (1.8 mg, 3.125 μ mmol), LiBr (10.9 mg, 0.125 mmol),

2,6-lutidine (43.5 μ L, 0.375 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and EtOAc (0.1 mL). The reaction was performed at 55 °C. The crude product was purified by pTLC (3% MeOH in EtOAc/CH₂Cl₂ 1:1) to afford **61** as a white solid (47.0 mg, 92%).

$\mathbf{R}_{f} = 0.54$ (3% MeOH in EtOAc/CH₂Cl₂ 1:1). Stain: UV active;

¹H NMR (400 MHz, CDCl₃): δ 8.65 (dd, J = 4.8, 1.6 Hz, 1H), 8.33 (d, J = 5.2 Hz, 1H), 8.26 (dt, J = 8.4, 2.0 Hz, 1H), 7.83 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H, overlapped), 7.28 (d, J = 8.4 Hz, 1H, overlapped), 4.31–4.14 (m, 4H), 2.39 (s, 3H), 1.32 (t, J = 7.2 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 11.50 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 147.3, 146.9 (d, J = 8.3 Hz), 146.4, 137.0 (d, J = 21.8 Hz), 134.4, 130.4, 128.9 (d, J = 11.9 Hz), 127.3, 121.0, 119.8, 110.5 (d, J = 208.7 Hz), 62.7 (d, J = 5.3 Hz), 21.7, 16.4 (d, J = 6.5 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₁₈H₂₂O₅N₂PS [M+H]⁺: 409.09816, found 409.09848

Note: Cross-coupling of **SI-20** with **3** following General procedure A (performed at 55 °C) afforded **61** in 42% yield.

Diethyl (1-tosyl-1*H*-pyrrolo[2,3-*b*]pyridin-3-yl)phosphonate (62)

Prepared according to modified General procedure A using 3-iodo-1-tosyl-1*H*-pyrrolo[2,3-*b*]pyridine (**SI-21**, 99.6 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), 2,6-lutidine (87.0 μ L, 0.75 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The crude product was purified by pTLC

(hexane/EtOAc 1:2) to afford 62 as an off-white solid (92.0 mg, 90%).

 $\mathbf{R}_f = 0.30$ (hexane/EtOAc 1:2). Stain: UV active;

¹H NMR (400 MHz, CDCl₃): δ 8.48 (dd, J = 4.8, 1.6 Hz, 1H), 8.25 (d, J = 5.6 Hz, 1H), 8.13 (d, J = 8.4 Hz, 2H), 8.08 (dd, J = 8.0, 1.6 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.26 (dd, J = 8.0, 4.8 Hz, 1H, overlapped with CHCl₃), 4.23–4.04 (m, 4H), 2.39 (s, 3H), 1.32 (t, J = 7.2 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 12.55 ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 147.4 (d, J = 13.6 Hz), 146.0, 145.9, 134.6, 134.0 (d, J = 22.5 Hz), 130.2, 129.9, 128.6, 122.1 (d, J = 11.1 Hz), 119.8, 105.7 (d, J = 213.7 Hz), 62.4 (d, J = 5.3 Hz), 21.8, 16.4 (d, J = 6.5 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₁₈H₂₂O₅N₂PS [M+H]⁺: 409.09816, found 409.09797.

Ethyl 6-(diethoxyphosphoryl)imidazo[1,2-*a*]pyridine-2-carboxylate (63)

Prepared on 0.125-mmol scale according to modified General procedure A using ethyl 6-iodoimidazo[1,2-*a*]pyridine-2-carboxylate (SI-22, 39.5 mg, 0.125 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), 2,6-lutidine (43.5 μ L, 0.375 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and EtOAc

(0.1 mL). The reaction was performed at 55 °C. The crude product was purified by pTLC (4% EtOH in EtOAc/CH₂Cl₂ 1:1) to afford **63** as a white solid (26.0 mg, 64%).

 $\mathbf{R}_{f} = 0.43$ (4% EtOH in EtOAc/CH₂Cl₂ 1:1). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 8.70 (dt, *J* = 11.6, 1.2 Hz, 1H), 8.23 (s, 1H),7.73 (dd, *J* = 9.6, 3.6 Hz, 1H), 7.40 (td, *J* = 10.0, 1.6 Hz, 1H), 4.47 (q, *J* = 7.2 Hz, 2H), 4.26–4.08 (m, 4H), 1.44 (t, *J* = 7.2 Hz, 3H),1.36 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 15.25 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.9, 145.2 (d, J = 1.5 Hz), 138.3, 132.5 (d, J = 11.1 Hz), 126.1 (d, J = 7.1 Hz), 119.3 (d, J = 13.6 Hz), 117.8, 115.4 (d, J = 196.2 Hz), 62.8 (d, J = 5.4 Hz), 61.5, 16.4 (d, J = 6.4 Hz), 14.5 ppm;

HRMS (ESI-TOF) calc'd for $C_{14}H_{20}O_5N_2P [M+H]^+$: 327.11043, found 327.11038.

Note: Carboxylate in **63** is prone to transesterification with alcohols (*e.g.*, MeOH) during chromatography separation using silica gel. Thus, we used mobile phase containing EtOH.

Diethyl (4-((2,5-dichloropyrimidin-4-yl)amino)phenyl)phosphonate (64)

Prepared on 0.125-mmol scale according to modified General procedure A using 2,5-dichloro-*N*-(4-iodophenyl)pyrimidin-4-amine (**SI-23**, 45.8 mg, 0.125 mmol), diethyl *H*-phosphonate (**3**, 33.0 μ L, 0.25 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and EtOAc (0.1 mL). The crude product was purified by pTLC (EtOAc/CH₂Cl₂ 5:4) to afford **64** as a white solid (31.0 mg, 66%).

 $\mathbf{R}_f = 0.22$ (EtOAc/CH₂Cl₂ 5:4). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 8.24 (s, 1H), 7.84–7.76 (m, 4H), 7.58 (br s, 1H), 4.18–4.02 (m, 4H), 1.31 (t, *J* = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 18.12 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.2, 156.3, 155.3, 140.8 (d, *J* = 3.5 Hz), 133.1 (d, *J* = 10.6 Hz), 124.2 (d, *J* = 191.6 Hz), 120.4 (d, *J* = 15.2 Hz), 114.3, 62.2 (d, *J* = 5.4 Hz), 16.4 (d, *J* = 6.5 Hz) ppm; HRMS (ESI-TOF) calc'd for C₁₄H₁₇O₃N₃Cl₂P [M+H]⁺: 376.03791, found 376.03775.

Diethyl (4-(2-(methylsulfonamido)-5-nitrophenoxy)phenyl)phosphonate (65)

Prepared on 0.125 mmol-scale according to General procedure B using iodonimesulide **SI-24** (54.3 mg, 0.125 mmol) and diethyl *H*-phosphonate (**3**, 33.0 μ L, 0.25 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed at 55 °C. The crude product was purified by pTLC (EtOAc/CH₂Cl₂ 3:2), followed by second pTLC

(2% MeOH in EtOAc/CH₂Cl₂ 1:1) to afford 65 as a yellow solid (52.0 mg, 94%).

 $\mathbf{R}_{f} = 0.28 - 0.44$ (EtOAc/CH₂Cl₂ 1:1). Stain: UV active, visible yellow spot;

¹H NMR (400 MHz, CDCl₃): δ 7.97 (dd, J = 8.8, 2.4 Hz, 1H), 7.74 (dd, J = 12.8, 8.8 Hz, 2H), 7.69–7.67 (m, 2H, overlapped), 7.05 (dd, J = 8.8, 3.2 Hz, 2H), 4.12–3.97 (m, 4H), 3.01 (s, 3H), 1.26 (t, J = 6.8 Hz, 6H) ppm;

³¹**P**{¹**H**} **NMR (162 MHz, CDCl₃):** δ 17.23 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃/CD₃OD ~10:1): δ 159.1 (d, J = 3.7 Hz), 145.2, 142.6, 137.9, 134.2 (d, J = 11.4 Hz), 123.9 (d, J = 193.0 Hz), 120.8, 118.7, 118.5 (d, J = 16.2 Hz), 114.5, 62.5 (d, J = 5.7 Hz), 40.2, 16.2 (d, J = 6.6 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₁₇H₂₂O₈N₂PS [M+H]⁺: 445.08290, found 445.08267.

Note: ¹H NMR signals of **65** were significantly broadened when the concentration of **65** in CDCl₃ exceeded ca. 10 mg/1 mL. Cross-coupling of **SI-24** with **3** following General procedure A afforded **65** in <5% yield (¹H NMR with CH₂Br₂ as an internal standard).

Compound 66

Prepared on 0.125-mmol scale according to modified General procedure A using 4-[3-chloro-4-(3-fluorobenzyloxy)phenylamino]-6-iodoquinazoline (63.1 mg, 0.125 mmol), diethyl *H*-phosphonate (**3**, 33.0 μ L, 0.25 mmol), Pd(OAc)₂ (0.7 mg, 3.13 μ mol), XantPhos (1.8 mg, 3.13 μ mol), Ni(phen)₃Cl₂ (2.1 mg, 3.13 μ mol), LiBr (10.9 mg, 0.125 mmol), nano Zn (4.1 mg, 62.50 μ mol), 2,6-lutidine (43.5 μ L, 0.375 mmol), 2 wt % TPGS-750-M in

H₂O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed at 55 °C. The crude product was purified by pTLC (5% MeOH in CH₂Cl₂, then EtOAc/CH₂Cl₂ 1:1) to afford **66** as a beige solid (56.0 mg, 87%).

R_f = 0.40–0.50 (5% MeOH in CH₂Cl₂), 0.25 (EtOAc/CH₂Cl₂ 1:1). Stain: UV active;

¹**H** NMR (400 MHz, CDCl₃): δ 9.00 and 8.97 (2 × s, 2H), 8.78 (s, 1H), 8.00–7.90 (m, 2H), 7.88 (d, *J* = 2.4 Hz, 1H), 7.60 (dd, *J* = 8.8, 2.8 Hz, 1H), 7.36 (td, *J* = 8.0, 6.0 Hz, 1H), 7.24 (t, *J* = 11.6 Hz, 2H, overlapped with CHCl₃), 7.05–6.99 (m, 2H, overlapped), 5.18 (s, 2H), 4.12–3.94 (m, 4H), 1.23 (t, *J* = 7.2 Hz, 3H) ppm;

³¹**P**{¹**H**} **NMR (162 MHz, CDCl₃):** δ 17.30 ppm;

¹⁹F NMR (376 MHz, CDCl₃): δ -112.57 (m) ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 164.1 (d, J = 244.9 Hz), 158.9, 157.3, 152.4 (d, J = 2.9 Hz), 151.4, 139.2 (d, J = 7.3 Hz), 133.6 (d, J = 9.2 Hz), 132.5, 130.3 (d, J = 8.2 Hz), 129.4 (d, J = 13.0 Hz), 129.0 (d, J = 13.6 Hz), 126.0, 125.2 (d, J = 189.4 Hz), 123.5, 123.3, 122.5 (d, J = 3.0 Hz), 115.2 (d, J = 17.2 Hz), 115.0 (d, J = 21.0 Hz), 114.3, 114.0 (d, J = 22.2 Hz), 70.5 (d, J = 1.8 Hz), 62.7 (d, J = 5.3 Hz), 16.3 (d, J = 6.7 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₂₅H₂₅O₄N₃ClFP [M+H]⁺: 516.12498, found 516.12460.

Compound 67

Prepared on 0.125-mmol scale according to modified General procedure A using iodo-loratadine SI-25 (63.5 mg, 0.125 mmol), diethyl *H*-phosphonate (**3**, 33.0 μ L, 0.25 mmol), Pd(OAc)₂ (0.7 mg, 3.13 μ mol), XantPhos (1.8 mg, 3.13 μ mol), Ni(phen)₃Cl₂ (2.1 mg, 3.13 μ mol), LiBr (10.9 mg, 0.125 mmol), nano Zn (4.1 mg, 0.063 mmol), 2,6-lutidine (43.5 μ L, 0.375 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed at 55 °C. The crude product was purified by

pTLC (1% MeOH + 0.5% Et₃N in EtOAc) to afford **67** as a colorless film (57.0 mg, 88%).

$\mathbf{R}_f = 0.38$ (1% MeOH in EtOAc). Stain: UV active, KMnO₄;

¹**H NMR (400 MHz, CDCl₃):** δ 8.69 (d, J = 6.0 Hz, 1H), 7.84 (d, J = 13.6 Hz, 1H), 7.15–7.07 (m, 3H), 4.21–4.01 (m, 4H), 3.77 (br s, 2H), 3.40–3.32 (m, 2H), 3.18–3.11 (m, 2H), 2.92–2.75 (m, 2H), 2.49–2.44 (m, 1H), 2.37–2.23 (m, 2H), 1.31 (m, 6H), 1.22 (t, J = 7.2 Hz, 3H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 16.19 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.6, 155.5, 149.1 (d, *J* = 12.0 Hz), 141.1 (d, *J* = 8.8 Hz), 139.4, 139.0, 137.1, 133.6 (d, *J* = 1.3 Hz), 133.5, 133.4, 130.7, 129.1, 126.5, 123.2 (d, *J* = 189.0 Hz), 62.6 (d, *J* = 5.7 Hz), 61.4, 44.8, 44.8, 31.5, 31.5, 30.9, 30.7, 16.4 (d, *J* = 6.1 Hz), 14.8 ppm; HRMS (ESI-TOF) calc'd for C₂₆H₃₃O₅N₂ClP [M+H]⁺: 519.18101, found 519.18091.

Compound 68

Prepared on 0.125-mmol scale according to modified General procedure A using trametinib (76.9 mg, 0.125 mmol), diethyl *H*-phosphonate (**3**, 33.0 μ L, 0.25 mmol), 2,6-lutidine (43.5 μ L, 0.375 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The crude reaction mixture was centrifuged (6 min at 6000 rpm), the precipitate was filtered, washed with dist. H₂O

 $(3 \times 1 \text{ mL})$, and purified by pTLC (5% MeOH in EtOAc/CH₂Cl₂ 1:1) to afford **68** as a white solid (68.7 mg, 88%).

 $\mathbf{R}_{f} = 0.34$ (5% MeOH in EtOAc/CH₂Cl₂ 1:1). Stain: UV active;

¹**H** NMR (400 MHz, CDCl₃): δ 11.28 (s, 1H), 8.36 (br s, 1H), 7.83 (s, 1H), 7.60–7.51 (m, 2H), 7.23–7.19 (m, 2H), 6.96–6.91 (m, 2H), 4.18–4.06 (m, 4H), 3.21 (s, 3H), 2.72 (m, 1H), 2.08 (s, 3H), 1.40 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 6H), 1.11–1.06 (m, 2H), 0.78–0.75 (m, 2H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 15.91 (d, J = 6.5 Hz) ppm;

¹⁹**F NMR (376 MHz, CDCl₃):** δ -124.21 (m) ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 168.9, 164.8, 163.9, 154.5 (dd, J = 250.0, 22.0 Hz), 151.8, 151.2, 144.8, 140.1, 139.4, 132.2 (dd, J = 11.6, 3.3 Hz), 129.1, 128.5 (dd, J = 9.6, 3.6 Hz), 126.3 (dd, J = 192.0 Hz, 5.5 Hz), 124.0, 122.5 (d, J = 17.7 Hz), 120.5, 119.8 (dd, J = 20.3, 11.1 Hz), 119.0, 104.5, 90.7, 62.6 (d, J = 6.1 Hz), 34.8, 25.4, 24.5, 16.4 (d, J = 6.1 Hz), 13.5, 8.5 ppm;

HRMS (ESI-TOF) calc'd for $C_{30}H_{34}O_7N_5FP$ [M+H]⁺: 648.19938, found 648.19891; calc'd for $C_{30}H_{33}O_7N_5FNaP$ [M+Na]⁺: 648.19938, found 648.19891.

