Supporting Information

Recyclable iodine-catalyzed oxidative C-H chalcogenation of 1,1diarylethenes in water: Green synthesis of trisubstituted vinyl sulfides and selenides

Nilanjana Mukherjee and Tanmay Chatterjee*

Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana, India

Email: <u>tanmay@hyderabad.bits-pilani.ac.in</u>

Table of Contents

1. General reagent information
1.1 General analytical informationS2
2. Synthesis of 1,1-diarylethenes (1b-1f) and diaryl diselenides (5b-5i)
3. General experimental procedure for the synthesis of vinyl sulfanes (3aa-3an and
3ba-3fa) and vinyl selanes (6aa-6aj and 6ba-6ia)S3
4.1. Gram-scale synthesis of (2,2-diphenylvinyl)(phenyl)sulfane (3aa)
4.2. Gram-scale synthesis of (2,2-diphenylvinyl)(phenyl)selane (6aa)
5. Recovery and recyclability of iodine
6. Experimental procedure for the synthesis of 2-(phenylsulfinyl)ethene-1,1-
diyl)dibenzene 7 and (2-(phenylsulfonyl)ethene-1,1-diyl)dibenzene 8
7. Experimental procedure for the synthesis of 9, 10, 11, 12, 13
8. X-ray crystal structure of 3bi
9. Determination of stereochemistry of (2,2-diphenylvinyl)(phenyl)sulfane, 3fa
10.1. In situ detection of <i>tert</i> -butyl(2,2-diphenylvinyl)sulfane (3ao) by LC-MS
10.2. In situ detection of 2,2-diphenylethene-1-thiol (C) by LC-MS
11. Determination of stereochemistry of (2,2-diphenylvinyl)(phenyl)selane, 6faS14

12. Scheme S1. Explanation of stereoselectivity of C-H chalcogenation reactions with	l
unsymmetrical alkenes	S15
13. Table S2. Calculation of EcoScale score of the developed protocol for the synthes	is of (2,2-
diphenylvinyl)(phenyl)sulfane (3aa)	S16
14. Table S3. Calculation of EcoScale score of the developed protocol for the synthes diphenylvinyl)(phenyl)selane (6aa)	is of (2,2- S17
15. Analytical data of all synthesized products	S17
16. References	S28
17. NMR Spectra	S30

1. General reagent information

Starting materials such as ethene-1,1-diyldibenzene, α -methylstyrene, and all commercially available diorganyl disulphides, and solvents were purchased from Sigma-Aldrich, TCI, and other local chemical companies and used as such. Flash column chromatography was performed using silica gel (100-200 mesh). The de are commercially available.

1.1. General analytical information

¹H, ¹³C, ⁷⁷Se and ¹⁹F NMR spectra were recorded on a Bruker 400 MHz instrument (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR, 76 MHz for ⁷⁷Se NMR and 376 MHz for ¹⁹F NMR). Copies of ¹H, ¹³C, ⁷⁷Se and ¹⁹F NMR spectra can be found at the end of the Supporting Information. ¹H NMR data are reported in units, parts per million (ppm), and were measured relative to residual chloroform (7.26 ppm) in the deuterated solvent. ¹³C{1H} NMR spectra are reported in ppm relative to deuterochloroform (77.00 ppm) and all were obtained with ¹H decoupling. Coupling constants were reported in Hz. Reactions were monitored by thin layer chromatography (TLC) and ¹H NMR of the crude reaction mixture using 1,3,5-trimethoxybenzene as the internal standard. Mass spectral data of unknown compounds were obtained on a high-resolution mass spectrometer, HRMS (6546 Q-TOF LC/MS, Agilent). Melting points of unknown compounds were recorded on Rigaku Oxford Diffraction (XtalLab).

2. Synthesis of 1,1-diarylethenes (1b-1f) and diaryl diselenides (5b-5i).

All starting materials (1b,³ 1c,³ 1d,³ 1e,³ 5b,¹ 5c,¹ 5d,¹ 5e,² 5f,¹ 5g,¹ 5h,¹ 5i²) which are shown below were synthesized by following a literature protocol and characterized by ¹H and ¹³C NMR.^{1,2,3,5}

3. General experimental procedure for the synthesis of vinyl sulfanes (3aa-3an, 3bi, 3ci and 3ba-3fa) and vinyl selanes (6aa-6aj and 6ba-6ia).

$$\begin{array}{c} I_{2} (10 \text{ mol\%}) \\ R^{2} & + R^{3} \\ R^{1} & X = S, Se \\ R^{3} = Ph, aryl, Me \end{array} \xrightarrow{H_{2}O_{2} (0.3 \text{ equiv})}_{H_{2}O, 50 \ ^{\circ}C, 7 \ h} \\ \mathbf{1} & \mathbf{2} \end{array} \xrightarrow{R^{2}}_{R^{1} S = R^{3}} \\ \mathbf{1} & \mathbf{2} \\ \mathbf{1} & \mathbf{3} \end{array}$$

Representative experimental procedure for the synthesis of (2,2diphenylvinyl)(phenyl)sulfane (3aa):

Ethene-1,1-divldibenzene 1a (0.088 mL, 0.5 mmol, 1 equiv), I₂ (0.013 g, 0.05 mmol) and 1,2diphenyldisulfane 2a (0.055 g, 0.25 mmol, 0.5 equiv) in a round-bottom flask (RBF) and H₂O (0.3 mL). was added to it. Then 30% aqueous H_2O_2 (v/v) (0.015 mL, 0.15 mmol, 0.3 equiv) was added and the reaction mixture was stirred at 50 °C under aerobic atmosphere. The progress of the reaction was monitored by TLC and after 7 h both the starting materials were found to be fully converted to product. To avoid the huge-solvent-consuming column chromatographic technique, we first quenched the iodine by Na₂S₂O₃ solution and then the product was separated from the reaction mixture through simple extraction using EtOAc (3 x 10 mL). The solvent evaporated dryness which furnished the product, (2, 2 was to pure diphenylvinyl)(phenyl)sulfane 3aa (0.135 g, 0.47 mmol) in 94% yield. The reactions where staring materials were not fully consumed, column chromatographic purification were conducted to obtain the pure product.

4.1. Gram-scale synthesis of (2,2-diphenylvinyl)(phenyl)sulfane (3aa):

Ph + Ph ^S S ^{Ph} Ph 1a 2a 1.082 g 0.655 g 6 mmol (0.5 equiv)	I_2 (10 mol%) H_2O_2 (0.3 equiv) H_2O , 50 °C, 9 h aerobic atmosphere	Ph Ph S -Ph 3aa, 1.56 g (90%)
---	--	---

Ethene-1,1-dividibenzene 1a (1.06 mL, 6 mmol, 1 equiv), I_2 (0.152 g, 0.6 mmol) and 1,2diphenyldisulfane 2a (0.654 g, 3 mmol, 0.5 equiv) were taken in an RBF and H₂O (3.7 mL) was added to it. Then 30% aqueous H₂O₂ (v/v) (0.18 mL, 1.8 mmol, 0.3 equiv) was added and the reaction mixture was stirred at 50 °C under an aerobic atmosphere. The progress of the reaction was monitored by TLC and after 9 h both the starting materials were found to be fully converted to product. To avoid the huge-solvent-consuming column chromatographic technique, we first quenched the iodine by $Na_2S_2O_3$ solution and then the product was separated from the reaction mixture through simple extraction using EtOAc (3 x 25 mL). The solvent evaporated dryness which furnished the product, (2, 2 was to pure diphenylvinyl)(phenyl)sulfane **3aa** (1.56 g, 5.4 mmol) in yield 90% and around 72 mL EtOAc was recovered.

