Supplementary Information

Integrating biomass and mineral into photocatalyst for efficient photocatalytic N_2 fixation coupled with biomass conversion

Rongrong Gao^a, Yuying Zhang ^b, Chaoya Han^b, Haoguan Gui^a, Chao Yao ^a, Chaoying Ni^{b,*}, Xiazhang Li^{a,*}

^a National-local Joint Engineering Research Center of Biomass Refining and

High-quality Utilization, Changzhou University, Changzhou 213164, P. R. China

^b Department of Materials Science and Engineering, University of Delaware,

Newark, DE 19716, USA

Corresponding authors: <u>xiazhang@cczu.edu.cn; cni@udel.edu</u>

Fig. S1 TEM images of HTCC (a); HTCC/Fe-ATP(b) with chestnut shells as raw material

Fig. S2 Different element mappings image of 30% HTCC/Fe-ATP.

XPS analysis

As shown in Fig.S3 (a), the presence of Si, C, O, Fe, Mg in the HTCC/Fe-ATP sample is identified in the survey scan, which is consistent with the results of element mapping. The XPS spectra of C 1s in HTCC and HTCC/Fe-ATP, as shown in Fig.S3 (b), exhibit three characteristic peaks at 284.3 eV, 285.7 eV and 287.4 eV,

corresponding to the existence of C-C, C-O-C and C=O, respectively. For the O 1s spectra in the Fig.S3 (c), two distinct peaks are observed in HTCC at 532.3 eV and 533.2 eV, which can be attributed to C=O and C-O-C. In the O 1s spectrum of Fe-ATP, two peaks are observed at 529.5 eV and 532.1 eV, corresponding to the lattice oxygen (O_L) and surface adsorbed oxygen (O_A) , respectively. The O 1s spectrum of the HTCC/Fe-ATP sample displays four typical peaks, representing the C=O and C-O-C bonds of HTCC, as well as the lattice oxygen (O_L) and surface adsorbed oxygen (O_L) and surface adsorbed oxygen (O_A) , respectively. The O 1s spectrum of the HTCC/Fe-ATP sample displays four typical peaks, representing the C=O and C-O-C bonds of HTCC, as well as the lattice oxygen (O_L) and surface adsorbed oxygen (O_A) of Fe-ATP. Notably, the binding energy of the O_A peak in the HTCC/Fe-ATP composite shifts to lower values, indicating an increase in electron cloud density. This phenomenon can be attributed to the electron transfer process occurring in HTCC/Fe-ATP. In Fig.S3 (d), the Fe 2p spectrum of HTCC/Fe-ATP contains two obvious spinorbit doublets of Fe 2p_{1/2} and Fe 2p_{3/2}. Among them, four peaks centered at 709.2 eV, 715.2 eV, 723.6 eV and 727.3 eV are assigned to Fe²⁺, while another three peaks at 711.6 eV, 719.2 eV and 732.6 eV belong to Fe³⁺. The above results illustrate the coexistence of Fe²⁺ and Fe³⁺ in Fe-ATP structures.

Fig.S3 XPS spectra of the HTCC, Fe-ATP and HTCC/Fe-ATP samples, survey (a); C 1s (b); O 1s (c); Fe 2p (d).

photooxidation of 2-phenoxy-1-phenylethanol by Fe-ATP, HTCC and 10%~40% HTCC/Fe-ATP in the coupled system; (c) Photocatalytic 2-phenoxy-1-phenylethanol coupling nitrogen fixation ammonia synthesis 5 cycle diagram by 30% HTCC/Fe-ATP. Typical reaction condition: 40 mg of 2-phenoxy-1-phenylethanol, 100 mg of photocatalysts, 50 mL of solvent (CH₃CN: H₂O =1:9),

visible light irradiation, room temperature, 12h. The result

was determined by HPLC.

The average lifetime (τ) can be calculated by the following formula:

$$\tau = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$

The fitting data are shown in Table S1.