Compound 69

Prepared according to General procedure A using SI-26 (178.8 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The crude product was suspended in 1,4-dioxane (3 mL), centrifuged (6 min, 6000 rpm) and decanted. This procedure was repeated twice to remove traces

of surfactant, which are difficult to remove by chromatography. Then the solids were suspended in Et₂O (2 mL), centrifuged (6 min, 6000 rpm), decanted, and redissolved in CHCl₃ (3 mL). Sat. aq. NaHCO₃ (4 mL) was added and the mixture was vigorously stirred for 10 minutes. The organic phase was separated and the aqueous phase was extracted with CHCl₃ (3 × 2 mL). Combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography (1% MeOH in CH₂Cl₂ \rightarrow 10% MeOH in CH₂Cl₂) to afford **69** as a viscous colorless oil (173.0 mg, 95%).

 $\mathbf{R}_{f} = 0.50$ (10% MeOH in CH₂Cl₂). Stain: UV active, KMnO₄;

¹**H NMR (400 MHz, CDCl₃):** δ 7.89 (dd, J = 13.2, 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 1H), 7.53–7.50 (m, 3H), 7.47 (d, J = 2.0 Hz, 1H), 7.26 (dd, J = 8.4, 2.4 Hz, 1H, overlapped with CHCl₃), 6.98 (d, J = 11.2 Hz, 2H), 6.88 (d, J = 9.2 Hz, 2H), 6.77 (d, J = 9.2 Hz, 2H), 4.51 (d, J = 14.8 Hz, 1H), 4.41 (d, J = 14.8 Hz, 1H), 4.37–4.31 (m, 1H), 4.20–4.05 (m, 4H), 3.94 (br s, 2H), 3.87 (dd, J = 8.4, 6.4 Hz, 1H), 3.72 (td, J = 8.4, 4.8 Hz, 2H), 3.53 (br s, 2H), 3.28 (dd, J = 9.6, 6.8 Hz, 1H), 3.15 (br s, 2H), 2.99 (br s, 2H), 1.34 (t, J = 6.8 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 17.29 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.1, 152.9, 145.5, 139.4 (d, J = 3.2 Hz), 138.7, 135.7, 134.5, 132.9, 132.0 (d, J = 10.0 Hz), 131.2, 130.1 (d, J = 187.1 Hz), 129.5, 128.4, 127.1 (d, J = 14.1 Hz), 126.9, 121.1, 118.8, 115.2, 107.9, 77.4, 74.7, 67.5, 67.4, 62.2 (d, J = 5.5 Hz), 51.1, 50.7 (br), 47.6 (br), 42.1 (br), 16.3 (d, J = 6.4 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₃₅H₄₀Cl₂N₄O₇P [M+H]⁺: 729.20062, found 729.19939.

Compound 70

Prepared according to modified General procedure B using iodosulfuron-methyl sodium salt (132.4 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The crude product was triturated with Et₂O (3 × 1.5 mL, the mixture was briefly sonicated each time) and

the solid residue was then purified by pTLC (8% MeOH in EtOAc/CH₂Cl₂ 1:1) to afford **70** as a white powder (100.0 mg, 79%).

 $\mathbf{R}_{f} = 0.29$ (8% MeOH in EtOAc/CH₂Cl₂ 1:1). Stain: UV active;

¹**H NMR (600 MHz, CD₃OD):** δ 8.50 (dd, J = 13.8, 1.2 Hz, 1H), 7.93 (ddd, J = 13.2, 7.8, 1.8 Hz, 1H), 7.64 (dd, J = 7.8, 4.2, 1H), 4.20–4.10 (m, 4H), 3.95 (s, 3H), 3.94 (s, 3H), 2.37 (s, 3H), 1.32 (t, J = 6.6 Hz, 3H) ppm;

³¹P{¹H} NMR (162 MHz, CD₃OD): δ 16.07 ppm;

¹³C{¹H} NMR (151 MHz, CD₃OD): δ 180.1, 172.3, 170.0, 167.0, 158.4, 143.7 (d, J = 15.1 Hz), 137.1 (d, J = 2.9 Hz), 134.9 (d, J = 10.1 Hz), 133.3 (overlapped signals), 131.2 (d, J = 190.4 Hz), 129.6 (d, J = 14.8), 64.3 (d, J = 5.7 Hz), 55.5, 53.7, 25.1, 16.6 (d, J = 6.2 Hz) ppm;

Compound 71

Prepared on 0.125-mmol scale according to General procedure A using iodostrychnine SI-27 (57.5 mg, 0.125 mmol) and diethyl *H*-phosphonate (3, 33.0 μ L, 0.25 mmol). The crude product was purified by pTLC (10% MeOH in CH₂Cl₂) to afford 71 as a beige solid (38.0 mg, 65%).

 $\mathbf{R}_{f} = 0.48$ (10% MeOH in CH₂Cl₂). Stain: UV active, KMnO₄;

¹**H NMR (600 MHz, CDCl₃):** δ 8.16 (dd, J = 7.8, 3.0 Hz, 1H), 7.68 (ddd, J = 12.6, 7.8, 1.2 Hz, 1H), 7.63 (d, J = 12.6, 1H), 5.93 (br t, 1H), 4.28 (dt, J = 8.4, 3.6 Hz, 1H), 4.17–4.03 (m, 7H, overlapped signals), 3.92 (d, J = 10.2 Hz, 1H), 3.73 (d, J = 15.0 Hz, 1H), 3.28–3.25 (m, 1H), 3.17–3.12 (m, 2H, overlapped signals), 2.88 (q, J = 10.2 Hz, 1H), 2.75 (d, J = 14.4 Hz, 1H), 2.68 (dd, J = 17.4, 3.0 Hz, 1H), 2.37 (dt, J = 14.4, 4.2 Hz, 1H), 1.92–1.90 (m, 2H), 1.46 (d, J = 14.4 Hz, 1H), 1.32 (t, 7.2 Hz, 6H), 1.27 (dt, J = 10.8, 3.0 Hz, 1H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 19.10 ppm;

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 169.8, 145.7 (d, J = 3.3 Hz), 139.9, 133.1 (d, J = 11.0 Hz), 128.2, 126.3 (d, J = 11.6 Hz), 123.8 (d, J = 192.8 Hz), 116.1 (d, J = 15.9 Hz), 77.4, 64.8, 62.3 (d, J = 5.3 Hz), 60.6, 60.3, 52.7, 52.0, 50.4, 48.2, 42.9, 42.6, 31.6, 26.9, 16.5 (d, J = 6.3 Hz) ppm;* HRMS (ESI-TOF) calc'd for C₂₅H₃₂O₅N₂P [M+H]⁺: 471.20434, found 471.20398.

Note: *One carbon signal is missing in the ¹³C NMR spectrum.

Benzyl (2-(diisopropoxyphosphoryl)phenyl)carbamate (75)

Prepared according to General procedure A using benzyl (2-iodophenyl)carbamate (6, 88.3 mg, 0.25 mmol) and di-*iso*-propyl *H*-phosphonate (72, 49.8 μ L, 0.30 mmol). The crude product was purified by pTLC (hexane/EtOAc 3:1) to afford 75 as a viscous light-yellow oil (79.0 mg, 81%).

 $\mathbf{R}_{f} = 0.46$ (hexane/EtOAc 3:1). Stain: UV active, KMnO₄;

¹**H NMR (400 MHz, CDCl₃):** δ 10.10 (s, 1H), 8.35 (t, *J* = 11.4 Hz, 1H), 7.57 (ddd, *J* = 14.4, 7.6, 1.6 Hz, 1H), 7.52–7.47 (m, 1H), 7.43–7.40 (m, 2H), 7.38–7.28 (m, 3H), 7.06 (ddd, *J* = 7.6, 2.8, 0.8 Hz, 1H), 5.21 (s, 2H), 4.70–4.59 (m, 2H), 1.36 (d, *J* = 6.4 Hz, 6H), 1.20 (d, *J* = 6.0 Hz, 6H) ppm; ³¹P{¹H} **NMR (162 MHz, CDCl₃):** δ 19.46 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.6, 142.5 (d, J = 7.2 Hz), 136.4, 133.8 (d, J = 2.4 Hz), 132.8 (d, J = 5.8 Hz), 128.5, 128.2, 128.1, 122.1 (d, J = 13.5 Hz), 119.2 (d, J = 11.3 Hz), 114.9 (d, J = 179.7 Hz), 71.5 (d, J = 5.3 Hz), 66.7, 24.1 (d, J = 3.9 Hz), 23.7 (d, J = 5.0 Hz) ppm; HRMS (ESI-TOF) calc'd for C₂₀H₂₇O₅NP [M+H]⁺: 392.16214, found 392.16209.

Benzyl (2-(bis(benzyloxy)phosphoryl)phenyl)carbamate (76)

Prepared according to General procedure B using benzyl (2-iodophenyl)carbamate (6, 88.3 mg, 0.25 mmol) and dibenzyl *H*-phosphonate (73, 110.5 μ L, 0.50 mmol, technical grade). The crude product was purified by pTLC (hexane/EtOAc 3:1) to afford 76 as a viscous light-yellow oil (59.0 mg, 48%).

 $\mathbf{R}_f = 0.57$ (hexane/EtOAc 2:1). Stain: UV active, KMnO₄;

¹**H NMR (400 MHz, CDCl₃):** δ 9.95 (s, 1H), 8.37 (t, *J* = 7.6 Hz, 1H), 7.58 (ddd, *J* = 14.8, 8.0, 1.6 Hz, 1H), 7.54–7.50 (m, 1H), 7.47–7.43 (m, 2H), 7.41–7.28 (m, 13H), 7.04 (ddd, *J* = 7.6, 3.2, 0.8 Hz, 1H), 5.23 (s, 2H), 5.15–4.99 (m, 4H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 20.25 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.5, 142.8 (d, J = 7.3 Hz), 136.3, 135.6 (d, J = 6.9 Hz), 134.3 (d, J = 2.3 Hz), 132.8 (d, J = 5.9 Hz), 128.6, 128.6, 128.5, 128.3, 128.2, 128.1, 127.6, 127.0, 122.3 (d, J = 13.7 Hz), 119.4 (d, J = 11.4 Hz), 112.9 (d, J = 180.5 Hz), 68.1 (d, J = 5.1 Hz), 66.9 ppm; HRMS (ESI-TOF) calc'd for C₂₈H₂₇O₅NP [M+H]⁺: 488.16214, found 488.16201.

Bis-SATE carbamate 77

Prepared according to General procedure B using benzyl (2-iodophenyl)carbamate (6, 88.3 mg, 0.25 mmol) and bis-SATE *H*-phosphonate 74 (111.0 μ L, 0.30 mmol). The crude product was purified by pTLC (hexane/EtOAc/CH₂Cl₂ 4:1:1) to afford 77 as a colorless oil (131.0 mg, 88%).

 $\mathbf{R}_{f} = 0.61$ (hexane/EtOAc/CH₂Cl₂ 4:1:1). Stain: UV active, KMnO₄;

¹H NMR (400 MHz, CDCl₃): δ 9.89 (s, 1H), 8.37 (t, J = 8.0 Hz, 1H), 7.59–7.50 (m, 2H, overlapped signals), 7.43–7.41 (m, 2H), 7.38–7.31 (m, 3H), 7.04 (ddd, J = 8.0, 3.2, 0.8 Hz, 1H), 5.20 (s, 2H), 4.19–4.12 (m, 2H), 4.08–4.00 (m, 2H), 3.12 (t, J = 6.8 Hz, 4H), 1.20 (s, 18H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 19.74 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 205.4, 153.4, 142.9 (d, J = 7.4 Hz), 136.2, 134.4 (d, J = 2.2 Hz), 132.7 (d, J = 5.9 Hz), 128.5, 128.2, 128.1, 122.2 (d, J = 13.7 Hz), 119.3 (d, J = 11.5 Hz), 112.2 (d, J = 181.0 Hz), 66.8, 64.8 (d, J = 5.2 Hz), 46.4, 28.7 (d, J = 7.1 Hz), 27.3 ppm; HPMS (ESL TOF) calc'd for Carles On NPS $[M+H]^+$; 596 19001 found 596 18993

HRMS (ESI-TOF) calc'd for C₂₈H₃₉O₇NPS₂ [M+H]⁺: 596.19001, found 596.18993.

Bis-SATE phosphonate 78

Prepared according to modified General procedure B using 3-iodo-1-tosyl-1*H*-pyrrolo[2,3-*b*]pyridine **SI-21** (99.6 mg, 0.25 mmol), bis-SATE *H*-phosphonate **74** (138.8 μ L, 0.38 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The crude product was purified by pTLC (hexane/EtOAc/CH₂Cl₂

2:1:1) and then by second pTLC (3% MeOH in CH_2Cl_2) to afford **78** as a colorless waxy solid (156.0 mg, 97%).

 $\mathbf{R}_{f} = 0.43$ (hexane/EtOAc/CH₂Cl₂ 2:1:1). Stain: UV active, KMnO₄;

¹**H** NMR (400 MHz, CDCl₃): δ 8.48 (dd, J = 4.8, 1.6 Hz, 1H), 8.29 (d, J = 5.6 Hz, 1H), 8.14 (d, J = 8.4 Hz, 2H), 8.10 (dd, J = 8.0, 1.6 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.26 (dd, J = 8.0, 4.8 Hz, 1H, overlapped with CHCl₃), 4.24–4.05 (m, 4H), 3.13 (t, J = 6.4 Hz, 4H), 2.39 (s, 3H), 1.17 (s, 18H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 13.16 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 205.4, 147.2 (d, J = 13.9 Hz), 146.0, 145.9, 134.4, 134.2 (d, J = 23.2 Hz), 130.3, 129.8, 128.5, 122.1 (d, J = 11.3 Hz), 119.7, 104.6 (d, J = 216.3 Hz), 64.6 (d, J = 5.2 Hz), 46.4, 28.8 (d, J = 7.2 Hz), 27.2, 21.7 ppm;

HRMS (ESI-TOF) calc'd for C₂₈H₃₈O₇N₂PS₃ [M+H]⁺: 641.15733, found 641.15723.

Compound 79·TFA

Prepared on 0.125-mmol scale according to modified General procedure A using 4-[3-chloro-4-(3-fluorobenzyloxy)phenylamino]-6-iodoquinazoline (63.1 mg, 0.125 mmol), di-*iso*-propyl *H*-phosphonate (**72**, 41.5 μ L, 0.25 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed at 55 °C. Analysis of the crude reaction mixture revealed 80% conversion of starting aryl iodide and 75% yield of **79**

(determined by ¹H NMR with CH_2Br_2 as an internal standard). The crude product was purified by pTLC (5% MeOH in CH_2Cl_2) and then by preparative HPLC (gradient $H_2O + 0.1\%$ TFA $\rightarrow CH_3OH$ over 25 min) to afford **79·TFA** as a bright yellow solid (62.0 mg, 75%), partially soluble in CHCl₃ and well-soluble in CH₃OH.