4.2. Gram-scale synthesis of (2,2-diphenylvinyl)(phenyl)selane (6aa):

Ethene-1,1-diyldibenzene **1a** (1.06 mL, 6 mmol, 1 equiv), I_2 (0.152 g, 0.6 mmol) and 1,2diphenyldiselane **2a** (0.94 g, 0.3 mmol, 0.5 equiv) were taken in a RBF and in H₂O (3.7 mL) was added to it. Then 30% aqueous H₂O₂ (v/v) (0.18 mL, 1.8 mmol, 0.3 equiv) was added and the reaction mixture was stirred at 50 °C under aerobic atmosphere. The progress of the reaction was monitored by TLC and after 9 h both the starting materials were found to be fully converted to product. To avoid the huge-solvent-consuming column chromatographic technique, we first quenched the iodine by Na₂S₂O₃ solution and then the product was separated from the reaction mixture through simple extraction using EtOAc (3 x 25 mL). The solvent was evaporated to dryness which furnished the pure product, (2,2-diphenylvinyl)(phenyl)selane **6aa** (1.93 g, 5.8 mmol) in 96% yield and around 72 mL EtOAc was recovered.

5. Recovery and recyclability of iodine:⁴

Step-1: Ethene-1,1-diyldibenzene **1a** (1.1 mL, 6 mmol, 1 equiv), I_2 (0.15 g, 0.6 mmol), 1,2diphenyldisulfane **2a** (0.654 g, 3 mmol, 0.5 equiv) were taken in a RBF and H₂O (3.7 mL) was added to it. Then 30% aqueous H₂O₂ (v/v) (0.18 mL, 1.8 mmol, 0.3 equiv) was added and the reaction mixture was stirred at 50 °C under aerobic atmosphere for 9 h. The solution was then transferred to a separating funnel for extraction. The reaction mixture was extracted with ethyl acetate twice (2 X 20 mL) and the combined organic layer was washed with water (3 X 10 mL). The solvent was evaporated under reduced pressure and iodine (0.12 g, 80%) was recovered first from the crude reaction mixture by column chromatography using pentane as eluent. The column chromatography process was further continued to obtain the pure product, (2,2-diphenylvinyl)(phenyl)sulfane **3aa** (1.56 g, 5.4 mmol) in 90% yield.

Step-2: Recovered I₂ (0.12 g, 0.48 mmol), ethene-1,1-diyldibenzene **1a** (0.85 mL, 4.8 mmol, 1 equiv), and 1,2-diphenyldisulfane **2a** (0.523 g, 2.4 mmol, 0.5 equiv) were taken in a RBF and H₂O (2.93 mL) was added to it. Then 30% aqueous H₂O₂ (v/v) (0.14 mL, 1.44 mmol, 0.3 equiv) was added and the reaction mixture was stirred at 50 °C under an aerobic atmosphere for 9 h. The solution was then transferred to a separating funnel for extraction. The reaction mixture was extracted with ethyl acetate twice (2 X 20 mL) and the combined organic layer was washed with water (3 X 10 mL). The solvent was evaporated under reduced pressure and iodine (0.08 g, 67%) was recovered from the crude reaction mixture first by column chromatography using pentane as eluent. The column chromatography process was further continued to afford the pure product, (2,2-diphenylvinyl)(phenyl)sulfane **3aa** (1.24g, 4.3 mmol) in 90% yield.

Step-3: To a solution of ethene-1,1-diyldibenzene **1a** (0.564 mL, 3.2 mmol, 1 equiv), I_2 (0.08 g, 0.32 mmol) and 1,2-diphenyldisulfane **2a** (0.35 g, 1.6 mmol, 0.5 equiv) in H₂O (1.95 mL) was added in a flame-dried RBF. Then 30% aqueous H_2O_2 (v/v) (0.096 mL, 0.96 mmol, 0.3 equiv) was added and the reaction mixture was stirred at 50 °C under an aerobic atmosphere for 9 h. The solution was then transferred to a separating funnel for extraction. The reaction mixture was extracted with ethyl acetate twice (2 X 20 mL) and the combined organic layer was washed with water (3 X 10 mL). The crude reaction mixture was purified by column chromatography to afford pure (2,2-diphenylvinyl)(phenyl)sulfane **3aa** (0.85 g, 2.95 mmol) in 92% yield.

6. Experimental procedure for the synthesis of 2-(phenylsulfinyl)ethene-1,1diyl)dibenzene 7 and (2-(phenylsulfonyl)ethene-1,1-diyl)dibenzene 8.⁶

6.1. Experimental procedure for the synthesis of 2-(phenylsulfinyl)ethene-1,1-diyl)dibenzene 7:

3-Chloroperoxybenzoic acid, *m*-CPBA (purity: 65-70%) (0.140 g, 0.32 mmol) was added to the solution of (2,2-diphenylvinyl)(phenyl)sulfane **3aa** (0.087 g, 0.3 mmol, 1 equiv) dissolved in dichloromethane, DCM (2.5 mL) at 0 °C. Then, the reaction mixture was stirred vigorously for 2 h at room temperature. The progress of the reaction was monitored by TLC and after the completion of the reaction the solvent was evaporated under reduced pressure. The crude reaction mixture was extracted with DCM thrice (3 x 10 mL). The combined organic layer was washed with water (3 x 10 mL) and evaporated under reduced pressure. The crude product was purified by flash column chromatography through silica gel to afford the (2-(phenylsulfinyl)ethene-1,1-diyl)dibenzene **7** in (0.082 g, 0.25 mmol) in 82% yield.

6.2. Experimental procedure for the synthesis of (2-(phenylsulfonyl)ethene-1,1-diyl)dibenzene 8:

Oxone (1.11 g, 1.8 mmol) was added to the solution of (2,2-diphenylvinyl)(phenyl)sulfane **3aa** (0.091 g, 0.3 mmol, 1 equiv) in ethanol (1.5 mL). The reaction mixture was stirred at 60 °C. The progress of the reaction was monitored by TLC until completion. After the completion of the reaction, the solvent was evaporated under reduced pressure. The crude reaction mixture was extracted with ethyl acetate thrice (3 x 10 mL). The combined organic layer was washed with water (3 x 10 mL) and evaporated under reduced pressure. The crude product was purified by flash column chromatography through silica gel to afford (2-(phenylsulfonyl)ethene-1,1-diyl)dibenzene **8** in (0.073 g, 0.23 mmol) 76% yield.

7. Experimental procedure for the synthesis of N-((2,2-diphenylvinyl)(phenyl)- λ_4 -sulfanylidene)-4-methylbenzenesulfonamide (9):

To a solution of (2,2-Diphenylvinyl)(phenyl)sulfane **3aa** (0.091 g, 0.3 mmol) in MeCN (0.1 M) was added Chloramin-T trihydrate (0.18 g, 0.63 mmol) and glacial acetic acid (3 μ L, 0.06 mmol). The reaction mixture was then refluxed at 80 °C for 16 h. The mixture was allowed to

cool to room temperature. The solvent was removed under reduced pressure. The crude reaction mixture was extracted with ethyl acetate thrice (3 x 30 mL). The combined organic layer was washed with brine solution (30 mL) and concentrated under reduced pressure. The crude product was purified by flash column chromatography through silica gel to afford *N*-((2,2-diphenylvinyl)(phenyl)- λ_4 -sulfanylidene)-4-methylbenzenesulfonamide **9** (0.11 g, 0.24 mmol) in 78% yield.

