Room-temperature tandem conversion of cyclic alkenes into 1,2-diols using molecular oxygen and β -MnO₂ heterogeneous catalyst

Shihao Su,^a Guojun Lv,^{a*} Xuyang Zou,^a Jiangzhang Wang,^a Chaoyi Zhou,^a Yan Chen,^a Jialing Shen,^a

Yangbin Shen,^b Zhongmin Liu,^c

^aSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology,

Zhenjiang 212003, PR China

^bInstitute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou,

215009, PR China

^cSchool of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China

*Corresponding author: jkdlgj@just.edu.cn (Guojun Lv)

Control experiments

β-MnO₂-water hydration reaction: 0.05 g of the β-MnO₂ catalyst, 5 mL of acetonitrile, 2.5 mL of water and 100 μL cyclohexene oxide was mixed together for hydration reaction at a stirring rate of 600 rpm in a 25 mL Teflon-lined stainless-steel autoclave. Isobutyric acid-water hydration reaction: 400 μL isobutyric acid, 5 mL of acetonitrile, 2.5 mL of water and 100 μL cyclohexene oxide was mixed together for hydration reaction at a stirring rate of 600 rpm in a 25 mL Teflon-lined stainless-steel autoclave. β -MnO₂-isobutyric acid-water hydration reaction: 0.05 g of the β-MnO₂ catalyst, 5 mL of acetonitrile, 400 μL isobutyric acid, 2.5 mL of water and 100 μL cyclohexene oxide was mixed together for hydration reaction at a stirring rate of 600 rpm in a 25 mL for water and 100 μL cyclohexene oxide reaction at a stirrile, 400 μL isobutyric acid, 2.5 mL of water and 100 μL cyclohexene oxide

Fig. S1 H_2 -TPR profiles of the four MnO₂ samples

Fig. S2 Yield of the products with reaction time for tandem conversion reaction at 50

°C

Fig. S3 Gas chromatograms for the tandem conversion reaction solutions before

reaction (a) and after reaction (b)

Fig. S4 Control experiments including water alone, β -MnO₂-water, isobutyric acidwater and β -MnO₂-isobutyric acid-water reaction systems for the direct hydration of cyclohexene oxide

Fig. S5 DFT calculations for the adsorption of cyclohexene on α -MnO₂ (a), β -MnO₂ (b), δ -MnO₂ (c) and γ -MnO₂ (d) samples

Fig. S6 DFT calculations for the cyclohexene epoxidation reaction on $\beta\text{-}MnO_2$

heterogeneous catalyst

Fig. S7 Influence of O_2 pressure (a), water addition (b), molar ratio of cyclohexene with isobutyraldehyde (c) and reaction time (d) on the cyclohexene conversion and 1,2-cyclohexanediol selectivity

Fig. S8 O1s XPS Spectra of the fresh and recycled β -MnO₂ samples