 \mathbf{R}_{f} (free base) = 0.29 (5% MeOH in CH₂Cl₂). Stain: UV active, visible yellow spot;

¹**H** NMR (600 MHz, CDCl₃, TFA salt): δ 11.00 (br s, 1H), 9.26 (d, J = 15.6 Hz, 1H), 8.77 (s, 1H), 8.20 (d, J = 7.2 Hz, 1H), 8.05 (d, J = 10.2 Hz, 1H), 7.80 (s, 1H), 7.58 (d, J = 9.0 Hz, 1H), 7.39–7.36 (m, 1H), 7.26–7.20 (m, 2H, overlapped with CHCl₃), 7.05–7.02 (m, 2H, overlapped signals), 5.20 (s, 2H), 4.58–4.53 (m, 2H), 1.23 (d, J = 6.0 Hz, 6H), 1.13 (d, J = 6.0 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃, TFA salt): δ 12.56 ppm;

¹⁹F NMR (376 MHz, CDCl₃, TFA salt): δ -75.61, -112.57 (m) ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃/CD₃OD ~10:1, TFA salt): δ 163.0 (d, J = 244.7 Hz), 161.8, 159.6, 153.3, 152.7, 143.9, 138.8 (d, J = 7.3 Hz), 136.6 (d, J = 8.8 Hz), 130.3, 130.2, 129.9 (d, J = 192.1 Hz), 128.4 (d, J = 13.2 Hz), 126.3, 123.6, 123.5, 123.2 (d, J = 13.5 Hz), 122.5 (d, J = 3.0 Hz), 115.0 (d, J = 21.0 Hz), 114.0 (d, J = 22.2 Hz), 113.9, 113.4 (d, J = 17.1 Hz), 72.5 (d, J = 5.9 Hz), 70.3 (d, J = 1.8 Hz), 23.9 (d, J = 4.1 Hz), 23.7 (d, J = 4.7 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₂₇H₂₉O₄N₃ClFP [M–TFA+H]⁺: 544.15628, found 544.15588.

Bis-SATE phosphonate 80

Prepared according to modified General procedure B using 4-[3-chloro-4-(3-fluorobenzyloxy)phenylamino]-6-iodoquinazoline (63.1 mg, 0.125 mmol), bis-SATE *H*-phosphonate **74** (69.4 μ L, 0.188 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed at 55 °C. Analysis of the crude reaction mixture revealed full conversion of starting aryl iodide and quantitative yield of **80** (determined by ¹H NMR with CH₂Br₂

as an internal standard). The crude product was purified by pTLC (EtOAc/CH₂Cl₂ 1:1) to afford **80** as a light-yellow solid (93.0 mg, 99%).

$\mathbf{R}_{f} = 0.50$ (EtOAc/CH₂Cl₂ 1:1). Stain: UV active;

¹**H** NMR (600 MHz, CDCl₃): δ 9.45 (s, 1H), 9.02 (d, J = 15.6 Hz, 1H), 8.74 (s, 1H), 7.99 (td, J = 9.6, 1.2 Hz, 1H), 7.90–7.89 (m, 1H), 7.86 (d, J = 2.4 Hz, 1H), 7.62 (dd, J = 9.0, 2.4 Hz, 1H), 7.35–7.32 (m, 1H), 7.23–7.19 (m, 2H), 7.01–6.98 (m, 2H), 5.15 (s, 2H), 4.05–3.95 (m, 4H), 3.06–2.97 (m, 4H), 1.12 (s, 18H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 17.28 ppm;

¹⁹F NMR (376 MHz, CDCl₃): δ -112.60 (m) ppm;

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 205.9, 163.1* (d, J = 246.4 Hz), 158.7, 157.4, 152.5 (d, J = 2.3 Hz), 151.5, 139.1 (d, J = 7.4 Hz), 133.7 (d, J = 9.7 Hz), 132.4, 130.3 (d, J = 8.2 Hz), 129.1 (d, J = 14.0 Hz), 129.1 (d, J = 12.7 Hz), 125.9, 124.3 (d, J = 192.8 Hz), 123.4, 123.1, 122.5

(d, J = 2.9 Hz), 115.1, 115.0, 114.9, 114.2, 114.0 (d, J = 22.2 Hz), 70.4, 65.0 (d, J = 5.3 Hz), 46.6, 28.6 (d, J = 7.4 Hz), 27.3 ppm; HRMS (ESI-TOF) calc'd for C₃₅H₄₁O₆N₃ClFPS₂ [M+H]⁺: 748.18415, found 748.18427.

Note *The C-F signal was assigned based on comparison with the 100 MHz ¹³C {¹H} spectrum.

Compound 81

Prepared according to modified General procedure A using trametinib (76.9 mg, 0.125 mmol), di-*iso*-propyl *H*-phosphonate (**72**, 41.5 μ L, 0.25 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The crude product was purified by pTLC (5% MeOH in EtOAc/CH₂Cl₂ 1:1) and then by second pTLC (5% MeOH in EtOAc/CH₂Cl₂ 10:1) to afford **81** as a white solid (43.0 mg, 53%).

 $\mathbf{R}_f = 0.30$ (5% MeOH in EtOAc). Stain: UV active;

¹**H NMR (600 MHz, CDCl₃):** δ 11.29 (s, 1H), 8.36 (br d, *J* = 13.8 Hz, 1H), 7.83 (s, 1H), 7.58–7.52 (m, 2H), 7.23 (t, *J* = 8.4 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 1H), 6.95–6.91 (m, 2H), 4.70 (m, 2H), 3.20 (s, 3H), 2.72 (m, 1H), 2.08 (s, 3H), 1.40 (s, 3H), 1.36 (d, *J* = 6.0 Hz, 6H), 1.24 (d, *J* = 6.0 Hz, 6H), 1.11 (d, *J* = 7.2 Hz, 2H), 0.76 (d, *J* = 3.6 Hz, 2H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 13.56 (d, *J* = 6.8 Hz) ppm;

¹⁹F NMR (376 MHz, CDCl₃): δ -124.25 (m) ppm;

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 168.9, 164.8, 163.9, 154.5 (dd, J = 251.4, 21.7 Hz), 151.8, 151.4, 144.8, 140.1, 139.4, 131.8 (dd, J = 11.3, 2.6 Hz), 129.1, 128.4 (dd, J = 9.2, 2.9 Hz), 128.1 (dd, J = 194.5, 5.1 Hz), 124.0, 122.5 (d, J = 17.4 Hz), 120.5, 119.8 (dd, J = 20.1, 11.0 Hz), 119.0, 104.4, 90.6, 71.5 (d, J = 5.6 Hz), 34.8, 25.4, 24.5, 24.1 (d, J = 3.9 Hz), 23.9 (d, J = 4.5 Hz), 13.5, 8.5 ppm; HRMS (ESI-TOF) calc'd for C₃₂H₃₈O₇N₅FP [M+H]⁺: 654.24874, found 654.24864.

Compound 82

Prepared on 0.125-mmol scale according to modified General procedure B using iodide **SI-29** (68.3 mg, 0.125 mmol), *H*-phosphonate **83** (58.8 mg, 0.25 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and EtOAc (0.1 mL). The crude product was purified by pTLC

(acetone/EtOAc 1:8) to afford **82** as yellow foamy solid (39.0 mg, 48%, 63% brsm) and **SI-29** (16.9 mg, 25% recovery). Heating above 35 °C during concentration under reduced pressure as well as using alcohols for chromatography isolation were avoided.

 $\mathbf{R}_f = 0.29$ (acetone/EtOAc 1:8). Stain: UV active (both long- and short-wave), KMnO₄, visible yellow spot;

¹**H NMR (600 MHz, CDCl₃):** δ 8.88 (s, 1H), 7.84–7.77 (m, 4H), 7.47–7.43 (m, 2H, overlapped signals), 7.04 (d, *J* = 7.2 Hz, 2H), 6.97 (d, *J* = 8.4 Hz, 1H), 4.91–4.88 (m, 1H), 4.17–3.96 (m, 4H), 3.67–3.65 (m, 2H), 3.55–3.53 (m, 2H), 3.23 (t, *J* = 6.6 Hz, 2H), 2.88–2.66 (m, 3H), 2.11–2.07 (m, 1H), 1.69–1.65 (m, 2H), 1.58–1.53 (m, 2H), 1.39–1.32 (m, 4H), 1.31 (dt, *J* = 7.2, 2.4 Hz, 3H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 17.19 ppm;

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 171.6, 169.6, 169.2, 167.6, 167.5, 146.8, 137.8 (d, J = 1.5 Hz), 136.5, 132.5, 132.0 (d, J = 10.1 Hz), 131.4* (d, J = 189.1 Hz, partially overlapped), 127.4

(d, J = 15.3 Hz), 117.0, 112.2, 110.5, 66.4 (d, J = 5.7 Hz), 62.8 (d, J = 5.4 Hz), 51.4, 49.1, 42.1, 39.8, 31.6, 30.3 (d, J = 6.3 Hz), 28.8, 26.3, 25.2, 22.9, 16.4 (d, J = 6.2 Hz) ppm; **HRMS (ESI-TOF)** calc'd for C₃₀H₃₇O₈N₇P [M+H]⁺: 654.24357, found 654.24321.

Notes: *The C(sp²)–P signal was assigned based on the comparison with the 100 MHz ¹³C NMR spectrum. Cross-coupling of **SI-28** with **83** following General procedure A afforded **82** in virtually the same yield. Higher concentrations of **82** in CDCl₃ (ca. >8 mg/mL) caused significant peak broadening in ¹H NMR spectra due to molecular interactions and increased solution viscosity.

Azidothymidyl phosphonate 84

Prepared on 0.125-mmol scale according to modified General procedure B using AZT *H*-phosphonate **85** (44.9 mg, 0.125 mmol), benzyl (2-iodophenyl)carbamate (**6**, 53.0 mg, 0.15 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and EtOAc (0.1 mL). After 15 hours, ${}^{1}\text{H}/{}^{31}\text{P}$ NMR analysis with CH₂Br₂ as an internal standard showed full conversion of

85, 55% ¹H NMR yield of **84**, and 30% unreacted **6**. The crude product was purified by pTLC (EtOAc/CH₂Cl₂ 2:1) and then by second pTLC (5% acetone in EtOAc/CHCl₃ 1:1) to afford **84** as a white solid (41.0 mg, 56%), mixture of two diastereomers in 1:1.1 ratio (determined by ³¹P NMR).

 $\mathbf{R}_{f} = 0.43$ (EtOAc/CH₂Cl₂ 2:1). Stain: UV active, KMnO₄;

¹**H NMR** (two diastereomers, 600 MHz, CDCl₃): δ 9.91 (d, J = 21.6, 1H), 9.28 (s, 1H), 8.41 (dd, J = 7.8, 7.8 Hz, 2H), 7.57–7.54 (m, 2H), 7.41 (d, J = 7.8 Hz, 2H), 7.35 (t, J = 7.8 Hz, 2H), 7.31 (m, 1H), 7.10–7.07 (m, 1H), 6.19* and 6.11 (2 × t, 2 × J = 6.6 Hz, 2 × 0.5H), 5.20 (s, 2H), 4.32–4.15 (m, 4H), 4.10–4.05 (m, 1H), 4.00 (br d, J = 3.0 Hz, 1H), 2.41–2.33 (m, 1H), 2.29–2.16 (m, 1H), 1.80 (d, J = 13.2 Hz, 3H), 1.32 (q, J = 6.6 Hz, 3H) ppm;

³¹P{¹H} NMR (two diastereomers, 162 MHz, CDCl₃): δ 20.83* and 20.65* (1:1.1 integral ratio) ppm; ¹³C{¹H} NMR (two diastereomers, 100 MHz, CDCl₃): δ 163.7 (d, J = 3.5 Hz), 153.4, 150.3 (d, J = 13.9 Hz), 143.26* (d, J = 6.5 Hz) and 143.22* (d, J = 6.3 Hz), 136.1, 135.3* (d, J = 13.0 Hz), 134.9, 132.35* (d, J = 6.2 Hz) and 132.28* (d, J = 5.9 Hz), 128.6, 128.4, 122.61* (d, J = 6.0 Hz) and 122.52* (d, J = 6.0 Hz), 119.8 (d, J = 10.0 Hz), 111.86* (d, J = 180.1 Hz) and 111.80* (d, J = 180.0 Hz), 111.6, 111.5, 85.2, 84.9, 82.39* (d, J = 7.4 Hz) and 82.35* (d, J = 6.2 Hz), 67.1, 65.05* (d, J = 4.8 Hz) and 65.98* (d, J = 4.7 Hz), 63.58* (d, J = 5.4 Hz) and 63.54* (d, J = 6.2 Hz), 60.3 (d, J = 12.7 Hz), 37.6, 16.29 (d, J = 6.2 Hz), 12.45 (d, J = 10.7 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₂₆H₃₀O₈N₆P [M+H]⁺: 585.18572, found 585.18530.

Compound 88

Prepared on 0.125-mmol scale according to modified General procedure A using 4-[3-chloro-4-(3-fluorobenzyloxy)phenylamino]-6-iodoquinazoline (63.1 mg, 0.125 mmol), ethyl phenyl-*H*-phosphinate (**86**, 40.1 μ L, 0.25 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed at 45 °C. Analysis of the crude reaction mixture revealed full conversion of starting aryl iodide and 84% yield of **88**

(determined by ¹H NMR with CH_2Br_2 as an internal standard). The crude product was purified by pTLC (1% MeOH in EtOAc/CH₂Cl₂1:1) and then by preparative HPLC (gradient H₂O + 0.1% TFA \rightarrow CH₃OH over 25 min) to afford **88·TFA** as a bright yellow solid. **88·TFA** was dissolved in CH₂Cl₂ (10 mL) and washed sat. aq. NaHCO₃ (5 mL), organic phase was dried over Na₂SO₄ and concentrated under reduced

pressure and the residue was purified by pTLC (5% MeOH in CH_2Cl_2) to afford **88** as a light-yellow solid (52.0 mg, 76%).

 $\mathbf{R}_{f} = 0.35$ (1% MeOH in EtOAc/CH₂Cl₂ 1:1). Stain: UV active, KMnO₄, visible yellow spot;

¹**H** NMR (600 MHz, CDCl₃): δ 10.21 (br s, 1H), 9.53 (d, J = 13.2 Hz, 1H), 8.69 (s, 1H), 7.91 (dd, J = 8.4, 2.4 Hz, 1H), 7.83 (t, J = 6.8 Hz, 1H), 7.67 (dd, J = 12.6, 7.2 Hz, 2H), 7.63 (d, J = 2.4 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.40–7.35 (m, 2H), 7.31 (td, J = 7.8, 3.6 Hz, 2H), 7.24 (d, J = 7.2 Hz, 1H), 7.21 (d, J = 9.6 Hz, 1H), 7.04 (td, J = 8.4, 2.4 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 5.14 (s, 2H), 4.01–3.86 (m, 2H),

1.22 (t, *J* = 7.2 Hz, 1H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 30.92 ppm;

¹⁹F NMR (376 MHz, CDCl₃): δ -112.53 (m) ppm;

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 163.2 (d, J = 246.6 Hz), 159.2, 157.0, 151.7, 151.6, 139.2 (d, J = 7.4 Hz), 133.8 (d, J = 11.2 Hz), 132.7 (d, J = 2.1 Hz), 132.1, 131.3 (d, J = 10.3 Hz), 130.7 (d, J = 141.9 Hz), 130.3 (d, J = 8.3 Hz), 129.7 (d, J = 11.2 Hz), 128.8 (d, J = 13.4 Hz), 128.6 (d, J = 136.8 Hz), 128.5 (d, J = 12.2 Hz), 126.7, 123.9, 123.4, 122.5 (d, J = 2.7 Hz), 115.3 (d, J = 14.6 Hz), 115.1 (d, J = 21.1 Hz), 114.09, 114.06 (d, J = 22.2 Hz), 70.5, 61.8 (d, J = 5.9 Hz), 16.4 (d, J = 6.9 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₂₉H₂₅O₃N₃ClFP [M+H]⁺: 548.13006, found 548.12958.