Experimental procedure for the synthesis of 3-phenylbenzo[b]thiophene⁷

(2,2-diphenylvinyl)(phenyl)sulfane **3aa** (0.091 g, 0.3 mmol), diacetoxypalladium (0.010 g, 0.045 mmol, 1 equiv), 2,6-dimethylbenzoic acid (0.021 g, 0.135 mmol) in toluene (1.5 M) were taken in a 10 mL RBF. The reaction mixture was refluxed at 140 °C for 16 h. The mixture was cooled to room temperature and extracted with ethyl acetate (30x3 mL) three times. The combined organic layer was further washed with brine (30 mL) and subsequently dried over anhydrous Na₂SO₄. Finally, the solvent was evaporated under reduced pressure to get the crude product which was purified by flash column chromatography on silica gel to afford 3-phenylbenzo[*b*]thiophene **10** (0.025 g, 0.12 mmol) in 40% yield.

Experimental procedure for the synthesis of [1,1'-biphenyl]-4-yl(2,2diphenylvinyl)sulfane (11):

4(4-Bromophenyl)(2,2-diphenylvinyl)sulfane **3ab** (0.11 g, 0.3 mmol, 1 equiv), phenyl boronic acid (0.040 g, 0.33 mmol), Pd(PPh₃)₄ (0.017 g, 0.015 mmol), K₂CO₃ (0.124 g, 0.9 mmol) and solvent (1 mL, EtOH : H_2O : PhMe = 1:1:3) were taken in a 25 mL RBF. The reaction mixture was refluxed at 110 °C and the progress of the reaction was monitored by thin layer

chromatography. The mixture was cooled to room temperature and extracted with ethyl acetate (30x3 mL) three times. The combined organic layer was further washed with brine (30 mL) and subsequently dried over anhydrous Na₂SO₄. Finally the solvent was evaporated under reduced pressure to get the crude product which was purified by flash column chromatography on silica gel to afford [1,1'-biphenyl]-4-yl(2,2-diphenylvinyl)sulfane **11** (0.092 g, 0.25 mmol) in 84% yield.

Experimental Procedure for The Synthesis of (2,2-diphenylvinyl)(4-(phenylethynyl)phenyl)sulfane (12):

To a solution of 4(4-Bromophenyl)(2,2-diphenylvinyl)sulfane **3ab** (0.11 g, 0.3 mmol, 1 equiv) in Et₃N (3 mL) were added PdCl₂(PPh₃)₂ (0.006 g , 0.009 mmol) and CuI (0.0017 g, 0.009 mmol) under nitrogen atmosphere in a standard Schlenk-line process. The reaction mixture was stirred for 5 min under an inert atmosphere. Then, 2-phenyl acetylene (40 μ L, 0.36 mmol, 1.2 equiv) was added to the reaction mixture. The resulting mixture was then heated under an inert atmosphere at 80 °C for 18 h. The mixture was allowed to cool to room temperature. The solvent was evaporated under reduced pressure. The crude reaction mixture was extracted with ethyl acetate thrice (3 x 30 mL). The combined organic layer was washed with brine solution (30 mL) and concentrated under reduced pressure. The crude product was purified by flash column chromatography through silica gel to afford the product (2,2-diphenylvinyl)(4-(phenylethynyl)phenyl)sulfane **12** (0.049 g, 0.13 mmol) in 42% yield.

Experimental procedure for the synthesis of (2-(phenylseleninyl)ethene-1,1diyl)dibenzene (13)

3-Chloroperoxybenzoic acid, *m*-CPBA (purity: 65-70%) (0.140 g, 0.32 mmol) was added to a solution of (2,2-diphenylvinyl)(phenyl)selane **6aa** (0.168 g, 0.3 mmol) dissolved in dichloromethane (2.5 mL) at 0 °C. The reaction mixture was cooled at 0 °C. Then, the reaction mixture was stirred vigorously for 2 h. After the completion of the reaction the solvent was evaporated under reduced pressure. The crude reaction mixture was extracted with dichloromethane thrice (3 x 10 mL). The combined organic layer was washed with water (3 x 10 mL) and evaporated under reduced pressure. The crude product was purified by flash column chromatography through silica gel to afford the (2-(phenylseleninyl)ethene-1,1-diyl)dibenzene **13** in (0.09 g, 0.26 mmol) in 85% yield.

8. X-ray crystal structure of 3bi.

Figure S1. X-ray crystal structure of **3bi** (thermal ellipsoids shown at 50% probability) including hetero-atom numbering.

8.1. Table-S1. Selected crystal data of 3bi

Parameters	3bi
Empirical formula	C17H18S
	- 17 10~
Formula weight	254.37
Temperature/K	295
Crystal system	orthorhombic
Space group	P 21 21 21
a/Å	9.4617(5)
b/Å	11.8672(7)
c/Å	13.2190(8)
α(•)	90
$\boldsymbol{\beta}(\bullet)$	90
<u> (</u> •)	90
Volume/Å ³	1484.28(15)
Z	4
μ/mm ⁻¹	1.754
$D_x [g \ cm^{-3}]$	1.138
F(000)	544
2 Θ range for data collection (*)	5.008-79.763
Index ranges	$-11 \le h \le 12, -$ $-10 \le k \le 14, -$ $-16 \le l \le 15$
Reflections measured	2648
Unique reflections	5041
Parameters /restraints	209/0
Goodness-of-fit on F2	1.084
$R_{I}[I \geq 2\sigma(I)]$	0.0419
wR_2 (all data)	0.1226
Largest diff. peak/hole/e Å ⁻³	0.204/-0.264
CCDC	2261525

9. Determination of stereochemistry of (2,2-diphenylvinyl)(phenyl)sulfane, 3fa.(A)

Figure S2: (A) ¹H-NMR spectrum of **3fa**, (B) NOE difference spectrum, with irradiation at 6.79 ppm.

10.1. *In situ* detection of *tert*-butyl(2,2-diphenylvinyl)sulfane (3ao) by LC-MS

<Spectrum>

Line#:1 R.Time:----(Scan#----) MassPeaks:36 RawMode:Averaged 0.391-0.852(135-293) BasePeak:383.4(205721) BG Mode:Averaged 1.167-1.983(401-681) Segment 1 - Event 1 Intensity

10.2. In situ detection of 2,2-diphenylethene-1-thiol (C) by LC-MS

Figure S4. Mass spectrum of the reaction mixture of ethene-1,1-diyldibenzene, I_2 and 1,2-ditert-butyldisulfane

11. Determination of stereochemistry of (2,2-diphenylvinyl)(phenyl)selane, 6fa.

Figure S5: (A) ¹H-NMR spectrum of **6fa**, (B) NOE difference spectrum, with irradiation at 6.95 ppm.

