A Novel Approach for Synthesizing a-Amino Acids via Formate Mediated Hydrogen Transfer and Carbon Source

Tian-Tian Zhao, ${ }^{\text {a\# }}$ Xu-Gang Zhang, ${ }^{\text {a\# }}$ Wen-Bo He ${ }^{\text {a }}$ and Peng-Fei Xu ${ }^{\text {ab* }}{ }^{\text {* }}$
${ }^{\text {a }}$ State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
${ }^{\text {b }}$ State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
\#The Authors are contributed equally.
*Corresponding author: xupf@1zu.edu.cn

Contents

1. General information 2
2. Optimization of reaction conditions. 2
3. General procedure for the synthesis of α-amino acid derivatives 5
3.1 DFT calculations for the tosylated ketimine and phenyl ketimine 1 6
3.2 Gram-Scale Preparation of 2 9
4. Experimental procedure for CAN mediated deprotection of 33 9
5. Mechanism studies 10
5.1 NaphSK solubility test. 10
5.2 Specific isotope labeling of α-amino acid derivative 10
5.3 Radical trapping experiment. 12
5.4 Procedure for the addition reaction of 2-naphthalenyl disulfide and 1-heptyne. 13
5.5 UV-vis absorption spectra 14
5.6 Stern-volmer fluorescence quenching experiments 15
5.7 Cyclic voltammetry experiments 17
5.8 On/off lamp experiment 19
5.9 Propossed mechanism. 20
6. Characterization of products. 20
7. Crystallographic data 32
8. Reference 34
9. NMR Spectra of Coupounds. 35

1. General information

All glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Analytical thin-layer chromatography was performed with 0.20 mm coated commercial silica gel plates (TLC Silica Gel $60 \mathrm{~F}_{254}$); visualization of the developed chromatogram was performed by fluorescence. Flash chromatography was performed with silica gel (200-300 mesh). Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) data were acquired at 400 MHz on a Bruker AM-40 spectrometer. Chemical shifts are reported in delta (δ) units, in parts per million (ppm) downfield from TMS scale. Splitting patterns are designated as s , singlet; d, doublet; t, triplet; m, multiplet. Coupling constants J are quoted in Hz . Data for ${ }^{13} \mathrm{C}$ NMR are reported as chemical shift. High resolution mass spectra (HRMS) were recorded on the Thermo Scientific Exactive Plus (orbitrap) equipped with ESI ionization source. Recycling preparative HPLC was provided by Shimadzu (Model LC20AR).

2. Optimization of reaction conditions.

Table S1 Screening of thiol catalyst. ${ }^{a}$

1
2

entry	thiol catalyst	n mol $\%$	yield $(\%)^{b}$
1	\mathbf{A}	30	34
2	\mathbf{B}	30	17
3	\mathbf{C}	30	10
4	\mathbf{D}	30	0
5	\mathbf{E}	30	0
6	\mathbf{F}	30	6
7	\mathbf{G}	30	12
8	\mathbf{H}	30	0
9	\mathbf{I}	30	68
11	\mathbf{J}	30	0
12	\mathbf{K}	30	57
13	\mathbf{L}	30	45
14	$\mathbf{I}(\mathrm{NaphSH})$	20	63

${ }^{a}$ Conditions: $\mathbf{1}$ ($0.1 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{HCOOK}\left(0.2 \mathrm{mmol}, 2.0\right.$ equiv), thiol catalyst ($\mathrm{n} \mathrm{mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($0.03 \mathrm{mmol}, 0.3$ equiv), $3 \AA \mathrm{MS}(30 \mathrm{mg})$, DMSO $(1.0 \mathrm{~mL})$ at r.t. under the irradiation of blue LEDs $(\lambda$ $=450-460 \mathrm{~nm}) .{ }^{b}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal standard.

A

B

c

D

E

G

H

(2-naphthalenethiol)
NaphSH
I

J

K

L

Scheme S1. The screen of thiol catalysts

Table S2 Effect of the additives utilized. ${ }^{a}$
${ }^{a}$ Conditions:

1

$\mathbf{1}$	additives	n equiv	${\text { yield }(\%)^{b}}^{\text {entry }}$
1	-	0.3	68
2	$t \mathrm{Bu}_{4} \mathrm{NBF}_{4}$	0.3	77
3	$t \mathrm{Bu}_{4} \mathrm{NI}$	0.3	52
4	$\mathrm{Et}_{4} \mathrm{NCl}$	0.3	63
5	$t \mathrm{Bu}_{4} \mathrm{NF}$	0.3	58
6	$t \mathrm{Bu}_{4} \mathrm{NBr}$	0.3	67
7	$t \mathrm{Bu}_{4} \mathrm{PBr}$	0.3	80
8	$\mathrm{Et}_{4} \mathrm{NBr}$	0.3	88
9	$\mathrm{Et}_{4} \mathrm{NBr}$	0.2	91
10	$\mathrm{Et}_{4} \mathrm{NBr}$	1.0	77
11	$\mathrm{Et}_{4} \mathrm{NBr}$	2.0	68

mmol, 1.0 equiv.), $\operatorname{HCOOK}(0.2 \mathrm{mmol}, 2.0$ equiv), $\mathrm{NaphSH}(0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, additives (n equiv), $3 \AA \mathrm{MS}(30 \mathrm{mg})$, DMSO $(1.0 \mathrm{~mL})$ at r.t. under the irradiation of blue LEDs $(\lambda=450-460 \mathrm{~nm}) .{ }^{b}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal standard.

Table S3 Effect of the solvent utilized. ${ }^{a}$

1
2

		$\mathbf{2}$	
entry	solvent	volume (mL)	yield $(\%)^{a, b}$
1	MeCN	1.0	0
2	toluene	1.0	0
3	dixoane	1.0	0
4	THF	1.0	0
5	PhCl	1.0	0
6	DCE	1.0	0
7	DMSO	1.0	91
8	DMSO	0.5	78
9	DMSO	1.5	86

${ }^{a}$ Conditions: 1 ($0.1 \mathrm{mmol}, 1.0$ equiv.), HCOOK ($0.2 \mathrm{mmol}, 2.0$ equiv), NaphSH ($0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathrm{Et}_{4} \mathrm{NBr}(0.02 \mathrm{mmol}, 0.2$ equiv), $3 \AA \mathrm{MS}(30 \mathrm{mg})$, solvent $(\mathrm{n} \mathrm{mL})$ at r.t. under the irradiation of blue LEDs $(\lambda=450-460 \mathrm{~nm})$. ${ }^{b}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using $1,1,2,2-$ tetrachloroethane as an internal standard.

