Supporting Information

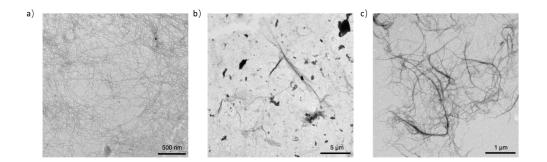
Effectively Enhancing Topical Delivery of Agrochemicals onto Plant Leaves with Nanocelluloses

Shangxu Jiang,^a Peng Li,^{a,*} Li, Li,^a Nasim Amiralian,^a Divya Rajah^a, Zhi Ping Xu^{*,a,b}

a Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.

b Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China.

* Corresponding authors. Tel: 61-7-334 63809 (ZX); Fax: 61-7-33463973.


Email: gordonxu@uq.edu.au (Z. P. Xu); p.li3@uq.edu.au (P. Li)

This supporting information contains:

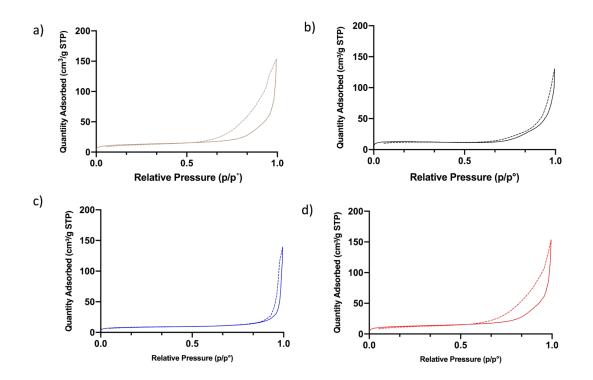

- 1. Figure S1-S11;
- 2. Table S1-S3.

Figure S1. The process of liquid holding capacity (LHC) test.

Figure S2. TEM image of (a) dried CNF⁺ nanocellulose; (b) dried CMF⁺ cellulose; (c) dried MCNF nanocellulose.

Figure S3. BET isotherm patterns of nanocellulose matrix (a)dried MCNF; (b) dried CMF⁺; (c) dried CNC⁻; (d) dried CNF⁺.

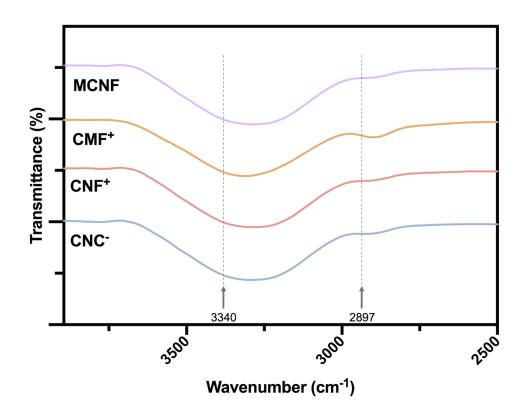
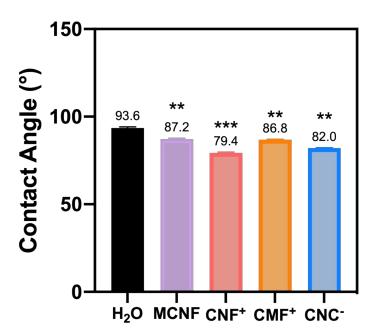



Figure S4. FTIR spectra of MCNF, CNF⁺, CMF⁺, and CNC⁻ (2500 – 4000 cm⁻¹).

Figure S5. Variation of Contact angles of 100 mg/L cellulose suspensions on artificial leaves (PDMS with PVP)

Water retention of cotton leaves

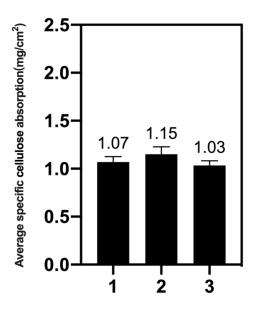
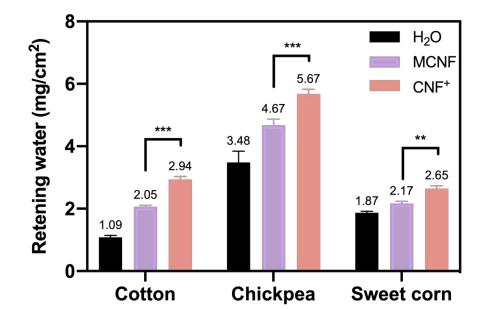
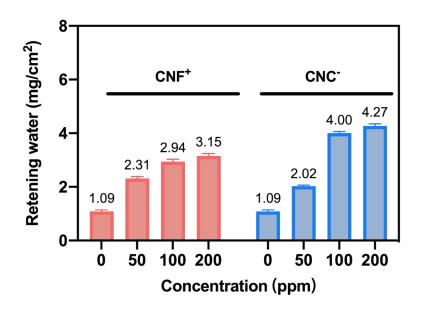




Figure S6. Water retention performance using Milli-Q water on 6-week cotton leaves.