Ĥ

12. Scheme S1. Explanation of stereoselectivity of C-H chalcogenation reactions with unsymmetrical alkenes

S15

(Z)-6ia

B (Less stable conformation) (Stereoselective reaction)

13. *Table S2.* Calculation of EcoScale score of the developed protocol for the synthesis of (2,2-diphenylvinyl)(phenyl)sulfane (3aa) 8

Eco Scale Calculation:

Eco Scale = 100 - Sum of individual penalties Score on Eco Scale: > 75, Excellent; >50, acceptable; <50, Inadequate	e
Parameters	Penalty Points
 Yield: (100 - % of yield)/2 = (100 - 90)/2 = 5 Price of reaction components (To obtain 10 mmol of end product, 3aa) A. Calculation of Penalty Points : a.ethene-1,1-diyldibenzene = 11.37 mmol = 2.05 g = USD 7.08 b. 1,2-diphenyldisulfane = 5.69 mmol = 1.24 g = USD 0.64 c. lodine (As catalyst) = 1.14 mmol = 0.289 g = USD 0.099 d. Hydrogen Peroxide (30% of aqueous solution) = 0.33 mL = USD 0.087 	5
Total cost of synthesis of 3aa = (6.49 + 0.64 + 0.099 + 0.087) = USD 7.32 Thus inexpensive, since <\$10(total cost of synthesis of 10 mmol of 3aa) :	0
3. Safety	
ethene-1,1-diyldibenzene	0
1,2-diphenyldisulfane (1)	5
	5
4. Technical Setup	٥
5. Temperature/ Time	0
50° C. 7 h (Heating > 1h)	3
6.Work up and purification :	
a.Adding solvent	0
b .No classical chromatography	0
Total penalty points:	18

B. Ecoscale calculation:

EcoScale score: (100 - 18) = 82 (>75; it is an excellent synthesis)

14. *Table S3.* Calculation of EcoScale score of the developed protocol for the synthesis of (2,2-diphenylvinyl)(phenyl)selane (6aa) ⁸

Eco Scale Calculation:

,、	
Eco Scale = 100 - Sum of individual penalties Score on Eco Scale: > 75, Excellent; >50, acceptable; <50, Inadequate	
Parameters	Penalty Points
 Yield: (100 - % of yield)/2 = (100 - 96)/2 = 2 Price of reaction components (To obtain 10 mmol of end product, 6aa) A. Calculation of Penalty Points : a.ethene-1,1-diyldibenzene = 10.42 mmol = 1.88 g = USD 6.49 b. 1,2-diphenyldiselane = 5.21 mmol = 1.63 g = USD 2.45 c. lodine (As catalyst) = 1.04 mmol = 0.264 g = USD 0.091 d. Hydrogen Peroxide (30% of aqueous solution) = 0.31 mL = USD 0.082 	2
Total cost of synthesis of 6aa = $(6.49 + 2.45 + 0.091 + 0.082) = USD 9.113$ Thus expensive, since < \$10 (total cost of synthesis of 10 mmol of 6aa):	0
3. Safety	
ethene-1,1-diyldibenzene	0
1,2-diphenyldiselane (T)	5
lodine (T)	5
4.Technical Setup Common Setup	0
5. Temperature/ Time 50 °C, 7 h (Heating, > 1h)	3
a Adding solvent	0
b. No classical chromatography	0
Total penalty points:	15

B. Ecoscale calculation:

EcoScale score: (100 - 15) = 85 (>75; it is an excellent synthesis)

15. Analytical data of all synthesized products (3aa - 3an, 3ba – 3fa, 3bi, 3ci and 4, 6aa - 6aj, 6ba – 6ia, 7 - 14)

(**2,2-Diphenylvinyl**)(**phenyl**)**sulfane** (**3aa**):⁹ White solid (0.135 g, 94%); eluent hexane; ¹H NMR (**400 MHz, CDCl**₃) δ 7.54 – 7.48 (m, 4H), 7.45 (m, 3H), 7.42 – 7.36 (m, 3H), 7.35 (d, *J* = 2.9 Hz, 3H), 7.32 (m, 2H), 6.95

(s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.4, 141.0, 139.1, 136.5, 129.7, 129.5, 129.1, 128.3, 128.3, 127.7, 127.3, 127.2, 126.7, 124.1.

Ph Ph S Br (4-Bromophenyl)(2,2-diphenylvinyl)sulfane (3ab):⁹ White solid (0.138 g, 75%); eluent hexane; ¹H NMR (400 MHz, CDCl₃ δ 7.39 – 7.07 (m, 14H), 6.68 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.1, 141.2, 138.9, 135.7, 132.1, 130.8, 129.7, 128.4, 128.3, 127.9, 127.5, 127.2, 122.9, 120.6.

(4-Chlorophenyl)(2,2-diphenylvinyl)sulfane (3ac):⁹ White solid (0.15 g, 94%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.44 (m, 2H), 7.43 – 7.37 (m, 5H), 7.36 – 7.29 (m, 7H), 6.83 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 141.9, 141.2, 138.9, 135.0, 132.7, 130.6, 129.7, 129.2, 128.4, 128.3, 127.9, 127.5, 127.2, 123.2.

2,2-Diphenylvinyl)(**4-fluorophenyl**)**sulfane** (**3ad**):⁹ White solid (0.14 g, 92%); eluent hexane; ¹H NMR (**400** MHz, CDCl₃) δ 7.30 (m, 4H), 7.23 (m, 3H), 7.17 – 7.10 (m, 5H), 6.94 – 6.85 (m, 2H), 6.65 (s, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.1 (d, ¹*J*_{C-F} = 246 Hz), 141.3, 140.8, 139.0, 132.0 (d, ³*J*_{C-F} = 8 Hz), 131.5 (d, ⁴*J*_{C-F} = 4 Hz), 129.7, 128.4, 128.2, 127.8, 127.3, 127.1, 124.6, 116.2(d, ²*J*_{C-F} = 22 Hz) (Overlapping peaks present). ¹⁹F NMR (376 MHz, CDCl₃) δ -114.45 (s).

(2,2-Diphenylvinyl)(4-nitrophenyl)sulfane (3ae):⁹ Yellow solid (0.13 g, 79%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 8.17
(d, J = 9.0 Hz, 2H), 7.48 (d, J = 9.0 Hz, 2H), 7.45 - 7.42 (m, 2H),

7.36 – 7.30 (m, 8H), 6.87 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.61, 146.33, 145.70, 140.77, 138.56, 129.57, 128.47, 128.32, 128.19, 128.12, 127.42, 127.21, 124.13, 118.51.

(**2,2-Diphenylvinyl**)(**p-tolyl**)**sulfane** (**3af**):⁹ White solid (0.103 g, 68%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (s, 1H), 7.27 – 7.18 (m, 6H), 7.13 – 7.06 (m, 5H), 6.99-6.97 (m, 2H), 6.70 (s,

1H), 2.18 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.5, 140.1, 139.2, 136.9, 132.8, 130.0, 129.8, 129.7, 128.3, 128.2, 127., 127.1, 125.2, 21.0 (overlapping peaks are present).

(**2,2-Diphenylvinyl**)(**4-methoxyphenyl**)**sulfane** (**3ag**):⁹ Colourless liquid (0.13 g, 82%); eluent hexane; ¹H NMR (**400 MHz, CDCl**₃) δ 7.29-7.24 (m, 6H), 7.22 (s, 1H), 7.11-7.10 (m, 5H), 6.76-6.73 (m,

2H), 6.65 (s, 1H), 3.64 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.2, 141.4, 139.1, 132.5,

129.7, 128.3, 128.2, 127.6, 127.03, 126.99, 126.7, 126.5, 114.7, 55.3 (overlapping peaks are present).