Table S4 Screening of other reaction parameters. ${ }^{a}$

entry	conditionts	yield $(\%)^{b}$
1	$40^{\circ} \mathrm{C}$	77
2	$3 \AA \mathrm{MS}(30 \mathrm{mg})$	91
3	$4 \AA \mathrm{MS}(30 \mathrm{mg})$	76
4	$5 \AA \mathrm{MS}(30 \mathrm{mg})$	67
5	-	63

${ }^{a}$ Conditions: 1 ($0.1 \mathrm{mmol}, 1.0$ equiv.), HCOOK ($0.2 \mathrm{mmol}, 2.0$ equiv), NaphSH ($0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathrm{Et}_{4} \mathrm{NBr}(0.02 \mathrm{mmol}, 0.2$ equiv), MS (n mg), DMSO $(1.0 \mathrm{~mL})$ at r.t. under the irradiation of blue LEDs $(\lambda=450-460 \mathrm{~nm}) .{ }^{b}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal standard.

Table S5 Screening of other formate. ${ }^{a}$

entry	HCOOA	${\text { yield }(\%)^{b}}^{3}$
1	HCOOK	91
2	HCOONa	71
3	HCOOLi	26
4	HCOOCs^{2}	34
5	HCOONH_{4}	7

${ }^{a}$ Conditions: $\mathbf{1}$ ($0.1 \mathrm{mmol}, 1.0$ equiv.), HCOOA ($0.2 \mathrm{mmol}, 2.0$ equiv), NaphSH ($0.005 \mathrm{~mol}, 5 \mathrm{~mol} \%$), $\mathrm{Et}_{4} \mathrm{NBr}(0.02 \mathrm{mmol}, 0.2$ equiv), $3 \AA \mathrm{MS}(30 \mathrm{mg})$, DMSO $(1.0 \mathrm{~mL})$ at r.t. under the irradiation of blue LEDs $(\lambda=450-460 \mathrm{~nm}) .{ }^{b}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using $1,1,2,2-$ tetrachloroethane as an internal standard.

3. General procedure for the synthesis of α-amino acid derivatives.

A dried 10 mL reaction tube was charged with the imines ($0.1 \mathrm{mmol}, 1.0$ equiv), formate (0.2 mmol , 2.0 equiv), activated $3 \AA$ molecular sieves (30 mg), $\mathrm{NaphSH}(5 \mathrm{~mol} \%, 0.8 \mathrm{mg})$, and $\mathrm{Et}_{4} \mathrm{NBr}(0.02 \mathrm{mmol}$, 0.2 equiv). Then DMSO (1.0 mL) was added via a syringe. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the reaction was stirred at 1400 RPM for 24 h under irradiation by blue LEDs $(\lambda=450-460 \mathrm{~nm}) .2 \mathrm{~N} \mathrm{HCl}(2.0 \mathrm{~mL})$ was added and then the reaction mixture was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The organic layer were removed using a rotary evaporator under reduced pressure. The crude residue was dissolved in $1.5 \mathrm{~mL} \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ (1:2), $\mathrm{TMSCHN}_{2}(0.15 \mathrm{~mL}, 0.3 \mathrm{mmol}, 2 \mathrm{M}$ in hexanes) was added dropwisely. The mixture was stirred
at ambient temperature until the completion of the methylation reaction. All the volatile materials were concentrated and the crude mixture was purified by flash chromatography (silica gel, mixtures of petroleum/ethyl acetate) to afford the pure product.

Scheme S2. Unsuccessful examples.

3.1 DFT calculations for the tosylated ketimine and phenyl ketimine 1

The lowest reduction potential of the tosylated ketimine was $-2.05 \mathrm{v},{ }^{1}$ which indicated that NaphScould reduce it. However, the tosylated ketimine didn't work in this reaction, , from which we performed DFT calculations. We calculated the charge density of C radical of 0.177 e and 0.103 e for the tosylated ketimine and phenyl ketimine 1, respectively, from Gaussion 09 w (b3lyp, 61-31d*). These results suggested that the C radical of the phenyl ketimine $\mathbf{1}$ was more stable than the C radical of the tosylated ketimine. Furthermore, the C radical of the phenyl ketimine 1 attached three conjugated groups in the optimization model, which makes the charge density of the C radical for the phenyl ketimine 1 be more delocalized ${ }^{2}$ and improved the stability of the C radical. Therefore, we thought the stability of free radicals could play an important role in reactions involving free radicals.

Figure S1. The optimization model of phenyl ketimine 1.

Figure S2. the optimization model of the tosylated ketimine.

Cartesian coordinates (\AA) of all optimized structures.

C	-4.156729	-0.757825	0.732967
C	-4.156780	-2.152633	0.732941
C	-2.948779	-2.850046	0.733038
C	-1.740845	-2.152624	0.733038
C	-1.740784	-0.757840	0.732967
C	-2.948795	-0.060403	0.732967
C	-0.444329	-0.009365	0.732891
C	-0.365351	0.850296	-0.490120
C	-0.238223	2.233493	-0.363260
C	-0.164758	3.034481	-1.502853
C	-0.218302	2.452224	-2.769190
C	-0.345332	1.069043	-2.896059
C	-0.418896	0.268038	-1.756458
N	0.673449	-0.964075	0.732906
C	1.866841	-0.541499	0.732850
C	2.927422	-1.447401	0.732771
C	4.242276	-0.981773	0.732830
C	4.496453	0.389685	0.732847
C	3.435897	1.295579	0.732830
C	2.121018	0.829959	0.732866
H	-5.109350	-0.207813	0.732987
H	-5.109414	-2.702623	0.732845
H	-2.948762	-3.950046	0.733114
H	-0.788226	-2.702639	0.733094
H	-2.948805	1.039597	0.732967

H	-0.195902	2.692651	0.635431
H	-0.064595	4.125339	-1.402863
H	-0.160344	3.083915	-3.667860
H	-0.387500	0.609880	-3.894754
H	-0.519134	-0.822811	-1.856454
H	0.482082	-1.996489	0.732964
H	2.726944	-2.528978	0.732661
H	5.078728	-1.696159	0.732864
H	5.533367	0.756849	0.732874
H	3.636385	2.377154	0.732787
H	1.284570	1.544350	0.732909

C	-4.426194	-1.341753	1.752564
C	-4.426246	-2.736561	1.752538
C	-3.218244	-3.433974	1.752635
C	-2.010310	-2.736552	1.752635
C	-2.010249	-1.341768	1.752564
C	-3.218260	-0.644331	1.752564
C	-0.713794	-0.593293	1.752487
C	-0.634816	0.266367	0.529477
C	-0.507688	1.649564	0.656337
C	-0.434223	2.450553	-0.483256
C	-0.487768	1.868295	-1.749594
C	-0.614797	0.485114	-1.876462
C	-0.688361	-0.315890	-0.736861
N	0.379651	-1.527221	1.752503
S	1.978382	-0.961115	1.752427
C	2.258850	0.033354	0.290760
C	2.920500	1.256721	0.396033
C	3.138931	2.031694	-0.742983
C	2.695817	1.583205	-1.987173
C	2.034263	0.359815	-2.092467
C	1.815737	-0.415136	-0.953430
C	2.930288	2.414943	-3.209566
O	2.890875	-2.087995	1.752458
O	2.205422	-0.156215	2.936948
H	-5.378815	-0.791742	1.752584