Ethyl phenyl(1-tosyl-1*H*-pyrrolo[2,3-*b*]pyridin-3-yl)phosphinate (89)

Prepared according to modified General procedure A using 3-iodo-1-tosyl-1*H*-pyrrolo[2,3-*b*]pyridine (**SI-21**, 99.6 mg, 0.25 mmol), ethyl phenyl-*H*-phosphinate (**88**, 80.2 μ L, 0.50 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The crude product was purified by pTLC (EtOAc/CH₂Cl₂ 2:1) and then by second

pTLC (2% MeOH in EtOAc/CH₂Cl₂ 2:3) to afford **89** as a white solid (89.0 mg, 81%).

 $\mathbf{R}_{f} = 0.55$ (2% MeOH in EtOAc/CH₂Cl₂ 2:3). Stain: UV active, KMnO₄;

¹**H NMR** (400 MHz, CDCl₃): δ 8.45 (dd, J = 4.8, 1.6 Hz, 1H), 8.20 (d, J = 5.6 Hz, 1H), 8.12 (d, J = 8.4 Hz, 2H), 8.02 (dd, J = 8.0, 1.6 Hz, 1H), 7.87–7.82 (m, 2H), 7.57–7.44 (m, 3H), 7.30 (d, J = 8.0 Hz, 2H), 7.20 (dd, J = 8.0, 4.8 Hz, 1H), 4.17–4.10 (m, 2H), 2.39 (s, 3H), 1.38 (t, J = 6.8 Hz, 3H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 25.55 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 147.5 (d, J = 11.6 Hz), 146.0, 145.8, 134.5, 133.4 (d, J = 19.2 Hz), 132.6 (d, J = 2.9 Hz), 131.2 (d, J = 10.6 Hz), 131.3 (d, J = 143.1 Hz), 130.1, 129.8, 128.8 (d, J = 13.5 Hz), 128.5, 122.0 (d, J = 10.8 Hz), 119.8, 109.2 (d, J = 156.0 Hz), 61.4 (d, J = 5.6 Hz), 21.7, 16.5 (d, J = 6.7 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₂₂H₂₂O₄N₂PS [M+H]⁺: 441.10324, found 441.10314.

Benzyl (2-(ethoxy(phenyl)phosphoryl)phenyl)carbamate (90)

Prepared according to General procedure A using benzyl (2-iodophenyl)carbamate (6, 88.3 mg, 0.25 mmol) and ethyl phenyl-*H*-phosphinate (86, 80.2 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 5:2) to afford 90 as a light-brown oil (74.0 mg, 75%).

 $\mathbf{R}_f = 0.50$ (hexane/EtOAc 2:1). Stain: UV active;

¹**H** NMR (400 MHz, CDCl₃): δ 10.57 (s, 1H), 8.36 (dd, J = 8.4, 5.2 Hz, 1H), 7.80–7.75 (m, 2H), 7.55–7.29 (m, 10H), 7.02 (ddd, J = 7.6, 2.4, 0.8 Hz, 1H), 5.21 (s, 2H), 4.26–4.03 (m, 2H), 1.39 (t, J = 7.2 Hz, 3H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 35.38 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.6, 143.6 (d, J = 5.7 Hz), 136.4, 133.8 (d, J = 2.1 Hz), 132.6–132.5 (m, overlapped signals), 131.5 (d, J = 142.4 Hz), 131.2 (d, J = 10.2 Hz), 128.8, 128.6, 128.5, 128.2, 128.1, 122.2 (d, J = 12.3 Hz), 119.6 (d, J = 9.1 Hz), 115.8 (d, J = 127.9 Hz), 66.7, 61.7 (d, J = 5.9 Hz), 16.4 (d, J = 6.7 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₂₂H₂₃O₄NP [M+H]⁺: 396.13592, found 396.13580.

Benzyl (2-(ethoxy(ethyl)phosphoryl)phenyl)carbamate (91)

Prepared according to modified General procedure A using benzyl (2-iodophenyl)carbamate (6, 88.3 mg, 0.25 mmol), ethyl ethyl-*H*-phosphinate (87, 89.9 μ L, 0.50 mmol), Pd(OAc)₂ (1.4 mg, 6.25 μ mol), XantPhos (3.6 mg, 6.25 μ mol), Ni(phen)₃Cl₂ (4.2 mg, 6.25 μ mol), KOAc (25.0 mg, 0.25 mmol), nano Zn (8.1 mg, 0.125 mmol), 2,6-lutidine (87.0 μ L, 0.75 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and EtOAc

(0.1 mL). The reaction was performed at 55 °C. The analysis of the crude reaction mixture by ¹H NMR with CH_2Br_2 as an internal standard showed 47% yield of **91** and 39% RSM. The crude product was purified by pTLC (hexane/EtOAc 3:1) to afford **91** as a light-yellow oil (35.0 mg, 40%).

$\mathbf{R}_f = 0.32$ (hexane/EtOAc 3:1). Stain: UV active, weakly stains with KMnO₄;

¹**H** NMR (400 MHz, CDCl₃): δ 10.70 (s, 1H), 8.41 (dd, J = 8.4, 5.2 Hz, 1H), 7.53–7.47 (m, 2H), 7.44–7.29 (m, 6H), 7.08–7.03 (m, 1H), 5.20 (dd, J = 12.4, 15.6 Hz, 2H, strong roofing effect), 4.17–4.07 (m, 1H), 3.92–3.82 (m, 1H), 1.98–1.82 (m, 2H), 1.30 (t, J = 7.2 Hz, 3H), 1.10 (dt, J = 19.4, 7.6 Hz, 3H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 51.36 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.7, 144.2 (d, J = 5.1 Hz), 136.4, 133.9 (d, J = 2.2 Hz), 131.8 (d, J = 8.5 Hz), 128.5, 128.2, 128.1, 122.1 (d, J = 11.8 Hz), 119.3 (d, J = 8.4 Hz), 114.6 (d, J = 114.6 Hz), 66.7, 61.2 (d, J = 6.2 Hz), 23.5 (d, J = 103.8 Hz), 16.4 (d, J = 6.5 Hz), 5.5 (d, J = 4.7 Hz) ppm; HRMS (ESI-TOF) calc'd for C₁₈H₂₃O₄NP [M+H]⁺: 348.13592, found 348.13626.

Note: Cross-coupling of **6** with **87** following General procedure B afforded **91** in 17% yield (¹H NMR with CH₂Br₂ as an internal standard). Variations in base (*N*-methylmorpholine instead of 2,6-lutidine) and ligand (dppf or DPEphos instead of XantPhos) afforded **91** in <10% yield (¹H NMR with CH₂Br₂ as an internal standard).

Ethyl phenyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)phosphinate (92)

Prepared according to General procedure B using 2-(4-iodophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (82.5 mg, 0.25 mmol) and ethyl phenyl-*H*-phosphinate (**86**, 80.2 μ L, 0.50 mmol). The crude product was purified by pTLC (hexane/EtOAc 1:2) and then by second pTLC (EtOAc/CH₂Cl₂ 1:1) to afford **92** as

a colorless oil (60.0 mg, 65%).

R $_f = 0.45$ (hexane/EtOAc 1:2). Stain: UV active; ¹**H NMR** (400 MHz, CDCl₃): δ 7.91−7.79 (m, 6H), 7.54−7.42 (m, 3H), 4.18−4.08 (m, 2H), 1.38 (t, *J* = 6.8 Hz, 3H, overlapped), 1.35 (s, 12H, overlapped) ppm; ³¹P{¹H} **NMR** (162 MHz, CDCl₃): δ 31.14 ppm;

¹¹**B NMR (128 MHz, CDCl₃):** δ 31.05 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 134.7 (d, J = 12.4 Hz), 134.3 (d, J = 133.3 Hz), 132.1 (d, J = 1.7 Hz), 131.7 (d, J = 136.3 Hz), 131.6 (d, J = 10.0 Hz), 130.8 (d, J = 9.6 Hz), 128.5 (d, J = 13.0 Hz), 84.2, 61.2 (d, J = 5.6 Hz), 24.9, 16.5 (d, J = 6.6 Hz) ppm; HRMS (ESI-TOF) calc'd for C₂₀H₂₇O₄BP [M+H]⁺: 373.17345, found 373.17375.

Note: *One carbon (C_{Ar}–B) signal is missing in the ¹³C NRM spectrum due to quadrupolar relaxation.

Compound 93

Prepared on 0.125-mmol scale according to modified General procedure A using trametinib (76.9 mg, 0.125 mmol), ethyl phenyl-*H*-phosphinate (**86**, 40.1 μ L, 0.25 mmol), 2,6-lutidine (43.5 μ L, 0.375 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The crude product was purified by pTLC (5% MeOH in EtOAc/CH₂Cl₂ 1:1) to afford **93** as a white solid (63.0 mg, 77%).

 $\mathbf{R}_f = 0.27$ (5% MeOH in EtOAc/CH₂Cl₂ 1:1). Stain: UV active;

¹**H NMR (600 MHz, CDCl₃):** δ 11.26 (s, 1H), 8.52 (s, 1H), 7.82 (s, 1H), 7.78 (dd, *J* = 12.6, 7.8 Hz, 2H), 7.59–7.51 (m, 3H), 7.48–7.45 (m, 2H), 7.23–7.19 (m, 2H), 6.93–6.90 (m, 2H), 4.15–4.07 (m, 2H), 3.17 (s, 3H), 2.70 (m, 1H), 2.07 (s, 3H), 1.38 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.09–1.05 (m, 2H), 0.77–0.73 (m, 2H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 28.92 (d, *J* = 5.4 Hz) ppm;

¹⁹**F NMR (376 MHz, CDCl₃):** δ -124.04 (m) ppm;

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 168.9, 164.7, 163.9, 154.5 (dd, J = 251.9, 18.7 Hz), 151.8, 151.2, 144.7, 140.1, 139.4, 132.7, 131.9 (d, J = 11.3 Hz), 131.6 (d, J = 10.1 Hz), 130.7* (d, J = 139.7 Hz, partially overlapped), 129.8* (dd, J = 142.4, 2.9 Hz, partially overlapped), 129.0, 128.9 (d, J = 13.1 Hz), 128.2 (d, J = 8.0 Hz), 124.0, 122.5 (d, J = 15.3 Hz), 120.4, 119.8 (dd, J = 19.8, 11.3 Hz), 119.0, 104.5, 90.7, 61.6 (d, J = 5.6 Hz), 34.8, 25.4, 24.5, 16.4 (d, J = 6.3 Hz), 13.4, 8.5 ppm; HRMS (ESI-TOF) calc'd for C₃₄H₃₄O₆N₅FP [M+H]⁺: 658.22252, found 658.22242.

Note: *C(sp²)–P signals were assigned based on comparison with the 100 MHz ¹³C NMR spectrum. The splitting pattern of some of the ¹³C signals was not fully resolved and assigned, please refer to the

Benzyl (2-(dibutoxyphosphorothioyl)phenyl)carbamate (95)

comparison of 151 and 100 MHz ¹³C NMR spectra in the "NMR Data" section.

Prepared according to modified General procedure A using benzyl (2-iodophenyl)carbamate (6, 88.3 mg, 0.25 mmol) and di-*n*-butyl *H*-thiophosphonate (94, 52.6 μ L, 0.30 mmol), which was added in two portions (0.15 mmol at the beginning, and 0.15 mmol after 7.5 hours). The crude product was purified by

preparative reverse-phase C18 HPLC (gradient $H_2O + 0.1\%$ TFA \rightarrow CH₃CN over 20 min) to afford **95** as a colorless oil (67.0 mg, 56%, 71% brsm) and starting **6** (18.3 mg, 21% RSM). Attempted isolation of **95** using normal-phase pTLC failed due to co-elution of **95** with **6**.

 $\mathbf{R}_{f} = 0.2$ (hexane/EtOAc 3:1). Stain: UV active, KMnO₄;

¹**H NMR (600 MHz, CDCl₃):** δ 8.71 (br s, 1H), 8.16 (br t, *J* = 7.2 Hz, 1H), 7.92 (dd, *J* = 17.4, 7.8 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 1H), 7.42–7.33 (m, 5H), 7.13 (td, *J* = 7.2, 2.4 Hz, 1H), 6.98–6.93 (m, 2H), 5.23

(s, 2H), 4.13–4.02 (m, 2H), 1.63 (quintet, J = 6.6 Hz, 4H), 1.37 (sextet, J = 7.8 Hz, 4H), 0.87 (t, J = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 83.98 ppm;

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 153.4, 139.8 (d, *J* = 4.2 Hz), 136.3, 133.7, 133.3 (d, *J* = 11.0 Hz), 128.6, 128.3, 128.2, 122.8 (d, *J* = 14.8 Hz), 121.0 (d, *J* = 8.6 Hz), 120.5* (d, *J* = 146.9 Hz), 67.04, 67.00, 32.2 (d, *J* = 7.4 Hz), 18.9, 13.6 ppm;

HRMS (ESI-TOF) calc'd for $C_{22}H_{31}O_4NPS$ [M+H]⁺: 436.17059, found 436.17099; calc'd for $C_{22}H_{30}O_4NNaPS$ [M+Na]⁺: 458.15254, found 458.15276.

Note: *The C-P signal was assigned based on analysis of the 100 MHz ¹³C {¹H} NMR spectrum.

O,O-Di-*n*-butyl (1-tosyl-1*H*-pyrrolo[2,3-*b*]pyridin-3-yl)phosphonothioate (96)

Prepared according to modified General procedure A using 3-iodo-1-tosyl-1*H*-pyrrolo[2,3-*b*]pyridine (SI-21, 99.6 mg, 0.25 mmol) and di-*n*-butyl *H*-thiophosphonate (94, 92.1 μ L, 0.525 mmol), which was added in three portions (0.175 mmol at the beginning, 0.175 mmol after 3 hours, and 0.175 mmol after

3 hours). The crude product was purified by pTLC (hexane/EtOAc 3:1) to afford **96** as a viscous light-yellow oil (82.0 mg, 68%).