N-(2-((2,2-diphenylvinyl)thio)phenyl)benzamide (3ah): Yellow liquid (0.11 g, 52%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 8.92 (brS, 1H), 8.62 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.90 – 7.78 (m, 2H), 7.67 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.57 – 7.52 (m, 1H), 7.49 – 7.41 (m, 6H), 7.32 (dd, *J* = 8.0,

1.5 Hz, 2H), 7.23 (dd, J = 5.1, 1.8 Hz, 3H), 7.18 – 7.10 (m, 3H), 6.49 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.2, 142.4, 140.7, 139.3, 138.6, 134.8, 134.6, 132.0, 130.5, 129.6, 128.8, 128.5, 128.3, 128.2, 127.6, 127.2, 127.1, 124.4, 124.0, 123.2, 120.8. HRMS (ESI), m/z calcd for C₂₇H₂₂NOS [M + H]⁺: 408.1417; found: 408.1390.

 $\begin{array}{c} \mbox{Ph} (2,2-diphenylvinyl)(methyl)sulfane (3ai):^8 Yellow oil (0.109 g, 96\%); \\ \mbox{eluent hexane; 1H NMR (400 MHz, CDCl_3 δ 7.31 - 7.27 (m, 2H), 7.24 - 7.20 (m, 3H), 7.15 (s, 1H), 7.12 (m, 4H), 6.45 (s, 1H), 2.25 (s, 3H). $^{13}C{^1H} NMR (100 MHz, CDCl_3) δ 141.7, 139.4, 138.3, 129.63 128.3, 128.2, 127.6, 127.5, 126.9, 126.8, 17.9. \\ \end{array}$

(2,2-Diphenylvinyl)(propyl)sulfane (3aj): Yellow liquid (0.12 g, 92%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.48 (m, 1H), 7.47 (d, J = 2.0 Hz, 1H), 7.45 (d, J = 1.7 Hz, 1H), 7.43 (m, 1H), 7.40 (m, 1H), 7.37-7.35 (m, 2H), 7.34 – 7.30 (m, 3H), 6.70 (s, 1H), 2.86 – 2.81 (m, 2H), 1.81 (d, J = 7.3 Hz, 2H), 1.11 (t, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.9, 139.5, 138.2, 129.62 128.2, 128.1, 127.3, 126.9, 126.7, 126.3, 36.8, 23.6, 13.2. HRMS (ESI), m/z calcd for C₁₈H₁₉S [M + H]⁺: 255.1202; found: 255.1169.

Ph COOH 4-((2,2-Diphenylvinyl)thio)butanoic acid (3ak): Yellow viscous liquid (0.11 g, 76%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.29 (m, 3H), 7.25 – 7.20 (m, 3H), 7.14 – 7.12 (m, 4H), 6.47 (s, 1H), 2.73 (t, *J* = 7.1 Hz, 2H), 2.42 (t, *J* = 7.2 Hz, 2H), 1.97 – 1.89 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 179.0, 141.7, 139.4, 139.3, 129.6, 128.3, 128.2, 127.5, 126.95, 126.9, 125.2, 33.8, 32.3, 25.1. HRMS (ESI), m/z calcd for C₁₈H₁₈O₂S [M]: 298.1028; found: 298.1053.

Ph OH 3-((2,2-Diphenylvinyl)thio)propan-1-ol (3al): Viscous liquid (0.084 g, 62%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.28 (m, 2H), 7.24 – 7.22 (m, 3H), 7.19 – 7.17 (m, 2H), 7.16 – 7.11 (m, 3H), 6.59 (s, 1H), 2.88 – 2.80 (m, 1H), 1.96 (d, J = 2.9 Hz, 1H), 1.74 – 1.68 (m, 2H), 1.35-1.25 (m, 2H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ 178.6, 141.7, 139.5, 139.4, 129.7, 128.3, 128.2, 127.5, 127.0, 126.9, 125.2, 33.8, 32.2, 25.1. Anal calcd for C₁₇H₁₈OS: C, 75.52; H, 6.71; S, 11.86; found C, 75.40; H, 6.82; S, 11.79.

Ph Ph Ph S Cyclohexyl(2,2-diphenylvinyl)sulfane (3am): Colourless oil (0.097 g, 69%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.28 (m, 3H), 7.23 (d, J = 7.4 Hz, 2H), 7.119 – 7.17 (m, 2H), 7.16 – 7.11 (m, 3H), 6.59

(s, 1H), 2.88 - 2.80 (m, 1H), 2.02 - 1.94 (m, 2H), 1.74 - 1.68 (m, 2H), 1.58 - 1.53 (m, 1H), 1.40 - 1.16 (m, 5H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.2, 139.7, 138.2, 129.7, 128.2, 128.2, 127.3, 127.0, 126.7, 124.7, 46.8, 33.8, 26.1, 25.6. HRMS (ESI), m/z calcd for C₂₀H₂₂S [M]: 294.1442; found: 294.1437.

Ph Ph S S 2-((2,2-Diphenylvinyl)thio)thiophene (3an):⁹ White solid (0.109 g, 74%); $eluent hexane; ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.37 – 7.32 (m, 2H), 7.31 – 7.25 (m, 4H), 7.20 – 7.14 (m, 3H), 7.13 – 6.91 (m, 4H), 6.63 (s, 1H). ¹³C

NMR (100 MHz, CDCl₃) δ 141.0, 139.2, 138.8, 133.9, 132.7, 129.7, 129.3, 128.5, 128.3, 127.9, 127.6, 127.3, 127.1.

(2,2-Di-p-tolylvinyl)(phenyl)sulfane (3ba):⁹ Colourless liquid (0.124 g, 78%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.31 (m, 2H), 7.22 (t, *J* = 7.6 Hz, 2H), 7.15 – 7.14 (m, 5H), 7.07 (d, *J* = 8.2 Hz, 2H), 7.00 (d, *J* = 7.9 Hz, 2H), 6.68 (s, 1H), 2.30 (s, 3H), 2.24 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃), δ 141.4, 138.9, 137.5, 137.1, 136.8, 136.4, 129.6, 129.3, 129.03, 128.96, 128.2, 127.2, 126.6, 122.4, 21.3, 21.1.

(2,2-Bis(4-chlorophenyl)vinyl)(phenyl)sulfane (3ca): White solid (0.16 g, 91%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.33 (m, 3H), 7.31 – 7.26 (m, 3H), 7.22 – 7.16 (m, 5H), 7.08 – 7.06 (m, 2H), 6.76 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.6, 138.2, 137.1, 135.7, 133.8, 133.3, 131.1, 129.8, 129.2, 128.8, 128.6, 128.34, 127.2, 125.7.HRMS (ESI), m/z calcd for C₂₀H₁₅Cl₂S [M + H]⁺: 356.0193; found: 356.0160.

F SPh ((2,2-Bis(4-fluorophenyl)vinyl)(phenyl)sulfane (3da): Yellow oil (0.126 g, 78%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 7.4 Hz, 2H), 7.23 – 7.18 (m, 4H), 7.13 (d, *J* = 7.2 Hz, 1H), 7.09 – 7.05 (m, 2H), 6.99 (t, *J* = 8.7 Hz, 2H), 6.85 (t, *J* = 8.6 Hz, 2H), 6.66 (s, 1H). ¹³C NMR (100 MHz, CDCl₃ δ 162.20 (d, ¹*J*_{C-F} = 246 Hz), 162.21 (d, ¹*J*_{C-F} = 246 Hz), 138.9, 137.5, 136.0, 134.9, 131.45 (d, ³*J*_{C-F} = 8 Hz), 129.6, 129.2, 128.7 (d, ³*J*_{C-F} = 8 Hz),

127.0, 124.3, 115.2 (d, ${}^{2}J_{C-F} = 21$ Hz), 115.4 (d, ${}^{2}J_{C-F} = 21$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.28 (s), -114.51 (s). HRMS (ESI), m/z calcd for C₂₀H₁₅F₂S [M + H]⁺: 325.0857; found: 325.0811.