H	-5.378879	-3.286552	1.752442
H	-3.218228	-4.533974	1.752711
H	-1.057691	-3.286567	1.752691
H	-3.218271	0.455669	1.752564
H	-0.465367	2.108722	1.655028
H	-0.334060	3.541410	-0.383266
H	-0.429810	2.499987	-2.648263
H	-0.656966	0.025951	-2.875157
H	-0.788599	-1.406740	-0.836857
H	0.193752	-2.530137	1.752559
H	3.270030	1.610351	1.377243
H	3.660643	2.996541	-0.660004
H	1.684869	0.006123	-3.073704
H	1.293957	-1.379947	-1.036404
H	3.468207	3.347420	-2.926901
H	3.544625	1.838973	-3.937314
H	1.952840	2.676694	-3.673086

3.2 Gram-Scale Preparation of 2.

A dried 100 mL reaction tube was charged with $\mathrm{N}, 1,1$-triphenylmethanimine ($4.0 \mathrm{mmol}, 1.0$ equiv, 1.028 g), potassium formate ($8.0 \mathrm{mmol}, 2.0$ equiv, 0.672 g), activated $3 \AA$ molecular sieves (1.2 g), NaphSH $(5 \mathrm{~mol} \%, 32 \mathrm{mg})$, and $\mathrm{Et}_{4} \mathrm{NBr}(0.8 \mathrm{mmol}, 0.2$ equiv, 0.168 g$)$. Then DMSO (40 mL) was added via a syringe. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the reaction was stirred at 1400 RPM for 48 h under irradiation by blue LEDs $(\lambda=$ $450-460 \mathrm{~nm}) .2 \mathrm{~N} \mathrm{HCl}(60 \mathrm{~mL})$ was added and then the reaction mixture was extracted with ethyl acetate $(3 \times 60 \mathrm{~mL})$. The organic layer were removed using a rotary evaporator under reduced pressure. The crude residue was dissolved in $60 \mathrm{~mL} \mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}(1: 2), \mathrm{TMSCHN}_{2}(6 \mathrm{~mL}, 0.3 \mathrm{mmol}, 2 \mathrm{M}$ in hexanes) was added dropwisely. The mixture was stirred at ambient temperature until the completion of the methylation reaction. All the volatile materials were concentrated and the crude mixture was purified by flash chromatography (silica gel, mixtures of petroleum/ethyl acetate) to afford the pure product 2 (1.052 g, 83% yield).

4. Experimental procedure for CAN mediated deprotection of 33.

To a $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$ solution of $\mathbf{3 3}(150 \mathrm{mg}, 0.2 \mathrm{mmol}, 1 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$ was added a $\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ solution
of cerium ammonium nitrate (CAN, $667 \mathrm{mg}, 0.44 \mathrm{mmol}, 2.2 \mathrm{eq}$). The resulting dark solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min before treated with 2 N HCl to $\mathrm{pH}=1$. The aqueous phase was washed with EtOAc (5 $\mathrm{mL} \times 3$) and brought to basic by saturated NaHCO_{3}. The resulting suspension was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Methyl 2-amino-2,2-diphenylacetate $\mathbf{4 3}$ ($78.0 \mathrm{mg}, 86 \%$ yield) was obtained by removal of the solvent under vacuum. ${ }^{3}$

5. Mechanism studies

5.1 NaphSK solubility test.

We prepared MeCN- d_{3}, DMSO- d_{6} and CDCl_{3} solutions of NaphSH and HCOOK, and DMSO solution of NaphSH, respectively, and performed NMR hydrogen spectroscopy. By ${ }^{1} \mathrm{H}$ NMR spectrum control, the characteristic hydrogen chemical shift of NaphSH shifted to the lower field with increasing solvent polarity, and the characteristic hydrogen of NaphSH disappeared in the DMSO basic solution. This indicates that in the polar solvent DMSO base solution, NaphSH mostly exists in the form of thiol negative ions.

Figure S3. NMR hydrogen spectra of NaphSH in $\mathrm{MeCN}-d_{3}$, DMSO- d_{6}, CDCl_{3} basic solution and DMSO- d_{6} solution.

5.2 Specific isotope labeling of $\boldsymbol{\alpha}$-amino acid derivative.

$\mathbf{D C O}_{2} \mathbf{K} .{ }^{4}$ To $\mathrm{DCO}_{2} \mathrm{D}$ (Formic- $d 99^{+}$atom $\% \mathrm{D}$, acid- $d 90^{+}$atom $\left.\% \mathrm{D}\right)(250 \mathrm{mg}, 5.2 \mathrm{mmol})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(552 \mathrm{mg}, 4.0 \mathrm{mmol})$, and the mixture was stirred 5 h at $100^{\circ} \mathrm{C}$ in an argon atmosphere. The mixture was concentrated in vacuo to yield $333 \mathrm{mg}(98 \%)$ of the corresponding $\mathrm{DCO}_{2} \mathrm{~K}$ as a
colorless solid.
Under standard conditions, $\mathrm{DCO}_{2} \mathrm{~K}$ was added to the reaction system instead of $\mathrm{HCO}_{2} \mathrm{~K}$. When the reaction was finished, the reaction system was acidified and esterified, however, the isolated product was not deuterated (Scheme S3a). Subsequently, product 2 (0.1 mmol) and 1.5 mL $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}-d_{4}(2: 1)$ were added to a 1 dram vial at room temperature. ${ }^{5}$ After $5 \mathrm{~h}, 77 \%-\mathrm{D}$ of the product were observed by ${ }^{1} \mathrm{H}$ NMR (Scheme S3b and Figure S4). Finally, the deuterated product $\mathbf{2}^{\prime \prime}$ was detected in the photocatalytic reaction system of $\mathrm{DCO}_{2} \mathrm{~K}$ (Scheme S 3 c and Figure S5). These results suggested the hydrogen on the amine might come from the formate.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Cl}]^{2-}$ Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{DCINO}_{2}$ 338.0927; Found 338.0940

Scheme S3. Deuterium labeling experiments.

Figure S4. ${ }^{1} \mathrm{H}$-NMR measurements of α-amino acid derivative 2'.

Figure S5. HRMS detection 2" compound.

5.3 Radical trapping experiment.

When 2.0 equiv. of the radical scavenger TEMPO were added to the system under standard conditions, the reaction mixture was irradiated under a blue LEDs. After 24 hours, the reaction was quenched with a 2 N solution of hydrochloric acid. The target product 2 was not produced and the TEMPO-trapped product $\mathbf{4 4}, \mathbf{4 5}$ and $\mathbf{4 6}$ was detected by HRMS, which implied that a radical process was involved in the reaction system.