 $\mathbf{R}_f = 0.50$ (hexane/EtOAc 3:1). Stain: UV active, KMnO₄;

¹H NMR (400 MHz, CDCl₃): δ 8.47 (dd, J = 4.8, 1.6 Hz, 1H), 8.25 (d, J = 6.4 Hz, 1H), 8.17–8.14 (m, 3H), 7.31 (d, J = 8.4 Hz, 2H), 7.26 (dd, J = 8.0, 4.8 Hz, 1H, overlapped with CHCl₃), 4.15–3.99 (m, 4H), 2.39 (s, 3H), 1.63 (quint, J = 6.8 Hz, 4H), 1.36 (sextet, J = 7.2 Hz, 4H), 0.88 (t, J = 6.8 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 76.11 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 147.5 (d, J = 12.7 Hz), 146.0, 145.8, 134.6, 134.1 (d, J = 26.1 Hz), 130.3, 129.8, 128.6, 121.2 (d, J = 9.6 Hz), 119.7, 111.6 (d, J = 175.2 Hz), 66.6 (d, J = 5.7 Hz), 32.2 (d, J = 7.6 Hz), 21.8, 18.9, 13.6 ppm;

HRMS (ESI-TOF) calc'd for C₂₂H₃₀O₄N₂PS₂ [M+H]⁺: 481.13791, found 481.13773.

Benzyl (2-(diphenylphosphoryl)phenyl)carbamate (99)

Prepared according to General procedure A using benzyl (2-iodophenyl)carbamate (6, 88.3 mg, 0.25 mmol) and diphenylphosphine oxide (97, 101.1 mg, 0.50 mmol). The reaction was performed at 55 °C. The crude product was purified by pTLC (hexane/EtOAc 2:1) to afford 99 as a colorless semi-solid (67.0 mg, 63%).

 $\mathbf{R}_f = 0.35$ (hexane/EtOAc 2:1). Stain: UV active;

¹**H** NMR (400 MHz, CDCl₃): δ 10.54 (s, 1H), 8.37 (dd, J = 8.4, 4.8 Hz, 1H), 7.65–7.55 (m, 6H), 7.52–7.45 (m, 5H), 7.35–7.28 (m, 5H), 6.98–6.93 (m, 2H), 5.13 (s, 2H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 36.61 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.7, 144.7 (d, J = 3.0 Hz), 136.4, 133.4 (d, J = 2.2 Hz), 132.8 (d, J = 10.6 Hz), 132.4 (d, J = 2.7 Hz), 132.1 (d, J = 10.0 Hz), 131.7 (d, J = 104.8 Hz), 128.7 (d, J = 12.3 Hz), 128.4, 127.97, 127.96, 122.8 (d, J = 12.6 Hz), 120.4 (d, J = 7.3 Hz), 116.5 (d, J = 100.3 Hz), 66.6 ppm;

HRMS (ESI-TOF) calc'd for C₂₆H₂₃O₃NP [M+H]⁺: 428.14101, found 428.14084.

Benzyl (2-(dimethylphosphoryl)phenyl)carbamate (100)

Prepared according to modified General procedure B using benzyl (2-iodophenyl)carbamate (6, 88.3 mg, 0.25 mmol), dimethylphosphine oxide (98, 60.0 μ L, 0.75 mmol), Pd[P(*t*-Bu)₃]₂ (3.2 mg, 6.25 μ mol), Pd(OAc)₂ (0.6 mg, 2.50 μ mol), XantPhos (1.4 mg, 2.50 μ mol), LiBr (21.7 mg, 0.25 mmol), *N*-methylmorpholine

(82.5 μ L, 0.75 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and EtOAc (0.1 mL). The reaction was performed at 55 °C. The crude product was purified by pTLC (EtOAc/CH₂Cl₂ 1:1) to afford **100** as an off-white solid (65.0 mg, 86%).

 $\mathbf{R}_{f} = 0.40$ (EtOAc/CH₂Cl₂ 1:1). Stain: UV active, KMnO₄;

¹H NMR (400 MHz, CDCl₃): δ 10.86 (s, 1H), 8.40 (dd, J = 8.4, 4.4 Hz, 1H), 7.50–7.27 (m, 6H), 7.17 (ddd, J = 14.0, 7.6, 1.6 Hz, 1H), 7.07–7.02 (m, 1H), 5.20 (s, 2H), 1.79 (d, J = 13.2 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 44.93 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.7, 144.0 (d, J = 2.5 Hz), 136.4, 133.2 (d, J = 2.2 Hz), 129.6 (d, J = 11.0 Hz), 128.5, 128.1, 128.0, 122.1 (d, J = 12.2 Hz), 119.8 (d, J = 7.1 Hz), 117.7 (d, J = 94.4 Hz), 66.6, 19.0 (d, J = 71.3 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₁₆H₁₉O₃NP [M+H]⁺: 304.10971, found 304.10947.

(4-Methoxyphenyl)dimethylphosphine oxide (101)

Prepared according to modified General procedure B using 4-iodoanisole (58.5 mg, 0.25 mmol), dimethylphosphine oxide (**98**, 40.0 μ L, 0.50 mmol), Pd[P(*t*-Bu)₃]₂ (6.6 mg, 12.50 μ mol), LiBr (21.7 mg, 0.25 mmol), KOAc (12.5 mg, 0.125 mmol), *N*-methylmorpholine (82.5 μ L, 0.75 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL)

and EtOAc (0.1 mL). The reaction was performed at 60 °C. The crude product was purified by pTLC (EtOAc/MeOH 5:1) to afford **101** as a light-yellow solid (31.0 mg, 67%).

Spectral data match previously reported results,⁵⁶ and ¹H/³¹P/¹³C NMR and HRMS data are provided here for convenience.

 $\mathbf{R}_f = 0.29$ (EtOAc/MeOH 5:1). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 7.62 (dd, *J* = 11.2, 8.4 Hz, 2H), 6.95 (dd, *J* = 8.8, 2.0 Hz, 2H), 3.81 (s, 3H), 1.67 (d, *J* = 13.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 34.12 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.3 (d, J = 2.7 Hz), 131.5 (d, J = 10.7 Hz), 125.8 (d, J = 104.2 Hz), 114.3 (d, J = 9.6 Hz), 55.4, 18.4 (d, J = 71.3 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₉H₁₄O₂P [M+H]⁺: 185.07259, found 185.07280.

Compound 102·TFA

Prepared on 0.125-mmol scale according to modified General procedure B using trametinib (76.9 mg, 0.125 mmol), dimethylphosphine oxide (**98**, 30.0 μ L, 0.375 mmol), Pd[P(*t*-Bu)₃]₂ (1.6 mg, 3.125 μ mol), Pd(OAc)₂ (0.3 mg, 1.25 μ mol), XantPhos (0.7 mg, 1.25 μ mol), LiBr (10.9 mg, 0.125 mmol), *N*-methylmorpholine (41.2 μ L, 0.375 mmol), 2 wt % TPGS-750-M in H₂O (1.5 mL) and EtOAc (0.4 mL). The

reaction was performed at 55 °C. The crude reaction mixture was concentrated under reduced pressure to remove EtOAc and then directly subjected to preparative C8 HPLC (gradient $H_2O + 0.1\%$ TFA \rightarrow CH₃OH over 25 min) to afford **102·TFA** as an off-white solid (79.9 mg, 81%).

 $\mathbf{R}_{f} = 0.50$ (EtOAc/CH₂Cl₂/MeOH 4:1:1). Stain: UV active, KMnO₄;

¹H NMR (TFA salt, 600 MHz, CDCl₃): δ 11.31 (s, 1H), 8.24 (s, 1H), 7.79 (s, 1H), 7.53 (t, J = 10.2 Hz, 1H), 7.46 (t, J = 9.6 Hz, 1H), 7.28–7.25 (m, 1H, overlapped with CHCl₃), 7.00–6.95 (m, 2H), 3.22 (s, 3H), 2.72 (m, 1H), 2.11 (s, 3H), 1.75 (d, J = 13.2 Hz, 6H), 1.41 (s, 3H), 1.11–1.08 (m, 2H), 0.77–0.75 (m, 2H) ppm;

³¹P{¹H} NMR (TFA salt, 162 MHz, CDCl₃): δ 33.67 ppm;

¹⁹F NMR (TFA salt, 376 MHz, CDCl₃): δ -76.14, -123.55 (m) ppm;

¹³C{¹H} NMR (TFA salt, 151 MHz, CDCl₃): δ 168.8, 164.8, 163.9, 154.8 (dd, J = 252.3, 16.3 Hz), 151.8, 151.3, 144.8, 140.2, 139.3, 132.6 (dd, J = 98.6, 1.8 Hz), 131.6 (d, J = 11.6 Hz), 129.2, 126.3 (dd, J = 9.2, 3.0 Hz), 124.2, 123.0 (d, J = 13.5 Hz), 120.5, 119.1, 118.0 (dd, J = 20.1, 11.0 Hz), 104.5, 90.7, 34.8, 25.4, 24.6, 18.2 (d, J = 72.2 Hz), 13.5, 8.5 ppm;

HRMS (ESI-TOF) calc'd for C₂₈H₃₀O₅N₅FP [M+H]⁺: 566.19631, found 566.19624.

Notes: Larger volumes of aq. TPGS-750-M solution and EtOAc were used to form an emulsion stable throughout the reaction progress and to avoid clumping of the reaction mixture. The $P(=O)Me_2$ group makes **102** considerably soluble in H₂O; therefore, we suggest subjecting the crude reaction mixture directly to preparative HPLC to avoid significant material losses during extraction work-up.

tert-Butyl (4-(diphenylphosphoryl)phenyl)carbamate (103)

Prepared according to General procedure A using *tert*-butyl (4-iodophenyl)carbamate (79.8 mg, 0.25 mmol) and diphenylphosphine oxide (97, 101.2 mg, 0.50 mmol). The reaction was performed at 55 °C. The crude product was purified by pTLC (2.5% MeOH in CH_2Cl_2), and then by second pTLC (5%

MeOH in CH₂Cl₂) to afford **103** as an off-white foam (47.3 mg, 48%).

Spectral data match previously reported results,⁵⁷ and ¹H/³¹P NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.24$ (2.5% MeOH in CH₂Cl₂). Stain: UV active;

¹**H NMR (400 MHz, CDCl₃):** δ 7.64–7.61 (m, 4H), 7.57–7.41 (m, 10H), 7.05 (br s, 1H), 1.49 (s, 9H) ppm;

³¹**P**{¹**H**} **NMR (162 MHz, CDCl₃):** δ 28.96 ppm.

tert-Butyl (4-(dimethylphosphoryl)phenyl)carbamate (104)

BocHN

Prepared according to modified General procedure B using *tert*-butyl (4-iodophenyl)carbamate (79.8 mg, 0.25 mmol), dimethylphosphine oxide (**98**, 40.0 μ L, 0.50 mmol), Pd[P(*t*-Bu)₃]₂ (3.2 mg, 6.25 μ mol), Pd(OAc)₂ (0.6 mg, 2.50 μ mol), XantPhos (1.4 mg, 2.50 μ mol), LiBr (21.7 mg, 0.25 mmol), KOAc

(12.5 mg, 0.125 mmol), *N*-methylmorpholine (82.5 μ L, 0.75 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and EtOAc (0.1 mL). The reaction was performed at 60 °C. The crude product was purified by pTLC (1% MeOH in EtOAc), and then by second pTLC (5% MeOH in EtOAc) to afford **104** as a light-yellow solid (29.0 mg, 43%).

R_f = 0.49 (2.5% MeOH in EtOAc). Stain: UV active, KMnO₄; ¹**H NMR (400 MHz, CDCl₃):** δ 7.64 (dd, J = 11.2, 8.8 Hz, 2H), 7.50 (dd, J = 8.4, 2.0 Hz, 2H), 6.77 (br s, 1H), 1.71 (d, J = 12.8 Hz, 6H), 1.52 (s, 9H) ppm; ³¹**P**{¹**H**} **NMR (162 MHz, CDCl₃):** δ 34.27 ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 152.6, 142.1 (d, J = 3.0 Hz), 130.8 (d, J = 10.5 Hz), 127.9 (d, J = 103.0 Hz), 118.3 (d, J = 12.1 Hz), 81.1, 28.4, 18.3 (d, J = 71.4 Hz) ppm; HRMS (ESI-TOF) calc'd for C₁₃H₂₁O₃NP [M+H]⁺: 270.12536, found 270.12553; calc'd for C₁₃H₂₀O₃NNaP [M+Na]⁺: 292.10730, found 292.10749.

Dimethyl(4-(trifluoromethyl)phenyl)phosphine oxide (105)

Prepared according to modified General procedure B using 4-iodobenzotrifluoride (36.7 μ L, 0.25 mmol), dimethylphosphine oxide (**98**, 40.0 μ L, 0.50 mmol), Pd[P(*t*-Bu)_3]_2 (3.2 mg, 6.25 μ mol), Pd(OAc)_2 (0.6 mg, 2.50 μ mol), XantPhos (1.4 mg, 2.50 μ mol), LiBr (21.7 mg, 0.25 mmol), KOAc (12.5 mg, 0.125 mmol),

N-methylmorpholine (82.5 μ L, 0.75 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and EtOAc (0.1 mL). The reaction was performed at 60 °C. The crude product was purified by pTLC (10% MeOH in EtOAc) to afford **105** as a yellow oil (34.0 mg, 61%).

Spectral data match previously reported results,⁵⁸ and ${}^{1}H/{}^{31}P/{}^{19}F$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.20$ (10% MeOH in EtOAc). Stain: UV active, KMnO₄;

¹**H** NMR (400 MHz, CDCl₃): δ 7.88–7.83 (m, 2H), 7.74–7.71 (m, 2H), 1.67 (d, *J* = 13.2 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 33.38 ppm;

¹⁹F NMR (**376** MHz, CDCl₃): δ -63.2 ppm.

Compound 106

Prepared on 0.125-mmol scale according to modified General procedure A using 4-[3-chloro-4-(3-fluorobenzyloxy)phenylamino]-6-iodoquinazoline (63.1 mg, 0.125 mmol), diphenylphosphine oxide (**97**, 50.6 mg, 0.25 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The reaction was performed at 55 °C. Analysis of the crude reaction mixture revealed >90% conversion of starting aryl iodide and 74% yield of **106** (determined

by ¹H NMR with CH₂Br₂ as an internal standard). The crude product was purified by pTLC (5% MeOH in CH₂Cl₂) and then by preparative HPLC (gradient H₂O + 0.1% TFA \rightarrow CH₃OH over 25 min) to afford **106**•**TFA** as a bright yellow solid. **106**•**TFA** was dissolved in CH₂Cl₂ (10 mL) and washed sat. aq. NaHCO₃ (5 mL), organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by pTLC (3.5% MeOH in EtOAc/CH₂Cl₂ 2:3) to afford **106** as a light-yellow solid (52.0 mg, 72%).