(2,2-Di-p-tolylvinyl)(methyl)sulfane (3bi): Yellow solid (0.12 g, 92%); eluent hexane; mp = 65 - 67 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (s, 4H), 7.12 – 7.10 (m, 2H), 6.48 (s, 1H), 2.39 (s, 3H), 2.37 (s, 3H), 2.34 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.1, 138.4, 137.1, 136.6, 136.5, 129.5, 128.9, 128.9, 126.9, 126.1, 21.3, 21.0,

18.0. **HRMS (ESI)**, m/z calcd for $C_{17}H_{18}S$ [M]: 254.1129; found: 254.1199. The assignment is also supported by an X-ray crystallographic structure determination (**CCDC 2261525**).

(2,2-Bis(4-chlorophenyl)vinyl)(methyl)sulfane (3ci):⁹ Orange solid (011 g, 72%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.6 Hz, 2H), 7.16 – 7.12 (m, 4H), 7.01 (d, J = 8.7 Hz, 2H), 6.46 (s, 1H), 2.29 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.8, 137.4, 135.8, 133.4, 132.8, 131.0, 128.9, 128.7, 128.4, 128.1, 17.9. (Phenyl(2-phenyl-2-(p-tolyl)vinyl)sulfane (3ea): Colourless oil (0.114 g, 75%, Z:E = 55:45); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.35 (m, 5H), 7.33 – 7.25 (m, 9H), 7.22 – 7.19 (m, 10H), 7.07 (dd, J = 21.0, 5.0 Hz, 4H), 6.78 (s, 1H), 6.77 (s, 1H), 2.35 (s, 3H), 2.29 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃ δ 141.7, 141.4, 141.18, 139.3\3, 138.7, 137.6,

137.2, 136.7, 136.6, 136.2, 129.7, 129.6, 129.5, 129.4, 129.1, 129.0, 128.3, 128.3, 127.7, 127.3, 127.1, 126.7, 126.6, 123.6, 122.9 **Anal** calcd for C₂₁H₁₈S: C, 83.40; H, 6.00; S, 10.60; found C, 83.23; H, 5.82; S, 10.56.

Me SPh

Me

(E)-(2-(2,6-dimethylphenyl)-2-phenylvinyl)(phenyl)sulfane (3fa): Colourless liquid (0.068 g, 43%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.42 (m, 2H), 7.35 – 7.31 (m, 2H), 7.24 – 7.22 (m, 4H), 7.22 (s, 1H), 7.17 (d, J = 8.2 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.79 (s, 1H), 2.40 (s, 3H), 2.34 (s, 3H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.4,

138.9, 137.5, 137.1, 136.8, 136.4, 129.6, 129.4, 129.04, 128.96, 128.2, 127.2, 126.6, 122.4, 21.3, 21.1. **Anal** calcd for C₂₂H₂₀S: C, 83.50; H, 6.37; S, 10.13; found C, 83.64; H, 6.31; S, 10.05.

Ph (0.13 g, 60%);Ph (-7.45 (m, 8H), 7.42 - 7.40 (m, 5H), 7.37 (t, J = 4.3 Hz, 4H), 7.31 (d, J = 1.4 Hz, 3H), 6.91 (s, 2H). 13 C NMR (100 MHz, CDCl₃) δ 141.7, 139.9, 139.0, 129.7, 128.4, 128.3, 127.7, 127.2, 124.5 (Overlapping peaks are present). Anal calcd for C₂₈H₂₂S₂: C, 79.58; H, 5.25; S, 15.17; found C, 79.40; H, 5.43; S, 15.33.

Ph Ph Se (2,2-Diphenylvinyl)(phenyl)selane (6aa):¹⁰ Yellow solid (0.16 g, 96%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, J = 7.5, 1.9 Hz, 2H), 7.32 – 7.19 (m, 5H), 7.19 – 7.02 (m, 8H), 7.00 (s, 1H). ¹³C{¹H} NMR

(100 MHz, CDCl₃) δ 143.0, 141.5, 140.3, 132.4, 131.2, 129.2, 129.2, 128.4, 128.2, 127.8, 127.3, 127.2, 127.1, 122.5.

Ph Cl (2-Chlorophenyl)(2,2-diphenylvinyl)selane (6ac):¹⁰ White solid (0.174 g, 94%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, J = 7.7, 1.7 Hz, 2H), 7.40 – 7.37 (m, 4H), 7.34 – 7.30 (m, 6H), 7.19 – 7.16 (m, 1H), 7.15 – 7.13 (m, 1H), 7.10 (s, 1H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.2, 141.5, 139.1, 135.4, 132.8, 130.3, 129.7, 128.9, 128.7, 128.6, 128.3, 128.2, 128.0, 127.8, 127.6.

Ph Ph Se Ph Se (2,2-Diphenylvinyl)(2-fluorophenyl)selane (6ad): Yellow solid (0.164 g, $93%); eluent hexane; mp = 58 - 60 °C; ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.65 -7.60 (m, 1H), 7.51 - 7.46 (m, 2H), 7.42 (m, 3H), 7.34 - 7.28 (m, 6H), 7.18 - 7.10 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.3 (d, ¹J_{C-F} = 242Hz), 144.0, 141.4, 140.0, 133.9, 129.4, 129.3, 128.5, 128.3, 128.0, 127.4, 127.2, 124.9, 120.1, 118.2 (d, ²J_{C-F} = 23)

Hz), 115.7 (d, ${}^{2}J_{C-F} = 23$ Hz). ⁷⁷Se NMR (76 MHz, CDCl₃) δ 302.08 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.64 (s). Anal calcd for C₂₀H₁₅FSe C, 67.99; H, 4.28 found C, 68.14; H, 4.16.

Ph Ph [1,1'-Biphenyl]-2-yl(2,2-diphenylvinyl)selane (6ae): Yellow solid (0.15 g, 75%); eluent hexane; mp = 87 - 89 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.74 - 7.71 (m, 1H), 7.39 - 7.33 (m, 11H), 7.28 (s, 3H), 7.24 - 7.22 (m, 2H), 7.21 - 7.19 (m, 2H), 7.06 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.1, 143.9, 141.8, 141.6, 140.2, 134.2, 132.1, 132.0, 130.2, 129.4, 129.1, 128.3, 128.2, 128.1, 127.8, 127.5, 127.2, 127.0, 122.2 (Overlapping peaks are present). ⁷⁷Se NMR (76 MHz, CDCl₃) δ 350.06 (s). Anal calcd for C₂₆H₂₀Se: C, 75.91; H, 4.90; found C, 75.80; H, 5.02.

Ph Ph Se NO₂ (2,2-Diphenylvinyl)(4-nitrophenyl)selane (6af): Yellow solid (0.071 g, 37%); eluent hexane; mp = 55 - 57 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.28 (m, 4H), 7.27 - 7.21 (m, 3H), 7.20 - 7.13 (m,

7H), 6.66 (s, 1H)⁻¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.1, 141.2, 138.9, 135.7, 132.1,

130.8, 129.7, 128.4, 128.3, 127.9, 127.5, 127.2, 122.9, 120.6.. **Anal** calcd for C₂₀H₁₅NO₂Se: C, 63.17; H, 3.98; N, 3.68; found C, 63.47; H, 3.56; N, 3.82.