Scheme S4. Radical trapping experiment

HRMS (ESI) m/z: [M + Na] ${ }^{+}$Calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NNaOS}$, 338.1549; Found 338.1551.

Figure S6. HRMS of the mixture 44.

HRMS (ESI) m/z: [M+Na] Calcd. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}$, 437.2563; Found 437.2559.

Figure S7. HRMS of the mixture 45.

46
HRMS (ESI) m/z: [M+Na] Calcd. for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NNaO}_{3}$, 224.1257; Found 224.1264.

Figure S8. HRMS of the mixture 46.

5.4 Procedure for the addition reaction of 2-naphthalenyl disulfide and 1-heptyne.

In a clear glass vial, 2-naphthalenyl disulfide ($31.8 \mathrm{mg}, 0.10 \mathrm{mmol}$) and 1-heptyne $(9.6 \mathrm{mg}, 0.10$ $\mathrm{mmol})$ were dissolved in DMSO (1.0 mL). Under LED irradiation, the mixture was stirred at $25^{\circ} \mathrm{C}$ for 8 hours. ${ }^{6}$ Analysis by HRMS showed formation of the addition product (Figure S9), indicating that the S-S bond of 2-naphthalenyl disulfide could be cleaved to give thiyl radicals with light from an blue LED lamp.

Figure S9. HRMS detection additive product.

5.5 UV-vis absorption spectra.

UV-visible spectroscopy was performed for each reaction component and combination of reaction components using a U-3900H spectrophotometer (Japan Hitachi). The solution was made up and their UV/vis absorption spectra immediately taken.
Stock solutions of NaphSK, NaphSH, ketimine 1, aldimine 47 and (NaphS) $)_{2}$ dimer were prepared with the same concentration used in the reaction. HCOOK was used in $40 \mathrm{~mol} \%$ to ensure generation of NaphSH anion under measurement condition. The solutions were prepared in the presence of air using DMSO as solvent.

A new peak $\left(\lambda_{\max }=403 \mathrm{~nm}\right.$) in NaphSH absorption upon HCOOK addition was observed (Figure S10). This peak was attributed to the thiolate anion's absorption (deprotonated NaphSH) and is supported by the upfield peak of the NMR signal when NaphSH and HCOOK were mixed. Furthermore, we observed no significant absorption peak changes when imines and NaphS- were combined (Figure S11). Thus, we speculate that no major electron donor-acceptor (EDA) complex was formed by the association of the thiolate anion and imines, but rather a single electron transfer (SET) from NaphS to the substrate.

Figure S10. UV/vis absorption spectra of catalyst, substrate.

Figure S11. UV/vis absorption spectra of catalyst, substrate, and the mixture.

5.6 Stern-volmer fluorescence quenching experiments

Stern-Volmer experiments were conducted on an Agilent Technologies Cary Eclipse Fluorescence Spectrophotometer using the Cary Eclipse Scan Application. Rigorously purged (with nitrogen) solutions of each component were prepared prior to each set of experiments. Luminescence quenching experiments were run with DMSO as the solvent. The solutions were irradiated at 403 nm and the luminescence was measured from 400 nm to 650 nm (emission maximum is at 485 nm). The concentration of NaphS ${ }^{-}$and (NaphS $)_{2}$ stock solution was 0.3 mM in DMSO. After being stirred with a thin glass rod, the emission spectrum was collected. Linear regression of $\mathrm{I}_{0} / \mathrm{I}$ against concentration is done in Origin.

Figure S12. Fluorescence quenching data with NaphS- and variable aldimine 47.

Figure S13. Stern-Volmer quenching plot of aldimine 47.

Figure S14. Fluorescence quenching data with $(\mathrm{NaphS})_{2}$ and variable aldimine 47.

5.7 Cyclic voltammetry experiments

Determination of the potential of NaphS ${ }^{-}$and imines were performed by cyclic voltammetry using a CHI660D potentiostation. The electrochemical measurements were made using a polished glassy carbon electrode $(\varnothing=2 \mathrm{~mm})$ as the working electrode, platinum mesh as counter electrode and a double junction $\mathrm{Ag} / \mathrm{AgNO}_{3}$ as reference electrode. Measurements of NaphS ${ }^{-}$and imines $(0.01 \mathrm{M})$ were performed in 0.1 M of $\mathrm{Bu}_{4} \mathrm{NBF}_{4} / \mathrm{DMSO}$ with a sweep rate of $100 \mathrm{mV} / \mathrm{s}$ under anhydrous and anaerobic conditions. Halfwave potentials ($\mathrm{E}_{\mathrm{p} / 2}$) were displayed in Table S6.

Figure S15. CV of NaphS-

Figure S16. CV of aldimine 47.

Figure S17. CV of ketimine 1.

The excited-state potentials were calculated with the equation $\mathrm{E}_{1 / 2} *=\mathrm{E}^{\mathrm{ox}}{ }_{1 / 2}-\mathrm{E}_{0,0}$ (the energy of the excited state), which was important for designing organic reactions. With this data in hand, we calculated the redox potential of the excited S 1 anion employing the following equation: ${ }^{7,8}$

$$
* \mathrm{E}_{\mathrm{p} / 2}=\mathrm{E}_{\mathrm{p} / 2}-\mathrm{E}_{0}
$$

$\mathrm{E}_{\mathrm{p} / 2}=0.58 \mathrm{~V}$ vs. SCE, In the absence of vibrational structures, E_{0} can be roughly estimated from the absorption spectrum. ${ }^{9}$ This corresponds to 403 nm , which translates into an E_{0} of 3.08 eV for the NaphS-

$$
* \mathrm{E}_{\mathrm{p} / 2}=\mathrm{E}_{\mathrm{p} / 2-}-\mathrm{E}_{0}=0.58-3.08=-2.5 \mathrm{~V} \text { vs. } \mathrm{SCE}
$$

Table S6. Half-wave potentials of substrate

Substrate	$\mathrm{E}_{\mathrm{p}} / \mathrm{V}(\mathrm{vs} \mathrm{SCE})$	$\mathrm{E}_{\mathrm{p} / 2} / \mathrm{V}(\mathrm{vs} \mathrm{SCE})$	${ }^{*} \mathrm{E}_{\mathrm{p} / 2} / \mathrm{V}(\mathrm{vs} \mathrm{SCE})$
NaphS	0.79	0.58	-2.5
aldimine $\mathbf{4 7}$	-1.83	-1.61	-
ketimine $\mathbf{1}$	-1.78	-1.50	-

5.8 On/off lamp experiment

On/off lamp experiment was performed following General procedure 3 with ketimine 1, formate, activated $3 \AA$ molecular sieves, NaphSH, $\mathrm{Et}_{4} \mathrm{NBr}$, and DMSO $(12 \mathrm{~mL})$ in 1.2 mmol scale. The reaction was placed in light and dark in every alternative 2 hour. After every time interval of 2 hour the reaction aliquot (1.0 mL) from the reaction mixture was extracted for acidification, extraction, concentration, esterification, and separation. The yield of the product hardly changed significantly after the lights were turned off (Figure S18), from which we deduced that the reaction was not a chain reaction mechanism.