 $\mathbf{R}_f = 0.25$ (5% MeOH in CH₂Cl₂), 0.29 (3.5% MeOH in EtOAc/CH₂Cl₂ 2:3). Stain: UV active, visible yellow spot;

¹H NMR (600 MHz, CDCl₃): δ 10.64 (br s, 1H), 9.75 (d, J = 13.2 Hz, 1H), 8.67 (s, 1H), 7.79 (dd, J = 8.4, 3.0 Hz, 1H), 7.65 (s, 1H), 7.45–7.33 (m, 9H), 7.26–7.18 (m, 6H, overlapped with CHCl₃), 7.02 (td, J = 8.4, 2.4 Hz, 1H), 6.66 (d, J = 8.4 Hz, 1H), 5.07 (s, 1H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 29.92 ppm;

¹⁹F NMR (376 MHz, CDCl₃): δ -112.54 (m) ppm;

¹³C{¹H} NMR (151 MHz, CDCl₃): δ 163.1 (d, J = 246.4 Hz), 159.1, 157.0, 151.5, 151.3, 139.3 (d, J = 7.2 Hz), 133.9 (d, J = 13.0 Hz), 132.4, 131.9 (d, J = 10.1 Hz), 131.4 (d, J = 105.1 Hz), 130.3 (d, J = 8.2 Hz), 130.1 (d, J = 8.2 Hz), 129.0* (d, J = 160.7 Hz), 128.7 (d, J = 12.2 Hz), 127.8 (d, J = 11.6 Hz), 126.4, 123.5, 123.2, 122.5 (d, J = 2.6 Hz), 115.7 (d, J = 12.7 Hz), 115.0 (d, J = 21.1 Hz), 114.1, 113.9, 70.4 ppm;

HRMS (ESI-TOF) calc'd for C₃₃H₂₅O₂N₃ClFP [M+H]⁺: 580.13515, found 580.13483.

Note: *One of the C–P signals was assigned based on the 100 MHz ${}^{13}C{}^{1}H$ NMR spectrum and ${}^{13}C$ APT spectra, please refer to the "NMR data" section.

Diethyl quinolin-6-ylphosphonate (126)

Prepared according to modified General procedure A using quinolin-6-yl trifluoromethanesulfonate (**SI-30**, 69.3 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 82.5 μ L, 0.625 mmol), Pd(OAc)₂ (2.8 mg, 12.50 μ mol), dppf (7.0 mg, 12.50 μ mol), NiCl₂.glyme (1.4 mg, 6.25 μ mol), 1,10-phenanthroline (2.3 mg, 12.5 μ mol), nano Zn

(8.1 mg, 0.125 mmol), LiBr (21.7 mg, 0.25 mmol), 2,6-lutidine (87.0 μ L, 0.75 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and deoxygenated THF (0.05 mL). The reaction was performed at 45 °C. The crude product was purified by pTLC (hexane/EtOAc 1:1) to afford **126** as a viscous light-yellow oil (51.0 mg, 77%).

Spectral data match previously reported results,⁵⁹ and ${}^{1}\text{H}/{}^{31}\text{P}$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.10$ (hexane/EtOAc 1:1). Stain: UV active;

¹H NMR (400 MHz, CDCl₃): δ 9.03 (dd, J = 4.0, 1.6 Hz, 1H), 8.44 (dd, J = 15.2, 1.2 Hz, 1H), 8.25 (d, J = 8.4 Hz, 1H), 8.19 (dd, J = 8.4, 3.6 Hz, 1H), 8.06–7.97 (m, 1H), 7.50 (dd, J = 8.4, 4.4 Hz, 1H), 4.26–4.08 (m, 4H), 1.35 (t, J = 6.8 Hz, 6H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 17.75 ppm.

Diethyl quinolin-8-ylphosphonate (127)

Prepared according to modified General procedure A using quinolin-8-yl trifluoromethanesulfonate (SI-31, 69.3 mg, 0.25 mmol), diethyl *H*-phosphonate (**3**, 82.5 μ L, 0.625 mmol), Pd(OAc)₂ (1.4 mg, 6.25 μ mol), dppf (3.5 mg, 6.25 μ mol), Ni(phen)₃Cl₂ (1.7 mg, 2.50 μ mol), nano Zn (8.1 mg, 0.125 mmol), LiBr (21.7 mg, 0.25 mmol), 2,6-lutidine (87.0 μ L, 0.75 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL)

and EtOAc (0.1 mL). The reaction was performed at 55 °C. The crude product was purified by pTLC (1% MeOH in hexane/EtOAc 3:7) to afford **127** as a viscous light-yellow oil (44.0 mg, 66%).

Spectral data match previously reported results, 60 and $^{1}\text{H}/^{31}\text{P}$ NMR data are provided here for convenience.

 $\mathbf{R}_f = 0.15$ (1% MeOH in hexane/EtOAc 3:7). Stain: UV active;

¹**H** NMR (400 MHz, CDCl₃): δ 9.06 (dd, J = 4.0, 1.6 Hz, 1H), 8.37 (ddd, J = 16.0, 7.2, 1.6 Hz, 1H), 8.18 (dt, J = 8.4, 1.6 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.58 (ddd, J = 10.4, 7.2, 3.2 Hz, 1H), 7.46 (dd, J = 8.4, 4.4 Hz, 1H), 4.38–4.22 (m, 4H), 1.34 (t, J = 7.2 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 17.30 ppm.

Compound 128

Prepared on 0.125-mmol scale according to modified General procedure A using aryl triflate **SI-32** (53.4 mg, 0.125 mmol), diethyl *H*-phosphonate (**3**, 41.3 μ L, 0.313 mmol), Pd(OAc)₂ (0.7 mg, 3.125 μ mol), dppf (1.8 mg, 3.125 μ mol), Ni(phen)₃Cl₂ (0.8 mg, 1.250 μ mol), nano Zn (4.1 mg, 62.5 μ mol), LiBr (10.8 mg, 0.125 mmol), 2,6-lutidine (43.5 μ L, 0.375 mmol), 2 wt %
TPGS-750-M in H₂O (0.5 mL) and THF (0.05 mL). The reaction was performed at 45 °C. The crude product was purified by pTLC (EtOAc/CH₂Cl₂ 1:1) to afford **128** as a viscous light-yellow oil (29.0 mg, 56%) which solidified upon standing.

Spectral data match previously reported results, 61 and $^{1}H^{/31}P$ NMR data are provided here for convenience.

 $\mathbf{R}_{f} = 0.50$ (EtOAc/CH₂Cl₂ 1:1). Stain: weakly UV active, KMnO₄;

¹**H** NMR (400 MHz, CDCl₃): δ 7.72 (dd, *J* = 13.2, 8.0 Hz, 2H), 7.23 (dd, *J* = 8.0, 4.0 Hz, 2H), 5.01 (d, *J* = 8.0 Hz, 1H), 4.62–4.57 (m, 1H), 4.17–4.00 (m, 4H), 3.70 (s, 3H), 3.19–3.02 (m, 2H), 1.39 (s, 9H), 1.30 (t, *J* = 7.2 Hz, 6H) ppm;

³¹**P**{¹**H**} **NMR (162 MHz, CDCl₃):** δ 18.76 ppm.

Scale-up experiments

Benzyl (2-(diethoxyphosphoryl)phenyl)carbamate (7)

Prepared on 2.50-mmol scale according to modified General procedure A using benzyl (2-iodophenyl)carbamate (**6**, 883.0 mg, 2.50 mmol), diethyl *H*-phosphonate (**3**, 386.0 μ L, 3.00 mmol), Pd(OAc)₂ (7.0 mg, 31.25 μ mol), XantPhos (18.1 mg, 31.25 μ mol), Ni(phen)₃Cl₂ (8.4 mg, 12.50 μ mol), nano Zn (81.0 mg, 1.25 mmol), LiBr (217.0 mg,

2.50 mmol), 2,6-lutidine (580.0 μ L, 5.00 mmol), 2 wt % TPGS-750-M in H₂O (5.0 mL) and EtOAc (1.0 mL). The reaction was performed at 45 °C over 19 hours. The crude product was purified by flash column chromatography (hexane/EtOAc 2:1) to afford 7 as a viscous light-yellow oil (754.0 mg, 83%).

Diethyl (1-tosyl-1*H*-pyrrolo[2,3-*b*]pyridin-3-yl)phosphonate (62)

Prepared on 1.50-mmol scale according to modified General procedure A using 3-iodo-1-tosyl-1*H*-pyrrolo[2,3-*b*]pyridine (**SI-21**, 597.3 mg, 1.50 mmol), diethyl *H*-phosphonate (**3**, 386.0 μ L, 3.00 mmol), Pd(OAc)₂ (8.4 mg, 37.50 μ mol), XantPhos (21.7 mg, 37.50 μ mol), Ni(phen)₃Cl₂ (10.2 mg, 15.00 μ mol), nano Zn (48.6 mg,

0.75 mmol), LiBr (130.2 mg, 1.50 mmol), 2,6-lutidine (580.0 μ L, 5.00 mmol), 2 wt % TPGS-750-M in H₂O (6.0 mL) and EtOAc (1.2 mL). The reaction was performed at 45 °C over 15 hours. The crude product was purified by flash column chromatography (hexane/EtOAc 1:1 \rightarrow 1:3) to afford **62** as a beige solid (546.0 mg, 89%).

tert-Butyl (4-(diethoxyphosphoryl)phenyl)carbamate (15)

Prepared on 2.50-mmol scale according to modified General procedure A using *tert*-butyl (4-iodophenyl)carbamate (798.0 mg, 2.50 mmol), diethyl *H*-phosphonate (**3**, 650.0 μ L, 5.00 mmol), Pd(OAc)₂ (14.1 mg, 62.50 μ mol), XantPhos (36.2 mg, 62.50 μ mol), Ni(phen)₃Cl₂ (17.0 mg, 25.00 μ mol), nano Zn

(81.0 mg, 1.25 mmol), LiBr (217.0 mg, 2.50 mmol), 2,6-lutidine (870.0 μ L, 7.50 mmol), 2 wt % TPGS-750-M in H₂O (5.0 mL) and deoxygenated THF (0.5 mL). The reaction was performed at 45 °C over 19 hours. The crude product was purified by flash column chromatography (hexane/EtOAc 3:1 \rightarrow 1:1) to afford **15** as a tan powder (680.0 mg, 83%).

General procedure C (One-pot *H*-phosphonate synthesis and C(sp²)–P coupling)

Step 1. A test tube or a small vial containing a magnetic stirring bar was charged with **108** (2 equiv), alcohol (2-4 equiv) and 2,6-lutidine (2-4 equiv) under argon. The reaction mixture was stirred at laboratory temperature for 3 hours under argon.

Step 2. General procedure A or B was then followed.

Benzyl (2-(diethoxyphosphoryl)phenyl)carbamate (7)

The first step was done according to General procedure C using diphenyl *H*-phosphonate (**108**, 106.6 μ L, 0.50 mmol, assumed 90% purity), ethanol (99.3 μ L, 1.00 mmol) and 2,6-lutidine (116.0 μ L, 1.00 mmol). The second step was done according to General procedure A using benzyl (2-iodophenyl)carbamate (**6**, 88.3 mg, 0.25 mmol). The crude

product was purified by pTLC (hexane/EtOAc 2:1) to afford 7 as a viscous light-yellow oil (72.7 mg, 80%).

Bis-SATE carbamate 77

The first step was done according to General procedure C using diphenyl *H*-phosphonate (**108**, 64.0 μ L, 0.30 mmol, assumed 90% purity), *S*-(2-hydroxyethyl) 2,2-dimethylpropanethioate (97.4 mg, 0.60 mmol) and 2,6-lutidine (69.6 μ L, 0.60 mmol). The second step was done according to General

procedure B using benzyl (2-iodophenyl)carbamate (6, 88.3 mg, 0.25 mmol). The crude product was purified by pTLC (hexane/EtOAc/CH₂Cl₂ 4:1:1) to afford 77 as a viscous light-yellow oil (72.7 mg, 80%).

5,5-Dimethyl-2-(*p*-tolyl)-1,3,2-dioxaphosphinane 2-oxide (111)

The first step was done according to General procedure C using diphenyl *H*-phosphonate (**108**, 80.0 μ L, 0.375 mmol, assumed 90% purity), 2,2-dimethylpropane-1,3-diol (**110**, 78.1 mg, 0.75 mmol) and 2,6-lutidine (87.0 μ L, 0.75 mmol). The second step was done according to General

procedure A using 4-iodotoluene (2, 58.5 mg, 0.25 mmol). The crude product was purified by pTLC (EtOAc/CH₂Cl₂ 1:1) to afford **111** as an off-white solid (45.0 mg, 75%).

 $\mathbf{R}_f = 0.40$ (EtOAc/CH₂Cl₂ 1:1). Stain: UV active, KMnO₄;

¹H NMR (400 MHz, CDCl₃): δ 7.69 (dd, J = 13.6, 8.4 Hz, 2H), 7.26 (dd, J = 8.0, 4.0 Hz, 2H), 4.23 (t, J = 10.4 Hz, 2H), 3.82 (dd, J = 13.2, 11.2 Hz, 2H), 2.36 (s, 3H), 1.09 (s, 3H), 1.06 (s, 3H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 16.04 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 143.7 (d, J = 2.5 Hz), 131.7 (d, J = 10.6 Hz), 129.5 (d, J = 15.7 Hz), 123.0 (d, J = 190.7 Hz), 75.6 (d, J = 5.9 Hz), 32.6 (d, J = 5.7 Hz), 21.7 (d, J = 1.3 Hz), 21.6 (d, J = 6.7 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₁₂H₁₈O₃P [M+H]⁺: 241.09881, found 241.09875.

Benzyl (2-(5,5-dimethyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)phenyl)carbamate (112)

The first step was done according to General procedure C using diphenyl *H*-phosphonate (**108**, 106.6 μ L, 0.50 mmol, assumed 90% purity), 2,2-dimethylpropane-1,3-diol (**110**, 52.1 mg, 0.50 mmol) and 2,6-lutidine (72.5 μ L, 0.625 mmol). The second step was done using according to General procedure B

using benzyl (2-iodophenyl)carbamate (**6**, 88.3 mg, 0.25 mmol), $Pd[P(t-Bu)_3]_2$ (3.2 mg, 6.25 µmol), $Pd(OAc)_2$ (0.6 mg, 2.50 µmol), XantPhos (1.4 mg, 2.50 µmol), LiBr (21.7 mg, 0.25 mmol), 2,6-lutidine (58.0 µL, 0.50 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and EtOAc (0.1 mL). The crude product was purified by pTLC (hexane/EtOAc 1:2) to afford **112** as a beige solid (54.0 mg, 58%).

 $\mathbf{R}_f = 0.28$ (hexane/EtOAc 1:2). Stain: UV active, KMnO₄;

¹**H NMR (400 MHz, CDCl₃):** δ 9.91 (s, 1H), 8.38 (t, *J* = 8.0 Hz, 1H), 7.64 (ddd, *J* = 14.8, 7.6, 1.6 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.42–7.39 (m, 2H), 7.36–7.28 (m, 3H), 7.08 (tdd, *J* = 7.6, 3.2, 1.2 Hz, 1H), 5.19 (s, 2H), 4.40 (dd, *J* = 11.2, 5.2 Hz, 2H), 3.88 (dd, *J* = 11.6, 17.6 Hz, 2H), 1.28 (s, 3H), 0.98 (s, 3H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 17.70 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 153.4, 143.3 (d, *J* = 7.7 Hz), 136.2, 134.8 (d, *J* = 2.2 Hz), 132.5 (d, *J* = 6.0 Hz), 128.5, 128.2, 128.1, 122.2 (d, *J* = 14.0 Hz), 119.6 (d, *J* = 11.7 Hz), 111.4 (d, *J* = 188.5 Hz), 75.4 (d, *J* = 5.9 Hz), 66.9, 32.8 (d, *J* = 5.8 Hz), 22.3, 21.4 ppm;

HRMS (ESI-TOF) calc'd for C₁₉H₂₃O₅NP [M+H]⁺: 376.13084, found 376.13076.