Figure S7. Water retention of cellulose suspensions at the cellulose concentration of 100 mg/L on 6-week cotton, 4~6-week chickpea and 4~5-week sweet corn leaves.

Figure S8. Water retention of CNF⁺ and CNC⁻ suspensions on cotton leaves from the range of 0-200 mg/L.

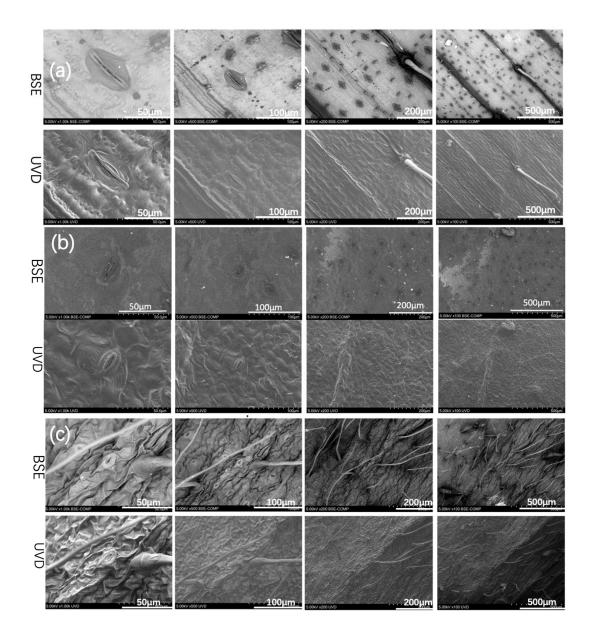
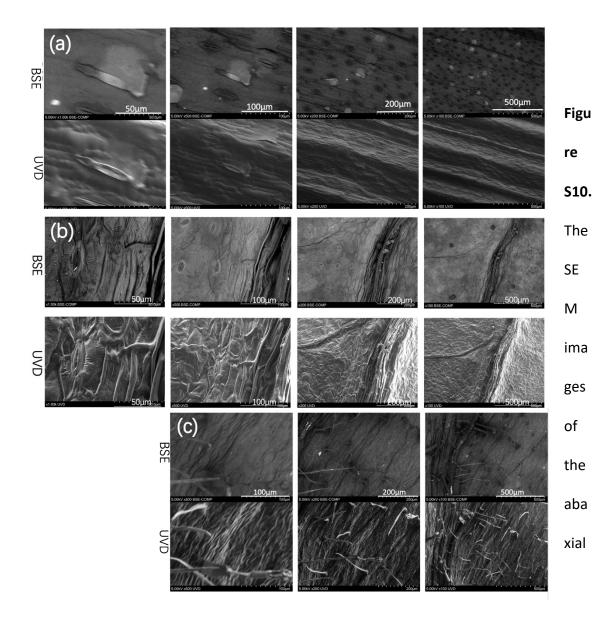
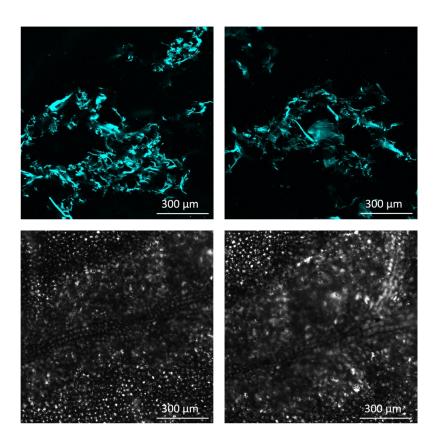




Figure S9. The SEM images of the adaxial surfaces of various leaves. (a) Sweet corn; (b) Cotton; (c) Chickpea.

surfaces of various leaves. (a) Sweet corn; (b) Cotton; (c) Chickpea.

Figure S11. Confocal microscope images of cotton leaves after dipping in 100 mg/L of CMF⁺ stained with CFW.

Cellulose	0-1	μm²	1 – 10 μm²		
	Pore area	Density	Pore area	Density	
	(µm²)	(pre area)	(µm²)	(pre area)	
CNF ⁺	0.21 ± 0.08	0.12	2.54 ± 0.34	0.03	
CMF⁺					
CNC ⁻		0.11			

Table S1. Pore information of nanocellulose dry matrix obtained by TEM and AFM.

Table S2. Increase percent of LHC compared to the milli-Q water (%). D and S representthe dipping and spraying methods, respectively.

	Cotton		Chickpea		Sweet corn	
	D	S	D	S	D	S
CNF ⁺	170.0	153	60.2	58.2	41.7	42.2
CMF ⁺	89.8	83.8	42.9	40.2	15.0	14.1
CNC ⁻	267	256	40.9	37.7	26.2	25.5

Leaves type		Stomatal area	Density of Stomata		
		(μm^2)	area (%)	number (per/mm ²)	
Cotton	adaxial	66	0.22	33	
	abaxial	100	0.61	65	
Sweet corn	adaxial	120	0.78	55	
	abaxial	330	2.99	71	
Chickpea	adaxial	50	0.88	170	
	abaxial	N/A	N/A	N/A	

Table S3. Characterization of microstructure of various leaves