Figure S18. On/off light experiments of the template reaction.

5.9 Propossed mechanism.

6. Characterization of products.

Methyl 2,2-diphenyl-2-(phenylamino)acetate (2)

Yield: 87%; 27.6 mg ; white solid; m.p. $104-106{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55$ (d, $J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{dt}, J=21.7,7.1 \mathrm{~Hz}, 6 \mathrm{H}), 6.96(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,145.3,140.2,128.7$, 128.5, 128.3, 127.8, 118.2, 115.6, 71.7, 53.2. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 340.1308, found: 340.1318 .

Methyl 2-phenyl-2-(phenylamino)-2-(o-tolyl)acetate (3)

Yield: 76%; 25.2 mg ; white solid; m.p. $116-118{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72$ $-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.38(\mathrm{dd}, J=8.6,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $174.1,144.6,138.3,137.7,137.7,132.3,130.6,129.3,128.5,128.2,128.1,124.9,117.4,115.2,71.6$, 53.5, 20.6. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 354.1465$, found: 354.1473.

Methyl 2-(2-fluorophenyl)-2-phenyl-2-(phenylamino)acetate (4)

Yield: 81%; 27.1 mg ; white solid; m.p. $126-128{ }^{\circ} \mathrm{C}, \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72$ (dd, $J=7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{td}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.02$ (td, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.86(\mathrm{~m}, 3 \mathrm{H}), 6.59(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~s}$, 1 H), $3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,162.1,159.6,144.5,136.8,131.0(\mathrm{~d}, J=2.9$ $\mathrm{Hz}), 129.8(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 129.2,128.4,128.3,128.1(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 122.8(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 118.1,116.0$ (d, $J=22.1 \mathrm{~Hz}$), 115.9, 68.8, 53.5. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-111.9. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 358.1214$; found358.1223.

Methyl 2-phenyl-2-(phenylamino)-2-(m-tolyl)acetate (5)

Yield: $68 \% ; 22.5 \mathrm{mg}$; yellow oil; PE/EA $=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{dd}, J$ $=10.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.47-6.39(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.8,145.4,140.4,140.0,137.9,128.8,128.6,128.5,128.5,128.1,128.1,127.6,125.3,118.0$, 115.6, 71.6, 53.1, 21.7. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 354.1465 ; found 354.1472 .

Methyl 2-phenyl-2-(phenylamino)-2-(p-tolyl)acetate (6)

Yield: $77 \% ; 25.5 \mathrm{mg}$; yellow oil; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{dd}, J=5.3,3.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.42$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (ddd, $J=14.7,5.1,3.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.97$ (dd, J $=8.4,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,145.3,140.2,137.5,137.2,129.0,128.6,128.5,128.4,128.2$, 127.7, 118.0, 115.6, 71.4, 53.2, 21.1. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 354.1465$, found: 354.1470 .

Methyl 2,2-bis(4-fluorophenyl)-2-(phenylamino)acetate (7)

Yield: 85%; 30.0 mg ; white solid; m.p. $136-138{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50$ (dd, $J=8.6,5.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.04-6.93(\mathrm{~m}, 6 \mathrm{H}), 6.65(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~s}$, $1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,162.2(\mathrm{~d}, J=246.1 \mathrm{~Hz}), 144.8,135.6(\mathrm{~d}, J=3.2$ $\mathrm{Hz}), 130.2(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.8,118.5,115.3(\mathrm{t}, J=28.9 \mathrm{~Hz}), 70.6,53.4 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-114.3. HRMS (ESI, m / z): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 376.1120$, found: 376.1128 .

Methyl 2-(4-chlorophenyl)-2-phenyl-2-(phenylamino)acetate (8)

Yield: $67 \% ; 23.5 \mathrm{mg}$; colourless oil; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.51(\mathrm{~m}, 2 \mathrm{H})$, $7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.45-6.37(\mathrm{~m}, 2 \mathrm{H})$, $5.39(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,144.9,140.2,138.2,133.6,130.2,128.7$, 128.5, 128.3, 128.2, 128.0, 118.4, 115.6, 71.2, 53.3. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClNNaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 374.0918$, found: 374.0921 .

Methyl 2-(naphthalen-2-yl)-2-phenyl-2-(phenylamino)acetate (9)

Yield: $52 \% ; 19.1 \mathrm{mg}$; yellow oil; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{dd}, J=8.4,7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.62(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.46(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.7,145.2,139.9,137.4,132.9,132.7,128.7,128.57,128.5,128.3,127.9,127.8,127.5$, $126.5,126.4,126.2,118.2,115.7,71.8,53.3$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 390.1465; found 390.1475.

Methyl 2-(phenylamino)-2-(4-(trifluoromethyl)phenyl)propanoate (10)

Yield: $67 \% ; 21.6 \mathrm{mg}$; colourless oil; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2H), $7.61(\mathrm{~d}, ~ J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.58(\mathrm{~m}, 1 \mathrm{H}), 6.42-6.25(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{~s}$, $1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.3,145.1,144.1,129.6,129.0,127.5$, 125.6 (dd, $J=3.7 \mathrm{~Hz}, 3.8 \mathrm{~Hz}$), 122.8, 118.1, 115.3, $63.0,53.4,23.5 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ 62.5. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 369.0923$; found 369.0930.

Methyl 2-(4-chlorophenyl)-2-(phenylamino)propanoate (11)

Yield:53\%; 15.3 mg ; yellow oil; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.38$ $-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=8.6,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,144.6,141.2,128.9,128.7,128.5,127.6$, $126.9,117.7,115.4,63.0,53.2,23.0$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 312.0762$; found 312.0769 .

Methyl 2-(naphthalen-2-yl)-2-(phenylamino)propanoate (12)

Yield: $62 \% ; 18.9 \mathrm{mg}$; yellow solid; m.p. $78-80^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{dd}, J=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.08-6.94$ $(\mathrm{m}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=8.6,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,144.6,138.9,133.4,132.8,128.9,128.5,128.4,127.6,126.3$, 126.2, 126.0, 124.9, 117.8, 115.4, 63.2, 53.2, 22.9. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 328.1308; found 328.1318 .