5,5-Dimethyl-2-(1-tosyl-1*H*-pyrrolo[2,3-*b*]pyridin-3-yl)-1,3,2-dioxaphosphinane 2-oxide (113)

The first step was done according to General procedure C using diphenyl *H*-phosphonate (**108**, 106.6 μ L, 0.50 mmol, assumed 90% purity), 2,2-dimethylpropane-1,3-diol (**110**, 52.1 mg, 0.50 mmol) and 2,6-lutidine (72.5 μ L, 0.625 mmol). The second step was done according to General

procedure B using 3-iodo-1-tosyl-1*H*-pyrrolo[2,3-*b*]pyridine (SI-21, 99.6 mg, 0.25 mmol), $Pd[P(t-Bu)_3]_2$ (3.2 mg, 6.25 µmol), $Pd(OAc)_2$ (0.6 mg, 2.50 µmol), XantPhos (1.4 mg, 2.50 µmol), LiBr (21.7 mg, 0.25 mmol), 2,6-lutidine (58.0 µL, 0.50 mmol), 2 wt % TPGS-750-M in H₂O (1.0 mL) and EtOAc (0.2 mL). The crude product was purified by pTLC (EtOAc/CH₂Cl₂ 1:1) to afford **113** as a colorless oil (104.0 mg, 99%).

 $\mathbf{R}_{f} = 0.21$ (hexane/EtOAc 1:2), 0.45 (EtOAc/CH₂Cl₂ 3:2). Stain: UV active, KMnO₄;

¹H NMR (400 MHz, CDCl₃): δ 8.49 (dd, J = 4.8, 1.6 Hz, 1H), 8.22 (d, J = 6.0 Hz, 1H), 8.15–8.11 (m, 3H, overlapped signals), 7.50–7.27 (m, 6H), 7.31 (d, J = 8.0 Hz, 2H), 7.27 (dd, J = 8.0, 4.8 Hz, 1H), 4.25 (dd, J = 13.6, 11.2 Hz, 2H), 3.94 (t, J = 10.4 Hz, 2H), 2.39 (s, 3H), 1.22 (s, 3H), 1.08 (s, 3H) ppm; ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 7.93 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 147.1 (d, J = 13.9 Hz), 146.15, 146.13, 134.2, 133.2 (d, J = 22.1 Hz), 130.2, 129.8, 128.5, 121.7 (d, J = 11.8 Hz), 119.9, 103.8 (d, J = 211.8 Hz), 76.5 (d, J = 6.1 Hz), 32.6 (d, J = 6.3 Hz), 21.6 (d, J = 6.8 Hz), 21.4 ppm;

HRMS (ESI-TOF) calc'd for C₁₉H₂₂O₅N₂PS [M+H]⁺: 421.09816, found 421.09811.

Tandem processes involving C(sp²)-P cross-coupling

Step 1. A small vial was charged with 2,4,5-trichloropyrimidine (**114**, 45.9 mg, 0.25 mmol), 4-iodoaniline (54.8 mg, 0.25 mmol), K_3PO_4 ·H₂O (58.0 mg, 0.25 mmol) and a magnetic stir bar. The vial was capped with a rubber septum and evacuated/back-filled with argon 3 times. Then 2 wt % TPGS-750-M in H₂O (0.5 mL) was added and the reaction mixture was stirred at laboratory temperature for 24 hours.

Step 2. To this reaction mixture was then added Pd(OAc)₂ (1.4 mg, 6.25 μ mol), XantPhos (3.6 mg, 6.25 μ mol), Ni(phen)₃Cl₂ (1.7 mg, 2.50 μ mol), nano Zn (8.1 mg, 0.125 mmol), LiBr (21.7 mg, 0.25 mmol), 2,6-lutidine (58.0 μ L, 0.50 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol) and degassed EtOAc (0.1 mL). The reaction mixture was heated at 45 °C under argon for 15 hours. The reaction mixture was extracted with EtOAc (3 × 2 mL) and combined organic extracts were concentrated under reduced pressure. The residue was purified by pTLC (EtOAc/CH₂Cl₂ 5:4) to afford **64** as a light-yellow oil (60.0 mg, 64%) which solidified upon standing.

One-pot amide-bond formation and C(sp²)–P cross-coupling

Step 1. A small vial was charged with 3-iodobenzylamine hydrochloride (67.4 mg, 0.25 mmol) and a magnetic stir bar. The vial was capped with a rubber septum and evacuated/back-filled with argon 3 times. Then 2 wt % TPGS-750-M in H₂O (1.0 mL) was added, followed (*i*-Pr)₂NEt (131.0 μ L, 0.75 mmol) and benzoyl chloride (43.6 μ L, 0.38 mmol) The reaction mixture was vigorously stirred at 40 °C for 20 hours under argon.

Step 2. To this reaction mixture was then added Pd(OAc)₂ (1.4 mg, 6.25 μ mol), XantPhos (3.6 mg, 6.25 μ mol), Ni(phen)₃Cl₂ (1.7 mg, 2.50 μ mol), nano Zn (8.1 mg, 0.125 mmol), LiBr (21.7 mg, 0.25 mmol), 2,6-lutidine (58.0 μ L, 0.50 mmol), diethyl *H*-phosphonate (**3**, 66.0 μ L, 0.50 mmol) and degassed EtOAc (0.2 mL). The reaction mixture was heated at 45 °C for 22 hours under argon. The reaction mixture was extracted with EtOAc (3 × 2 mL), combined organic phases were washed with 1M aq. HCl (5 mL) and sat. aq. K₂CO₃ (5 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by pTLC (EtOAc) to afford **118** as a light-yellow solid (68.0 mg, 78%).

 $\mathbf{R}_{f} = 0.39$ (EtOAc). Stain: UV active, KMnO₄;

¹H NMR (400 MHz, CDCl₃): δ 7.82–7.77 (m, 3H), 7.71 (dd, J = 13.2, 7.6 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.53–7.41 (m, 4H), 6.68 (br s, 1H), 4.69 (d, J = 6.0 Hz, 2H), 4.18–4.02 (m, 4H), 1.31 (t, J = 6.8 Hz, 6H) ppm;

³¹P{¹H} NMR (162 MHz, CDCl₃): δ 18.35 ppm;

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 167.7, 139.4 (d, J = 14.7 Hz), 134.2, 132.0 (d, J = 3.0 Hz), 131.6, 130.9 (d, J = 10.3 Hz), 130.5 (d, J = 9.6 Hz), 128.9 (d, J = 15.4 Hz), 128.54 (d, J = 186.7 Hz), 128.50, 127.2, 62.2 (d, J = 5.5 Hz), 43.5, 16.3 (d, J = 6.5 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₁₈H₂₃O₄NP [M+H]⁺: 348.13592, found 348.13586.

One-pot S_NAr, NO₂ reduction, amide-bond formation and C(sp²)–P cross-coupling

In *Steps 1-3*, modified literature procedures were followed (micellar S_NAr reaction,²³ micellar nitro reduction,⁶² amine acylation⁶³) and performed with no optimization, except for the S_NAr step which required increased temperature (60 °C) and reaction time (42 hours) to reach high conversion. General procedure B was followed in *Step 4*. Vigorous stirring was crucial for all reactions but, simultaneously, splashing and depositing of solids on walls were minimized to avoid diminished conversion.

Step 1. A small vial was charged with 5-fluoro-2-nitroanisole (**119**, 42.8 mg, 0.25 mmol), K₃PO₄·H₂O (58.0 mg, 0.25 mmol) and a magnetic stir bar. The vial was capped with a rubber septum and evacuated/back-filled with argon 3 times. Then 1-methylpiperazine (**120**, 27.7 μ L, 0.25 mmol) and 2 wt % TPGS-750-M in H₂O (0.5 mL) were added and the reaction mixture was vigorously stirred at 60 °C for 42 hours. The progress of the reaction was monitored by LC-MS analysis.

Step 2. To the reaction mixture was then added Pd/C (10 wt %, 2.7 mg, 2.5 μ mol). The reaction mixture was flushed with H₂ and vigorously stirred at 55 °C for 22 hours under H₂ (two H₂ balloons). The progress of the reaction was monitored by LC-MS analysis, which revealed >95% conversion after 22 hours.

Step 3. To the reaction mixture was then added *p*-iodobenzoyl chloride (**123**, 99.9 mg, 0.375 mmol), 2 wt % TPGS-750-M in H₂O (0.5 mL) and (*i*-Pr)₂NEt (87.3 μ L, 0.50 mmol). The reaction mixture was vigorously stirred at 40 °C for 22 hours. The progress of the reaction was monitored by LC-MS analysis, which revealed >90% conversion after 22 hours.

Step 4. The reaction mixture was then flushed with Ar for ~30 min. Then Pd(OAc)₂ (1.4 mg, 6.25 μ mol), XantPhos (3.6 mg, 6.25 μ mol), Ni(phen)₃Cl₂ (1.7 mg, 2.50 μ mol), nano Zn (8.1 mg, 0.125 mmol), LiBr (21.7 mg, 0.25 mmol), 2,6-lutidine (87.0 μ L, 0.75 mmol), diethyl *H*-phosphonate (**3**, 99.0 μ L, 0.75 mmol) and degassed EtOAc (0.2 mL) were added. The reaction mixture was heated at 55 °C under

Ar for 21 hours and the reaction progress was monitored by LC-MS analysis. Upon completion, the reaction mixture was then extracted with EtOAc ($6 \times 2 \text{ mL}$), combined organic extracts were washed with sat. aq. NaHCO₃ (10 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by pTLC (7.5% MeOH in CH₂Cl₂) to afford **125** as a bright-yellow oil (107.0 mg) containing impurities. Crude **125** was purified by preparative reverse-phase C8 HPLC (gradient H₂O + 0.1% TFA \rightarrow CH₃CN over 20 min) to afford **125** • TFA as a bright-yellow solid (99.5 mg, 69%).

 \mathbf{R}_{f} (free base) = 0.51 (10% MeOH in CH₂Cl₂). Stain: UV active, anisaldehyde (pale-yellow spot);

¹H NMR (TFA salt, 400 MHz, CD₃OD): δ 8.06 (dd, J = 8.0, 4.0 Hz, 2H), 7.95–7.90 (m, 2H), 7.78 (d, J = 8.8 Hz, 1H), 6.76 (d, J = 2.4 Hz, 1H), 6.64 (dd, J = 8.8, 2.8 Hz, 1H), 4.21–4.12 (m, 4H), 3.91 (s, 3H, overlapped), 3.87 (br s, 2H, overlapped), 3.63 (d, J = 12.8 Hz, 2H, broad), 3.30–3.26 (m, 2H, overlapped), 3.08 (t, J = 12.4 Hz, 2H, broad), 2.99 (s, 3H), 1.31 (t, J = 6.8 Hz, 6H) ppm;

³¹P{¹H} NMR (TFA salt, 162 MHz, CD₃OD): δ 17.58 ppm;

¹⁹F NMR (TFA salt, 376 MHz, CD₃OD): δ -77.28 ppm;

¹³C{¹H} NMR (TFA salt, 100 MHz, CD₃OD): δ 167.3, 154.0, 150.0, 140.1 (d, J = 3.3 Hz), 133.0 (d, J = 10.2 Hz), 132.3 (d, J = 188.2 Hz), 125.9, 121.5, 109.3, 102.2, 64.1 (d, J = 5.8 Hz), 56.4, 54.7, 48.3, 43.6, 16.6 (d, J = 6.2 Hz) ppm;

HRMS (ESI-TOF) calc'd for C₂₃H₃₃O₅N₃P [M–TFA+H]⁺: 462.21523, found 462.21517.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of SI-5. Low-intensity signals correspond to TPGS-750-M impurity.

Compound SI-12

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of SI-12.

Compound SI-26

Compound SI-29

¹³C{¹H} NMR (151 MHz, CDCl₃/DMSO-*d*₆ ~5:1) spectrum of SI-29.

Chloroform-d

7.31 7.26 7.08 7.07

20.7 5.97

7.37

7.52 7.43 7.41 7.38 7.34 .33 $\begin{array}{c} 4,19\\ 4,17\\ 4,15\\ 4,15\\ 4,15\\ 4,11\\ 4,13\\ 4,09\\ 4,07\\ 4,07\\ 3,99\\$

-1.32 -1.29

Compound 7

10.05

∕OEt OEt NHCbz ∫

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 7.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 18.

S87

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 24.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 24.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 27.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 27.

¹H NMR (400 MHz, CDCl₃) spectrum of 29.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 29. The signal at 7.31 ppm corresponds to ca. 4% of *H*-phosphonate impurity.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 29.

Compound 30

¹H NMR (400 MHz, CD₃OD) spectrum of 30. Asterisk denotes signal of polar impurity which was difficult to remove.

- 17.68

³¹P{¹H} NMR (162 MHz, CD₃OD) spectrum of 30.

¹³C{¹H} NMR (100 MHz, CD₃OD) spectrum of **30**. Asterisks denote signal of polar impurity which was difficult to remove.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 37.

Detail of ¹³C{¹H} NMR (101 MHz, CDCl₃) spectrum of 37.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of **39**.

Compound 41

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 41.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of **39**.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 43.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 44.

HRMS (ESI-TOF) spectrum of compound 44. The signal at m/z 440.23701 corresponds to the most abundant ¹¹B isotopomer.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 45.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 45.

Compound 46

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 46.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 48.

¹³C{¹H} APT NMR (100 MHz, CDCl₃) spectrum of 48.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 54.

¹³C{¹H} NMR (151 MHz, CDCl₃) spectrum of 54.

Compound 55·HCl

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 55·HCl.

¹³C{¹H} NMR (151 MHz, CDCl₃) spectrum of 55·HCl.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 59.

 $^{13}C\{^1H\}$ NMR (100 MHz, CDCl₃) spectrum of 59.

³¹P{¹H} NMR (162 MHz, C₆D₆) spectrum of 60.

¹³C{¹H} NMR (151 MHz, C₆D₆) spectrum of 60.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 61.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 61.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 62.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 63.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 63.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 64.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 64.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 65. The signal at 7.31 ppm corresponds to ca. 5% of *H*-phosphonate impurity.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 66.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 66 in more detail.

HRMS (ESI-TOF) spectrum of compound 66.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 67.

HRMS (ESI-TOF) spectrum of compound 67.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 68.

¹³C{¹H} APT NMR (100 MHz, CDCl₃) spectrum of 68.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 69.

³¹P{¹H} NMR (162 MHz, CD₃OD) spectrum of 70.

¹³C{¹H} NMR (151 MHz, CD₃OD) spectrum of 70.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 71.

¹³C{¹H} NMR (151 MHz, CDCl₃) spectrum of 71.

HRMS (ESI-TOF) spectrum of compound 71.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 75.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 75.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 76.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 76.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 77.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 77.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 78.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 78.

Compound 79·TFA

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 79·TFA.

¹³C{¹H} NMR (100 MHz, CDCl₃/CD₃OD ~10:1) spectrum of 79·TFA.

HRMS (ESI-TOF) spectrum of compound 79. TFA ([M-TFA+H]+ signal was detected and is shown).

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 80.

¹³C{¹H} APT NMR (151 MHz, CDCl₃) spectrum of 80.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 81.

¹³C{¹H} NMR (151 MHz, CDCl₃) spectrum of 81.