(2,2-Diphenylvinyl)(4-(trifluoromethyl)phenyl)selane (6ag):¹⁰ White solid (0.13 g, 62%); eluent hexane; ¹H NMR (400 MHz, CDCl₃ δ 7.52 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 7.35 –

7.27 (m, 3H), 7.21 – 7.12 (m, 7H), 6.97 (s, 1H).¹³**C NMR** (**100 MHz, CDCl**₃) δ 145.1, 141.2, 140.06, 137.0, 131.7, 129.2, 128.6, 128.4, 128.2, 127.6, 127.2, 126.0, 125.4, 124.0 (d, ^{*1*}*J*_{C-F} = 270 Hz), 120.0.

Ph Ph Se Me(2,2-Diphenylvinyl)(p-tolyl)selane (6ah):¹⁰ Yellow solid (0.13 g, 73%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.33 (m, 1H), 7.32 – 7.29 (m, 2H), 7.24 – 7.23 (m, 3H), 7.22 (s, 1H), 7.21 –

7.11 (m, 7H), 6.47 (s, 1H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃ δ 141.7, 139.5, 138.4, 133.4, 132.9, 129.7, 128.6, 128.3, 128.2, 127.6, 127.5, 127.0, 126.8, 18.0.

Ph Ph Se (2,2-Diphenylvinyl)(naphthalen-1-yl)selane (6ai):¹⁰ Yellow solid (0.16 g, 84%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 8.2 Hz, 1H), 8.03 (d, J = 7.1 Hz, 1H), 7.95 (t, J = 7.3 Hz, 2H), 7.69 – 7.60 (m, 3H), 7.59–7.57 (m, 3H), 7.55 – 7.49 (m, 2H), 7.33 (s, 5H), 7.21 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.9, 141.4, 140.3, 134.1, 134.0, 132.8, 130.4, 129.4, 128.9, 128.6, 128.5, 128.2, 127.9, 127.6, 127.1, 127.1, 126.8, 126.3, 125.8, 122.9.

Ph (2,2-Diphenylvinyl)(methyl)selane (6aj): White solid (0.126 g, 92%); eluent Ph SeMe hexane; mp = 55 - 57 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.26 (m, 2H), 7.23 – 7.22 (m, 1H), 7.20 (d, J = 1.6 Hz, 1H), 7.18 (d, J = 1.4 Hz, 1H), 7.17 – 7.15 (m, 1H), 7.12 – 7.10 (m, 4H), 6.78 (s, 1H), 2.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.9, 141.8, 140.5, 129.2, 128.4, 128.2, 127.6, 126.9, 126.9, 123.0, 7.6. Anal calcd for C₁₅H₁₄Se: C, 65.94; H, 5.16 found C, 65.82; H, 5.32.

(2,2-Di-p-tolylvinyl)(phenyl)selane (6ba): Yellow solid (0.14 g, 78%); eluent hexane; mp = 85 - 87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.46 (m, 2H), 7.23 – 7.17 (m, 3H), 7.13 (s, 4H), 7.05 (d, *J* = 8.2 Hz, 2H), 6.98 (d, *J* = 8.1 Hz, 2H), 6.94 (s, 1H), 2.30 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 139.0, 137.6, 137.5, 137.0, 132.3, 131.8, 129.2, 129.2, 129.1, 128.9, 127.2, 127.1, 120.8, 21.3, 21.1. ⁷⁷Se NMR (76 MHz,

CDCl₃) δ 371.81 (s). **Anal** calcd for C₂₂H₂₀Se C, 72.72; H, 5.55 found C, 72.96; H, 5.38.

(2,2-Bis(4-chlorophenyl)vinyl)(phenyl)selane (6ca):¹⁰ Yellow oil (0.15 g, 74%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.47 (m, 2H), 7.33 – 7.30 (m, 2H), 7.25 – 7.22 (m, 3H), 7.18 (s, 1H), 7.17 – 7.15 (m, 2H), 7.14 (s, 1H), 7.05 (d, *J* = 2.1 Hz, 1H), 7.03 (d, J = 2.2 Hz, 2H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 140.4, 139.7, 138.2, 133.9, 133.3, 132.7, 131.0, 130.7, 129.4, 128.9, 128.5, 128.3, 127.7, 124.2.

(2,2-Bis(4-fluorophenyl)vinyl)(phenyl)selane (6da): Yellow oil (0.169 g, 91%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.56 (m, 2H), 7.36 – 7.32 (m, 5H), 7.25 – 7.18 (m, 2H), 7.15 (t, J = 8.7 Hz, 2H), 7.08 (s, 1H), 6.99 (t, J = 8.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, ¹ J_{C-F} F = 246 Hz), 162.2 (d, ¹ J_{C-F} = 240 Hz), 140.9, 137.7, 136.0, 132.6, 131.2, 131.0 (d, ³ J_{C-F} = 8 Hz), 129.4, 128.5 (d, ³ J_{C-F} = 8 Hz), 127.6, 122.7, 115.5 (d,

 ${}^{2}J_{C-F} = 39 \text{ Hz}$), 115.3 (d, ${}^{2}J_{C-F} = 39 \text{ Hz}$), ⁷⁷SeNMR (76 MHz, CDCl₃) δ 378.00 (s). ¹⁹F NMR (376 MHz, CDCl₃) δ -113.14 (s), -114.63 (s). HRMS (ESI), m/z calcd for C₂₀H₁₄F₂Se [M]: 372.0229; found: 372.0237.

Phenyl(2-phenyl-2-(p-tolyl)vinyl)selane (6ea): Colourless oil (0.11 g, 65%, Z:E = 50:50); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.46 (m, 4H), 7.38 – 7.23 (m, 6H), 7.22 – 7.17 (m, 5H), 7.16 (dd, J = 5.9, 2.1 Hz, 4H), 7.15 (d, J = 4.3 Hz, 4H), 7.11 (d, J = 3.8 Hz, 2H), 7.06 – 6.99 (m, 3H), 6.98 (s, 1H), 6.97 (s, 1H), 2.31 (s, 3H), 2.22 (s, 3H).¹³C{¹H} NMR

(**100 MHz, CDCl**₃) δ 143.2, 143.1, 141.7, 140.5, 138.8, 137.7, 137.4, 137.1, 132.4, 132.4, 131.7, 129.3, 129.2, 129.2, 129.0, 128.7, 128.4, 128.2, 127.8, 127.3, 127.3, 127.2, 127.1, 127.0, 122.0, 121.3, 21.3, 21.1.

(*E*)-(2-(2,6-dimethylphenyl)-2-phenylvinyl)(phenyl)selane (6fa): Pale yellow oil (0.1 g, 55%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.42 (m, 2H), 7.21 (d, *J* = 7.0 Hz, 3H), 7.15 (s, 1H), 7.14 (s, 3H), 7.06 (d, *J* = 8.2 Hz, 2H), 6.99 (d, *J* = 8.1 Hz, 2H), 6.95 (s, 1H), 2.31 (s, 3H), 2.23 (s, 3H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ

143.2, 139.0, 137.6, 137.5, 137.0, 132.3, 131.8, 129.2, 129.2, 129.1, 128.9, 127.2, 127.1, 120.8, 21.3, 21.1. **Anal** calcd for C₂₂H₂₀Se: C, 72.72; H, 5.55; found C, 72.86; H, 5.38.