Methyl 2-(phenylamino)-2-(p-tolyl)butanoate (13)

Yield: 68%; 19.2 mg ; yellow oil; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=8.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42-6.33(\mathrm{~m}, 2 \mathrm{H})$, $5.35(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{ddt}, J=21.1,13.8,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5,144.4,137.8,137.2,129.4,128.8,126.9,117.2,115.0,66.6,53.1$, 25.6, 21.1, 8.5. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 306.1465$; found 306.1470 .

Methyl 2,3-diphenyl-2-(phenylamino)propanoate (14)

Yield: 62%; 20.5 mg ; yellow solid; m.p. $116-118{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67$ (dd, $J=5.3,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.00(\mathrm{~m}$, 2H), 6.91 (dd, $J=7.3,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=8.6,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H})$, $3.90-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,144.3,140.2,136.0,130.2$, 129.0, 128.9, 128.1, 127.8, 127.1, 127.0, 117.2, 114.9, 67.2, 52.9, 37.8. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 354.1465$; found 354.1471

Methyl 2-phenyl-2-(phenylamino)acetate (15)

Yield: $63 \% ; 15.2 \mathrm{mg}$; yellow solid; m.p. $70-72{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,146.0,137.7,129.3,129.0,128.4,127.3,118.2,113.5,60.8,52.9$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 264.0995$, found: 264.1002.

Methyl 2-((4-methoxyphenyl)amino)-2-(o-tolyl)acetate (16)

Yield: 43%; 12.3 mg ; yellow solid; m.p. $98-100{ }^{\circ} \mathrm{C}$; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.77-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.56-6.45(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}$, 1 H), $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,152.6,140.5,136.6$, 136.1, 130.9, 128.2, 126.6, 126.5, 114.9, 114.6, 58.3, 55.7, 52.6, 19.5. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 308.1263$, found: 308.1264 .

Methyl 2-([1,1'-biphenyl]-2-yl)-2-((4-methoxyphenyl)amino)acetate (17)

Yield: 52%; 18.0 mg ; yellow oil; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.42$ (ddd, $J=8.6,7.6,3.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $5.19(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,152.7,142.4$, $140.5,140.2,135.6,130.7,129.7,128.3,128.2,127.5,126.6,115.1,114.7,57.9,55.7,52.6$. HRMS (ESI, m / z): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 370.1419$, found: 370.1423 .

Methyl 2-(2-fluorophenyl)-2-(phenylamino)acetate (18)

Yield: 53%; 13.7 mg ; yellow oil; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21$ (ddd, $J=7.3,4.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.49$ (d, $J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0$, $162.0,159.6,152.7,139.8,129.9(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 125.3(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 124.7$ (d, $J=3.5 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 114.9,55.7,54.7,52.9 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.5$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 282.0901$, found: 282.0909 .

Methyl 2-(phenylamino)-2-(m-tolyl)acetate (19)

Yield: 45%; 11.5 mg ; yellow oil; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{t}, J=9.6 \mathrm{~Hz}, 3 \mathrm{H})$, $7.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H})$, $3.71(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 6 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,152.5,140.3,138.6$, 137.7, 129.1, 128.7, 127.9, 124.4, 114.9, 114.8, 61.7, 55.7, 52.7, 21.5. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 308.1257$, found: 308.1266.

Methyl 2-(4-isopropylphenyl)-2-(phenylamino)acetate (20)

Yield: 36%; 10.2 mg ; yellow oil; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.19 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ $(\mathrm{s}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.94-2.82(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.8,152.5,149.0,140.4,135.0,127.2,127.0,114.9,114.7,61.5,55.7,52.6,33.8,23.9$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 336.1576; found 336.1570.

Methyl 2-(4-(tert-butyl)phenyl)-2-((4-methoxyphenyl)amino)acetate (21)

Yield: 42%; 13.7 mg ; pink solid; m.p. $62-64{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-$ $7.34(\mathrm{~m}, 4 \mathrm{H}), 6.77-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.58-6.51(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,152.5,151.2,140.4,134.6,126.9,125.8,114.9$, 114.7, 61.4, 55.7, 52.7, 34.6, 31.3. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 350.1727, found: 350.1735 .

Methyl 2-(phenylamino)-2-(4-(trifluoromethyl)phenyl)acetate (22)

Yield: 64%; 19.8 mg ; yellow oil; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{q}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H})$, $7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.62(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,145.5,141.8,130.5(\mathrm{~d}, J=32.3 \mathrm{~Hz})$, $129.4,127.7,125.9(\mathrm{dd}, J=3.8 \mathrm{~Hz}, 3.7 \mathrm{~Hz}), 118.5,113.8,113.4,60.4,53.1 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.6. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 332.0869$, found: 332.0876.

Methyl 2-(4-fluorophenyl)-2-(phenylamino)acetate (23)

Yield: 58\%; 15.0 mg ; yellow oil; PE/EA $=30 / 1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.14$ $-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=8.6,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,145.7,133.4$ $(\mathrm{d}, J=3.3 \mathrm{~Hz}), 129.3,128.9(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 118.3,115.9(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 113.4,60.0,52.9 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.9$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 282.0901$, found: 282.0906.

Methyl 2-(4-bromophenyl)-2-(phenylamino)acetate (24)

Yield: 22%; 7.0 mg ; yellow solid; m.p. $72-74{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-$ $7.46(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.51(\mathrm{~m}, 2 \mathrm{H})$,
$5.06(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4$, 145.9, 137.6, 129.3, 128.9, 128.3, 127.3, 118.1, 113.4, 60.7, 52.8. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 342.0100$, found: 342.0109 .

Methyl 2-(4-methoxyphenyl)-2-(phenylamino)acetate (25)

Yield: 32%; 8.7 mg ; yellow oil; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.16$ $-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, J=8.5,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6$, 159.6, 146.0, 129.6, 129.2, 128.4, 118.1, 114.3, 113.4, 60.1, 55.3, 52.8. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 294.1101$, found: 294.1108.

Methyl 2-(3,4-dimethoxyphenyl)-2-(phenylamino)acetate (26)

Yield: 38%; 11.4 mg ; yellow oil; PE/EA $=30 / 1 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.04$ (dd, $J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ (dd, $J=8.6,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.6,149.3,149.1,146.1,130.0,129.3,119.7,118.2,113.5,111.3,110.0,60.6,55.9$, 55.9, 52.8. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 324.1214$, found: 324.1206.

Methyl 2-(phenylamino)-2-(3,4,5-trimethoxyphenyl)acetate (27)

Yield: 42%; 13.9 mg ; white solid; m.p. $112-114{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14$ (dd, $J=8.5,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 3 \mathrm{H}), 6.58(\mathrm{dd}, J=8.6,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.91(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3$, 153.6, 146.0, 137.8, 133.2, 129.3, 118.3, 113.5, 104.1, 61.1, 60.8, 56.2, 52.9. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 354.1312$, found: 354.1317 .