Component	A ₁ (%)	A ₂ (%)	$\tau_1(ns)$	$\tau_2(ns)$	τ(ns)
HTCC	64.67	35.55	0.3252	2.1793	0.9803
Fe-ATP	58.00	42.00	0.3118	2.0939	1.0603
10% HTCC/Fe-ATP	53.49	46.51	0.4003	2.6489	1.4461
20% HTCC/Fe-ATP	47.85	52.15	0.3184	2.6732	1.5464
30% HTCC/Fe-ATP	28.52	71.48	0.2963	2.4478	1.8343
40% HTCC/Fe-ATP	40.31	59.69	0.3994	2.3384	1.5566

Table S1 The fitted PL decay components of as-prepared photocatalysts

Table S2 Photocatalytic nitrogen fixation with absence of sacrificial agent

Entry Photocatalysts	Catalyst	Sacrificial		photocatalytic	Dof	
	Thotocatarysts	Dosage	Agent	Light Source	nitrogen fixation rate	Kel
1	Co-Bi ₂ MoO ₆	100 mg	/	visible light	95.5 μmol•g ⁻¹ •h ⁻¹	1

6 ATP	100 mg	alcohol	Xenon lamp ($\lambda > 420$ nm)	102.8 μmol•g ⁻¹ •h ⁻¹	work	
	HTCC/Fe-		benzyl	300 W		This
5	g-C ₃ N ₄	30 mg g-C ₃ N ₄		lamp	62.42 μmol•g ⁻¹ •n ⁻¹	2
5	Fe-porous	20	1	300 W Xenon	(2,42,	5
4 N- 110 ₂	20 mg	/	lamp	80.09 µmor•g •n •	4	
4 N	N TO	20 mg	/	300 W Xenon	80.00 umalez-leh-l	4
3	Fe- TiO ₂ -SiO ₂	50 mg	/	300 W Xe lam	$32 \mu mol \cdot g^{-1} \cdot h^{-1}$	3
2	In_2O_3/In_2S_3	20 mg	/	lamp	40.04 µmol•g ⁻¹ •h ⁻¹	2
			300 W Xenon			

Table S3 Photocatalytic nitrogen fixation coupled with oxidation conversion

Entry Photocatalysts	Catalyst Dosage	Sacrificial Agent	Oxidation		photocatalytic		
			products and	Light Source	nitrogen	Ref	
			yield		fixation rate		
1 Fe-abtc	Ea abta	20	K SO	K_2SO_4	300 W Xe	49.8 µmol•g⁻	6
	20 mg	K ₂ SU ₃	N/A	lamp	$^{1} \bullet h^{-1}$	0	
			honzul	hanzaldahuda	300 W Xe		
$2 \qquad Ni_{12}P_5/ZnIn_2S_4$	50 mg	alcohol	$\sim 00 \text{ umpl} \text{g}^{-1}$	lamp ($\lambda > 400$	47µmol•g⁻¹	7	
			alconor	~ 90 µ1101•g	nm)		
			benzvl	benzaldehyde	Xenon lamn (λ	102.8	This
3 HTCC/Fe-ATP	100 mg	alcohol	155	> 420 nm)	$umol \bullet g^{-1} \bullet h^{-1}$	work	
			arconor	µmol•g ⁻¹ •h ⁻¹	· 120 mm)	µiiloi g 'li	ork

Reference

- 1. C. Yang, Y. Zhang, F. Yue, R. Du, T. Ma, Y. Bian, R. Li, L. Guo, D. Wang and F. Fu, *Applied Catalysis B: Environmental*, 2023, **338**.
- 2. H. Xu, Y. Wang, X. Dong, N. Zheng, H. Ma and X. Zhang, *Applied Catalysis B: Environmental*, 2019, **257**.

- S. Wu, Z. Chen, W. Yue, S. Mine, T. Toyao, M. Matsuoka, X. Xi, L. Wang and J. Zhang, ACS Catalysis, 2021, 11, 4362-4371.
- 4. C. Li, M. Gu, M. Gao, K. Liu, X. Zhao, N. Cao, J. Feng, Y. Ren, T. Wei and M. Zhang, *J Colloid Interface Sci*, 2022, **609**, 341-352.
- 5. T. Hu, G. Jiang, Y. Yan, S. Lan, J. Xie, Q. Zhang and Y. Li, *Journal* of Materials Science & Technology, 2023, **167**, 248-257.
- 6. L. Chen, Y. Chen, X. Tu, S. Zhu, C. Sun, L. Zhang, W. Han, X. Duan, Q. Sun and H. Zheng, *J Colloid Interface Sci*, 2023, **633**, 703-711.
- S. Meng, C. Chen, X. Gu, H. Wu, Q. Meng, J. Zhang, S. Chen, X. Fu,
 D. Liu and W. Lei, *Applied Catalysis B: Environmental*, 2021,

285, 119789.