¹³C{¹H} NMR (151 MHz, CDCl₃) spectrum of 81 in more detail.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 82.

Part of the ¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 82 which was used to assign the C(sp²)–P signal based on its *J* value (${}^{13}C{}^{1}H{}$ 151 MHz: δ 131.4 (d, *J* = 189.1 Hz) ppm; ${}^{13}C{}^{1}H{}$ 100 MHz: δ 131.3 (d, *J* = 187.2 Hz) ppm).

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 83.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 83. Asterisks denote impurities inseparable due to instability of 83 on silica gel.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 84.

¹³C{¹H} NMR (151 MHz, CDCl₃) spectrum of 84 in more detail.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 85.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 88.

¹³C{¹H} NMR (151 MHz, CDCl₃) spectrum of 88.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 89.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 89.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 90.

 $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) spectrum of 90 in more detail.

¹H NMR (400 MHz, CDCl₃) spectrum of 91.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 91.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 91 in more detail.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 92.

HRMS (ESI-TOF) spectrum of compound 92.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 93.

S181

Comparison of ¹³C{¹H} NMR spectra of **93** (151 MHz in blue trace, 100 MHz in red trace) which were used to assign the two C(sp²)–P signals based on their *J* values. ¹³C{¹H} 151 MHz: δ 130.7 (d, *J* = 139.7 Hz, carbon in green), 129.8 (dd, *J* = 142.4, 2.9 Hz, carbon in orange) ppm; ¹³C{¹H} 100 MHz: δ 130.7 (d, *J* = 138.4 Hz, carbon in green), 129.7 (dd, *J* = 140.9, 4.9 Hz, carbon in orange) ppm.

HRMS (ESI-TOF) spectrum of compound 93.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 94.

¹³C{¹H} NMR (150 MHz, CDCl₃) spectrum of 94.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 95.

¹³C{¹H} NMR (151 MHz, CDCl₃) spectrum of 95. ¹³C{¹H} NMR (100 MHz, CDCl₃, shown in the black box) was used to assign the C–P signal (δ 120.5 ppm, d, J = 146.9 Hz) which is partially overlapped in the 125 MHz ¹³C{¹H} spectrum.

HRMS (ESI-TOF) spectrum of compound 95.

¹H NMR (400 MHz, CDCl₃) spectrum of 96.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 96.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 96.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 99.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 99.

¹H NMR (400 MHz, CDCl₃) spectrum of 100.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 100.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 100.

Compound 102·TFA

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 102·TFA.

¹³C{¹H} NMR (151 MHz, CDCl₃) spectrum of 102·TFA.

S196

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 104.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 104.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 106.

¹³C{¹H} NMR (151 MHz, CDCl₃) spectrum of 106.

Detail of the ¹³C{¹H} APT NMR (151 MHz, CDCl₃) spectrum of 106.

Detail of the ¹³C{¹H} APT NMR (100 MHz, CDCl₃) spectrum of 106.

Comparison of ¹³C{¹H} NMR spectra of **106** (151 MHz in red trace, 100 MHz in blue trace) which were used to assign the two C–P signals based on their *J* values. ¹³C{¹H} 151 MHz: δ 131.4 (d, *J* = 105.1 Hz), not determined ppm; ¹³C{¹H} 100 MHz: δ not determined, 129.0 (d, *J* = 160.7 Hz) ppm.

Comparison of ${}^{13}C{}^{1}H$ NMR spectra of **106** (151 MHz in red trace, 100 MHz in blue trace) which were used to assign the C-F signal based on its *J* values.

HRMS (ESI-TOF) spectrum of compound 106.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 111.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 111.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 112.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 112.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 113.

³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of 118.

¹³C{¹H} NMR (100 MHz, CDCl₃) spectrum of 118.

³¹P{¹H} NMR (162 MHz, CD₃OD) spectrum of 125.

¹³C{¹H} NMR (100 MHz, CD₃OD) spectrum of 125.

HRMS (ESI-TOF) spectrum of compound 125.

References

- 1) Prikhod'ko, S. A.; Popov, A. G.; Adonin, N. Y. *Mol. Catal.* **2018**, *461*, 19–25; Inskeep, R. G. J. *Inorg. Nucl. Chem.* **1962**, *24*, 763–776.
- 2) Lee, Y. H.; Morandi, B. Angew. Chem. Int. Ed. 2019, 58, 6444–6448.
- 3) Buzzetti, L.; Puriņš, M.; Greenwood, P. D. G.; Waser, J. J. Am. Chem. Soc. 2020, 142, 17334–17339.
- 4) Gaulier, S. M.; McKay, R.; Swain, N. A. *Tetrahedron Lett.* **2011**, *52*, 6000–6002.
- 5) Makaravage, K. J.; Brooks, A. F.; Mossine, A. V.; Sanford, M. S.; Scott, P. J. H. *Org. Lett.* **2016**, *18*, 5440–5443.
- 6) Gabriel, C. M.; Keener, M.; Gallou, F.; Lipshutz, B. H. Org. Lett. 2015, 17, 3968–3971.
- 7) Hocková, D.; Dračínský, M.; Holý, A. *Eur. J. Org. Chem.* **2010**, 2885–2892.
- 8) Hennessy, E. J.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 12084–12085.
- 9) Nieman, J. A.; Ennis, M. D. J. Org. Chem. 2001, 66, 2175–2177.
- 10) Leitner, C.; Gaich, T. Chem. Commun. 2017, 53, 7451–7453.
- 11) Kofink, C. C.; Blank, B.; Pagano, S.; Götz, N.; Knochel, P. Chem. Commun. 2007, 1954–1956.
- 12) Song, H.; Liu, Y.; Liu, Y.; Wang, Q. Org. Lett. **2014**, *16*, 3240–3243.
- 13) Neuhaus, J. D.; Morrow, S. M.; Brunavs, M.; Willis, M. C. Org. Lett. 2016, 18, 1562–1565.
- 14) Chen, C.-L.; Liu, F.-L.; Lee, C.-C.; Chen, T.-C.; Ali, A. A. A.; Sytwu, H.-K.; Chang, D.-M.; Huang, H.-S. J. Med. Chem. 2014, 57, 8072–8085.
- 15) Lv, J.; Chen, X.; Xue, X. S.; Zhao, B.; Liang, Y.; Wang, M.; Jin, L.; Yuan, Y.; Han, Y.; Zhao, Y.; Lu, Y.; Zhao, J.; Sun, W. Y.; Houk, K. N.; Shi, Z. *Nature* **2019**, *575*, 336–340.
- 16) Zembower, D. E.; Ames, M. M. Synthesis 1994, 1433–1436.
- 17) Konno, H.; Sato, T.; Saito, Y.; Sakamoto, I.; Akaji, K. Bioorg. Med. Chem. Lett. 2015, 25, 5127-5132.
- 18) Unsworth, W. P.; Cuthbertson, J. D.; Taylor, R. J. K. Org. Lett. 2013, 15, 3306–3309.
- 19) Makida, Y.; Saita, M.; Kuramoto, T.; Ishizuka, K.; Kuwano, R. Angew. Chem. Int. Ed. 2016, 128, 12038–12041.
- 20) Boyle, B. T.; Levy, J. N.; de Lescure, L.; Paton, R. S.; McNally, A. Science 2022, 378, 773–779.
- 21) Drießen, D.; Biesen, L; Müller, T. J. J. Synlett 2021, 32, 491–496.
- Jose, G.; Kumara, T. H. S.; Nagendrappa, G.; Sowmya, H. B. V.; Sriram, D.; Yogeeswari, P.; Sridevi, J. P.; Row, T. N. G.; Hosamani, A. A.; Ganapathy, P. S. S.; Chandrika, N.; Narendra, L. V. *Eur. J. Med. Chem.* 2015, *89*, 616–627.
- 23) Isley, N. A.; Linstadt, R. T. H.; Kelly, S. M.; Gallou, F.; Lipshutz, B. H. Org. Lett. 2015, 17, 4734–4737.
- 24) Zhanga, L.; Chenb, Y.; Lia, F.; Zhangc, L.; Fengdand, J.; Zhang, L. J. Enzyme Inhib. Med. Chem. 2022, 37, 1918–1927.
- 25) Tanwar, L.; Börgel, J.; Lehmann, J.; Ritter, T. Org. Lett. 2021, 23, 5024–5027.
- 26) Štěpánek, O.; Čmoková, A.; Procházková, E.; Grobárová, V.; Černý, J.; Slapničková, M.; Zíková, A.; Kolařík, M.; Baszczyňski, O. *ChemMedChem* **2022**, *17*, e202200385.
- 27) Aublette, M. C.; Harrison, T. A.; Thorpe, E. J.; Gadd, M. S. *Bioorg. Med. Chem. Lett.* **2022**, *64*, 128636.
- 28) Yu, P.; Morandi, B. Angew. Chem. Int. Ed. 2017, 56, 15693–15697.
- 29) Qin, L.; Ren, X.; Lu, Y.; Li, Y.; Zhou, J. S. Angew. Chem. Int. Ed. 2012, 51, 5915–5919.
- 30) Zhao, M. M.; Zhang, H.; Iimura, S.; Bednarz, M. S.; Kanamarlapudi, R. C.; Yan, J.; Lim, N.-K.; Wu, W. Org. Process Res. Dev. 2020, 24, 261–273.
- 31) Xie, Z.; Lu, L.; Wang, Z.; Luo, Q.; Yang, Y.; Fang, T.; Chen, Z.; Ma, D.; Quan, J.; Xi, Z. *Eur. J. Med. Chem.* **2022**, *243*, 114796.
- 32) Azéma, L.; Lherbet, C.; Baudoin, C.; Blonski, C. *Bioorg. Med. Chem. Lett.* 2006, *16*, 3440–3443.
- 33) Tran, G.; Gomez Pardo, D.; Tsuchiya, T.; Hillebrand, S.; Vors, J.; Cossy, J. Org. Lett. 2013, 15, 5550–5553.
- 34) For example: Pelchowicz, Z. J. Chem. Soc. 1961, 241–243; Krawiecki, Cz.; Michalski, J. J. Chem. Soc. 1960, 881–885.
- 35) Kincaid, J. R. A.; Wong, M. J.; Akporji, N.; Gallou, F.; Fialho, D. M.; Lipshutz, B. H. Introducing Savie: A Biodegradable Surfactant Enabling Chemo- and Biocatalysis and Related Reactions in Recyclable Water. J. Am. Chem. Soc. **2023**, 145, 4266–4278.
- 36) Liu, C.; Szostak, M. Angew. Chem. Int. Ed. 2017, 56, 12718–12722.
- 37) Mucha, A.; Kunert, A.; Grembecka, J.; Pawełczak, M; Kafarski, P. *Eur. J. Med. Chem.* **2006**, *41*, 768–772.
- 38) Kohler, M. C.; Sokol, J. G.; Stockland, R. A., Jr. Tetrahedron Lett. 2009, 50, 457–459.
- 39) Jaffrès, P.-A.; Bar, N.; Villemin, D. J. Chem. Soc., Perkin Trans. 1 1998, 2083–2089.
- 40) Khrizanforov, M. N.; Strekalova, S. O.; Kholin, K. V.; Khrizanforova, V. V.; Kadirov, M. K.; Gryaznova, T. V.; Budnikova, Y. H. Catal. Today **2017**, *279*, 133–141.
- 41) Cowper, N. G. W.; Chernowsky, C. P.; Williams, O. P.; Wickens, Z. K. J. Am. Chem. Soc. 2020, 142, 2093–2099.
- 42) Wang, S.-D.; Yang, B.; Zhang, H.; Qu, J.-P.; Kang, Y.-B. Org. Lett. 2023, 25, 816–820.
- 43) Kalek, M.; Ziadi, A.; Stawinski, J. Org. Lett. 2008, 10, 4637–4640.
- 44) Lecroq, W.; Bazille, P.; Morlet-Savary, F.; Breugst, M.; Lalevée, J.; Gaumont, A.-C.; Lakhdar, S. *Org. Lett.* **2018**, *20*, 4164–4167.
- 45) Chauhan, S. S.; Varshney, A.; Verma, B.; Pennington, M. W. Tetrahedron Lett. 2007, 48, 4051–4054.
- 46) Qi, N.; Zhang, N.; Allu, S. R.; Gao, J.; Guo, J.; He, Y. Org. Lett. 2016, 18, 6204–6207.
- 47) Jelier, B. J.; Tripet, P. F.; Pietrasiak, E.; Franzoni, I.; Jeschke, G.; Togni, A. Angew. Chem. Int. Ed. 2018, 57, 13784–13789.
- 48) Heinicke, J.; Böhle, I.; Tzschach, A. J. Organomet. Chem. 1986, 317, 11–21.
- 49) Aluri, B. R.; Niaz, B.; Kindermann, M. K.; Jones, P. G.; Heinicke, J. Dalton Trans. 2011, 40, 211–224.
- 50) Huang, Y.; Hu, Y.; Han, Y.; Ou, Y.; Huo, Y.; Li, X.; Chen, Q. J. Org. Chem. 2021, 86, 7010–7018.
- 51) Berrino, R.; Cacchi, S.; Fabrizi, G.; Goggiamania, A.; Stabile, P. Org. Biomol. Chem. 2010, 8, 4518–4520.
- 52) Taylor, J. M.; Dwyer, P. J.; Reid, J. W.; Gelfand, B. S.; Lim, D.; Donoshita, M.; Veinberg, S. L.; Kitagawa, H.; Vukotic, V. N.; Shimizu, G. K. H. *Chem* **2018**, *4*, 868–878.
- 53) Lavén, G.; Kalek, M.; Jezowska, M.; Stawinski, J. New J. Chem. 2010, 34, 967–975.
- 54) Koniarczyk, J. L.; Greenwood, J. W.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. *Angew. Chem. Int. Ed.* **2019**, *58*, 14882–14886.
- 55) Jackson, R.; Muimo, R.; Lilley, M. Patent WO2015/33120, 12 March 2015, A1.
- 56) Kendall, A. J.; Salazar, C. A.; Martino, P. F.; Tyler, D. R. Organometallics 2014, 33, 6171–6178.
- 57) Gou, X. Y.; Zhang, B. S.; Wang, X. G.; Shi, W. Y.; Liu, H. C. Y. A.; Zhang, Z.; Liang, Y. M. Chem. Commun. 2020, 56, 4704–4707.
- 58) J. Org. Chem. 2021, 86, 12783–12801.
- 59) Fu, W. C.; So, C. M.; Kwong, F. Y. Org. Lett. 2015, 17, 5906–5909.
- 60) Zhang, Y.; Chen, W.; Tan, T.; Gu, Y.; Zhang, S.; Li, J.; Wang, Y.; Hou, W.; Yang, G.; Ma, P.; Xu, H. Chem. Commun. 2021, 57, 4588–4591.
- 61) Kalek, M.; Jezowska, M.; Stawinski, J. Adv. Synth. Catal. 2009, 351, 3207–3216.
- 62) Li, X.; Thakore, R. R.; Takale, B. S.; Gallou, F.; Lipshutz, B. H. Org. Lett. 2021, 23, 8114–8118.
- 63) Takale, B. S.; Thakore, R. R.; Mallarapu, R.; Gallou, F.; Lipshutz, B. H. A *Org. Process Res. Dev.* **2020**, 24, 101–105.