Methyl 2-(naphthalen-1-yl)-2-(phenylamino)acetate (28)

Yield: 58%; 16.9 mg ; yellow oil; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,146.2$, $134.2,133.4,131.3,129.3,129.2,129.1,126.7,126.0,125.6,125.1,123.4,118.3,113.3,57.4,52.8$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 314.1152$, found: 314.1157.

Methyl 2-(naphthalen-2-yl)-2-(phenylamino)acetate (29)

Yield: 52%; 15.1 mg ; yellow oil; $\mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46-$ $7.39(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.3,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.8,146.2,134.2,133.4$, 131.3, 129.4, 129.2, 129.1, 126.8, 126.0, 125.6, 125.1, 123.4, 118.3, 113.3, 57.4, 52.9. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 314.1152$, found: 314.1155.

Methyl 2-(phenylamino)-2-(pyren-1-yl)acetate (30)

Yield: 51%; 18.6 mg ; yellow solid; m.p. $118-120^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58$ $(\mathrm{d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26-8.12(\mathrm{~m}, 5 \mathrm{H}), 8.09-7.99(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,146.1,131.4,131.3,131.2,130.7,129.3,129.1,128.4,127.8,127.4,126.2,125.6$, $125.4,125.4,125.3,124.8,124.6,122.6,118.2,113.4,57.5,53.0$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 388.1308$, found: 388.1320 .

Methyl 2-((4-(tert-butyl)phenyl)amino)-2,2-diphenylacetate (32)

Yield: 80%; 29.8 mg ; white solid; m.p. $114-116{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54$ (dd, $J=8.6,3.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.39-7.12(\mathrm{~m}, 6 \mathrm{H}), 7.06-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.43-6.27(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~d}, J=4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,142.8$, 140.7, 140.6, 128.4, 128.2, 127.6, 125.5, 115.2, 71.7, 53.1, 33.9, 31.6. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 396.1934$; found 396.1944.

Methyl 2-((4-methoxyphenyl)amino)-2,2-diphenylacetate (33)

Yield: 75%; 26.0 mg ; white solid; m.p. $108-110{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57$ $-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 6 \mathrm{H}), 6.60-6.54(\mathrm{~m}, 2 \mathrm{H}), 6.42-6.35(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, $3.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.8,152.5,140.7,139.2,128.3,128.1,127.6,117.2,114.1$, 72.1, 55.5, 53.0. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 370.1419; found 370.1414 .

Methyl 2-((4-phenoxyphenyl)amino)-2,2-diphenylacetate (34)

Yield: 83%; 33.9 mg ; white solid; m.p. $112-114{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60$ $-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.18(\mathrm{~m}, 8 \mathrm{H}), 6.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.72-6.65(\mathrm{~m}$, 2H), $6.46-6.36(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.76,158.6,148.5$, 141.7, $140.2,129.5,128.5,128.3,127.8,122.2,120.2,117.5,117.0,72.0,53.2$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 432.1570$; found 432.1580 .

Methyl 2-((4-fluorophenyl)amino)-2,2-diphenylacetate (35)

Yield: 84%; 28.1 mg ; white solid; m.p. $114-116^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58$ - $7.48(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 6 \mathrm{H}), 6.68(\mathrm{dd}, J=12.0,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.39-6.31(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.7,156.2(\mathrm{~d}, J=234.8 \mathrm{~Hz}), 141.4,139.9,128.3(\mathrm{~d}, J=$ $16.8 \mathrm{~Hz}), 127.8,116.7(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 115.1(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 71.9,53.2 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -126.9. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 358.1214$; found 358.1222.

Methyl 2-((4-chlorophenyl)amino)-2,2-diphenylacetate (36)

Yield: 78%; 27.4 mg ; white solid; m.p. $140-142{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54$ $-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 6 \mathrm{H}), 6.97-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.37-6.28(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6,143.7,139.4,128.5,128.5,128.3,127.9,122.8,116.7,71.5,53.7$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 374.0918 ; found 374.0927.

Methyl 2-((4-bromophenyl)amino)-2,2-diphenylacetate (37)

Yield: 54%; 21.4 mg ; yellow solid; m.p. $126-128^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54$ $-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.33-6.24(\mathrm{~m}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,144.1,139.2,131.3,128.5,128.3,127.9,117.1,109.9,71.4,53.4$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrNNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 418.0413; found 418.0421.

Methyl 4-((2-methoxy-2-oxo-1,1-diphenylethyl)amino)benzoate (38)

Yield: 84%; 31.5 mg ; white solid; m.p. $124-126{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 6 \mathrm{H}), 6.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~s}$,
$1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.4,167.2,149.0,138.6,130.8,128.6$, 128.4, 128.1, 119.1, 114.4, 71.2, 53.6, 51.6. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 398.1363; found 398.1368.

Methyl 2-((4-cyanophenyl)amino)-2,2-diphenylacetate (39)

Yield: 63%; 21.5 mg ; white solid; m.p. $154-156{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.17$ (s, $1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.2, 148.4, 137.9, 133.0, 128.5, 128.5, 128.3, 120.1, 115.1, 99.9, 71.1, 53.7. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 365.1260 ; found 365.1257.

Methyl 2-((3-(methylthio)phenyl)amino)-2,2-diphenylacetate (40)

Yield: 71%; 25.7 mg ; white solid; m.p. $102-104{ }^{\circ} \mathrm{C} ; \mathrm{PE} / \mathrm{EA}=30 / 1 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46$ (d, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.18(\mathrm{~m}, 6 \mathrm{H}), 6.80(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H})$, $6.12(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.6, 145.6, 139.6, 138.5, 128.9, 128.5, 128.3, 127.8, 116.3, 113.2, 112.5, 71.4, 53.3, 15.5. HRMS (ESI, m / z): Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 363.1288$; found 363.1284.

Methyl 2-amino-2,2-diphenylacetate (43)
$\mathrm{H}_{2} \mathrm{~N}$ COOMe

Yield: 84\%; yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.28(\mathrm{~m}, 10 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.4,143.8,128.2,127.6,127.6,68.5,52.9$. HRMS (ESI, m/z): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 264.100$; found 264.1004.

7. Crystallographic data

X-ray data for 27 (CCDC 2244895)

Single crystal of product 27 was obtained through slow evaporation of a solution in dichloromethanediethyl ether at room temperature.

Table S7. Crystal data and structure refinement for 27.

Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5}$
Formula weight	331.36
Temperature/K	$300.88(10)$
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a / \AA	$5.78002(17)$
b / \AA	$18.6163(6)$
c / \AA	$15.8540(5)$
$\alpha^{\circ}{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$95.564(3)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1697.89(9)$
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.296
μ / mm^{-1}	0.783
$\mathrm{~F}(000)$	704.0
Crystal size $/ \mathrm{mm}^{3}$	$0.17 \times 0.02 \times 0.01$
Radiation	$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	7.344 to 152.828
Index ranges	$-3 \leq \mathrm{h} \leq 7,-22 \leq \mathrm{k} \leq 22,-19 \leq 1 \leq 19$
Reflections collected	10981
Independent reflections	$3377\left[\mathrm{R}_{\text {int }}=0.0502, \mathrm{R}_{\text {sigma }}=\right.$
Data/restraints $/$ parameters	$0.0520]$
Goodness-of-fit on F^{2}	$3377 / 0 / 222$
	1.082

Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
$\mathrm{R}_{1}=0.0440, \mathrm{wR}_{2}=0.1198$
Final R indexes [all data]
$\mathrm{R}_{1}=0.0544, \mathrm{wR}_{2}=0.1268$
Largest diff. peak/hole / e \AA^{-3}
0.18/-0.15

X-ray data for 36 (CCDC 2244897)

Single crystal of product $\mathbf{3 6}$ was obtained through slow evaporation of a solution in dichloromethanediethyl ether at room temperature.

Table S8. Crystal data and structure refinement for $\mathbf{3 6}$

Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClNO}_{2}$
Formula weight	351.81
Temperature/K	$300.88(10)$
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a / \AA	$10.4508(2)$
b / \AA	$12.4654(2)$
c / \AA	$14.1577(3)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$99.135(2)$
$\gamma /{ }^{\circ}$	90
${\text { Volume } / \AA^{3}}^{\mathrm{Z}}$	$1820.98(6)$
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	4
μ / mm^{-1}	1.283
$\mathrm{~F}(000)$	1.960
Crystal size $/ \mathrm{mm}^{3}$	736.0
Radiation	$0.14 \times 0.11 \times 0.07$
2Θ range for data collection $/{ }^{\circ}$	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
Index ranges	9.506 to 153.056
Reflections collected	$-12 \leq \mathrm{h} \leq 13,-11 \leq \mathrm{k} \leq 15,-17 \leq 1 \leq 17$
Independent reflections	12011
Data/restraints/parameters	$3599\left[\mathrm{R}_{\text {int }}=0.0187, \mathrm{R}_{\text {sigma }}=0.0169\right]$
	$3599 / 0 / 232$

Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
1.060

Largest diff. peak/hole / e \AA^{-3}
$\mathrm{R}_{1}=0.0381, \mathrm{wR}_{2}=0.0988$
$\mathrm{R}_{1}=0.0414, \mathrm{wR}_{2}=0.1009$
0.28/-0.35

8. Reference

[1] Wang, L.; Yu, Y.; Deng, L.; Du, K. Photochemical and Atom-Economical Sulfonylimination of Alkenes with Bifunctional N-Sulfonyl Ketimine. Org. Lett. 2023, 25, 2349-2354.
[2] Hicks, R. G. What's new in stable radical chemistry? Org. Biomol. Chem. 2007, 5, 1321-1338.
[3] Taniyama, D.; Hasegawa, M.; Tomioka, K. A facile and efficient asymmetric synthesis of (+)salsolidine. Tetrahedron Lett. 2000, 41, 5533-5536.
[4] Korsager, S.; Taaning, R. H.; Lindhardt, A. T.; Skrydstrup, T. Reductive carbonylation of aryl halides employing a two-chamber reactor: a protocol for the synthesis of aryl aldehydes including ${ }^{13} \mathrm{C}$ - and Disotope labeling. J. Org. Chem. 2013, 78, 6112-6120.
[5] Konnert, L.; Reneaud, B.; de Figueiredo, R. M.; Campagne, J. M.; Lamaty, F.; Martinez, J.; Colacino, E. Mechanochemical preparation of hydan-toins from amino esters: application to the synthesis of the antiepileptic drug phenytoin. J. Org. Chem. 2014, 79, 10132-10142.
[6] Deng, Y.; Wei, X. J.; Wang, H.; Sun, Y.; Noel, T.; Wang, X. Disulfide-Catalyzed Visible-LightMediated Oxidative Cleavage of $\mathrm{C}=\mathrm{C}$ Bonds and Evidence of an Olefin-Disulfide Charge-Transfer Complex. Angew. Chem. Int. Ed. 2017, 56, 832-836.
[7] Silvi, M.; Arceo, E.; Jurberg, I. D.; Cassani, C.; Melchiorre, P. Enantioselective Organocatalytic Alkylation of Aldehydes and Enals Driven by the Direct Photoexcitation of Enamines. J. Am. Chem. Soc. 2015, 137, 6120-6123.
[8] Silvi, M.; Arceo, E.; Jurberg, I. D.; Cassani, C.; Melchiorre, P. Experimental and Calculated Electrochemical Potentials of Common Organic Molecules for Applications to Single-Electron Redox Chemistry. Synlett, 2016; 27, 714-723.
[9] V. Balzani, P. Ceroni, A. Juris, Photochemistry and photophysics, chapter 4, pp. 103, Wiley-VCH,
2014.

9. NMR Spectra of Coupounds.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2}$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2}$.

2
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3}$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 .

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4

4

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4 .

4

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 5 .

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 5
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 6.

$\stackrel{m}{4}$

$\stackrel{\circ}{6}$
$\stackrel{0}{1}$

$\stackrel{\text { N }}{\text { N }}$

6

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 7

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 7.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{8}$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{8}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 9 .

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 9

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0}$.

$\stackrel{\infty}{\stackrel{\infty}{\circ}}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0}$

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 0}$.

\qquad

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 1}$.

${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{1 1}$

${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$ spectrum of 12

12

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{1 3}$.

13

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 3}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{1 4}$.

14
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 4}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 5}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 6}$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 6}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 7}$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 7}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 18.

ले
ì
ì
ì
©

18

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 8}$

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 8}$

18

\qquad
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 9}$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 9}$

19

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{2 0}$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 20

20

${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$ spectrum of 21

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 2}$.

22

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 22

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 2}$.

Abstract

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 23.

추

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 3}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 24.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 24
8ャを $2 \downarrow-$

24

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 5}$.

25

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 5}$

25

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 6}$.


```
26
```


${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 26.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 27.

${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) spectrum of 27.

27

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 28.

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 28.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 29.

29

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 29.

29

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 0}$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 0}$.

30

药

8 O
N
N
1

Mै
$\stackrel{8!}{\stackrel{8}{5}}$

32

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 2}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 3}$.

33

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 3}$.

${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 4}$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 34 .

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 5}$.
蓑

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 5}$.

${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 5}$.

$$
\begin{aligned}
& \text { 0169zı- } \\
& 35
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 6}$.

36
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 6}$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 7}$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 37.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 9}$.

$\stackrel{+}{\stackrel{+}{N}}$

39

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 9}$.

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{4 0}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 43.

NハNNNNNNNNNNNNN
NハNNNNNNNNNNNNN

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 43.