Phenyl(2-phenylprop-1-en-1-yl)selane (6ga): Yellow oil (0.042 g, 31%, Z:E = 50:50); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 4H), 7.44 (dd, J = 8.0, 6.6 Hz, 3H), 7.40 – 7.37 (m, 2H), 7.35 – 7.31 (m, 5H), 7.28 – 7.25 (m, 6H), 7.15 (s, 1H), 7.10 (s, 1H), 2.43 (s, 3H), 2.35

(s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.1, 141.7, 140.5, 138.8, 137.7, 137.4, 137.1, 132.4, 132.4, 131.7, 129.2, 129.2, 129.0, 128.7, 128.4, 128.2, 127.8, 127.3, 127.3, 127.19, 127.2, 127.0, 21.3, 21.1. Anal calcd for C₁₅H₁₄Se: C, 65.94; H, 5.16; found C, 65.99; H, 5.04.

SePh (E)-phenyl(styryl)selane (6ia):¹⁰ Yellow solid (0.032 g, 25%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.49 (m, 2H), 7.43 (dd, J = 9.3, 5.6 Hz, 2H), 7.40 – 7.32 (m, 3H), 7.29 - 7.25 (m, 3H), 7.24 (d, J = 7.6 Hz, 1H), 7.16 (d, J = 7.8 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.1, 133.5, 132.3, 129.3, 129.0, 128.5, 128.2, 128.0, 127.7, 127.2.

Ph (2-(Phenylsulfinyl)ethene-1,1-diyl)dibenzene (7):¹² White solid (0.075 g, Ph = 0 (2-(Phenylsulfinyl)ethene-1,1-diyl)dibenzene (7):¹² White solid (0.075 g, 82%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.57 (m, 2H), 7.46 – 7.38 (m, 6H), 7.32 – 7.25 (m, 3H), 7.21 (dt, J = 10.8, 7.7 Hz, 4H), 6.75 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.8, 144.8, 138.9, 136.9, 133.3, 130.8, 130.1, 129.8, 129.4, 129.2, 128.5, 128.4, 128.4, 124.6.

 $(2-(Phenylsulfinyl)ethene-1,1-diyl)dibenzene (8):^{13} White solid (0.073 g, 76\%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 7.59 – 7.57 (m, 2H), 7.48 (t, J = 4.0 Hz, 1H), 7.40 – 7.34 (m, 4H), 7.33 – 7.29 (m, 4H), 7.23 – 7.20 (m, 2H), 7.10 – 7.06 (m, 2H), 7.03 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.2, 141.4, 139.0, 135.4, 132.8, 130.3, 129.7, 128.9, 128.7, 128.6, 128.6, 128.2, 127.8, 127.6.

 $N-((2,2-diphenylvinyl)(phenyl)-\lambda_4-sulfanylidene)-4$ methylbenzenesulfonamide (9): White solid (0.11 g, 78%); eluent 20% ethyl acetate : hexane; mp = 96 - 98 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.71 - 7.65 (m, 4H), 7.51 - 7.46 (m, 4H), 7.40 - 7.36 (m, 3H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.19 - 7.13 (m, 4H), 7.08 - 7.06 (m, 2H), 6.67 (s, 1H), 2.35 (s, 3H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.5, 141.6, 141.4, 137.9, 136.9, 136.1, 131.8, 130.6, 129.8, 129.7, 129.7, 129.1, 128.7, 128.6, 128.5, 126.43, 126.4, 123.0, 21.4. Anal calcd for C₂₇H₂₃NO₂S₂: C, 70.87; H, 5.07; N, 3.06; S, 14.01; found C,70.99; H, 5.03; N, 3.02; S, 14.04.

3-Phenylbenzo[b]thiophene (10):¹⁴ White solid (0.018 g, 40%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (m, 2H), 7.45 (dd, J = 8.2, 1.3 Hz, 2H), 7.35 (dd, J = 8.1, 6.8 Hz, 2H), 7.25 – 7.18 (m, 2H), 7.16 – 7.08 (m, 2H). ¹³C{¹H}

NMR (**100 MHz, CDCl₃**) δ 140.7, 138.1, 137.9, 136.0, 131.0, 129.2, 128.7, 127.5, 124.4, 124.3, 123.4, 122.9.

Ph Ph S Ph

[**1,1'-Biphenyl]-4-yl(2,2-diphenylvinyl)sulfane** (**11**):⁹ White solid (0.092 g, 84%); eluent hexane; ¹H NMR (**400** MHz, CDCl₃) δ 7.60 – 7.56 (m, 4H), 7.53 – 7.50 (m, 2H), 7.47 – 7.42 (m, 4H), 7.40 – 7.36

(m, 4H), 7.32 – 7.27 (m, 5H), 6.91 (s, 1H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.4, 141.3, 140.3, 139.8, 139.2, 135.5, 129.8, 129.8, 128.9, 128.4, 128.3, 127.8, 127.8, 127.5, 127.3, 127.2, 126.9, 123.9.

(2,2-Diphenylvinyl)(4-(phenylethynyl)phenyl)sulfane (12): Yellow viscous liquid (0.049 g, 42%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (m, 1H), 7.40 – 7.29 (m, 12H), 7.25

(d, J = 2.2 Hz, 1H), 7.24 (d, J = 2.2 Hz, 2H), 7.22 – 7.21 (m, 1H), 7.20 – 7.17 (m, 2H), 7.04 (s, 1H).¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.4, 136.3, 132.3, 131.4, 131.2, 131.1, 131.0, 129.0, 128.1, 127.9, 127.8, 127.5, 127.24 125.9, 125.7, 125.4, 124.9, 124.2, 123.9, 122.9, 92.9, 89.1. Anal calcd for C₂₈H₂₀S: C, 86.56; H, 5.19; S, 8.25; found C, 86.65; H, 5.14; S, 8.21.

Ph Ph Se-Ph O'(2-(Phenylseleninyl)ethene-1,1-diyl)dibenzene (13): Colourless oil (0.081 g, 77%); eluent hexane; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 7.7, 1.8 Hz, 2H), 7.47 - 7.38 (m, 6H), 7.25-7.23 (m, 4H), 7.22 - 7.18 (m, 3H), 6.88 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 142.0, 138.3, 137.7, 133.6, 131.1, 129.8, 129.7, 129.5, 128.7, 128.7, 128.5, 128.2, 126.4. ⁷⁷SeNMR (76 MHz, CDCl₃) δ 848.85 (s). Anal calcd for C₂₀H₁₆OSe: C, 68.38; H, 4.59; found C, 68.49; H, 4.41.

16. References:

1. D. Singh, A. M. Deobald, L. R. S. Camargo, G. Tabarelli, O. E. D. Rodrigues, A. L. Braga, *Org. Lett.*, 2010, **12**, 3288–3291.

2. C. Zhu, M. Nurko, C. S. Day, and J. C. Lukesh, III, J. Org. Chem. 2022, 87, 8390-8395

3. C. C. Sazepin, Q. Wang, G. M. Sammis, and J. Zhu, *Angew. Chem. Int. Ed.*, 2020, **59**, 10037–10041

 N. Mukherjee, A. N. V. Satyanarayana, P. Singh, M. Dixit and T. Chatterjee, *Green Chem.*, 2022, 24, 7029-7038

5. N. Mukherjee and T. Chatterjee, J. Org. Chem., 2021, 86, 7881-7890

6. Yu, B.; Liu, A.-H.; He, L.-N.; Li, B.; Diao, Z.-F.; Li, Y.-N. Green Chem. 2012, 14, 957-962

7. M. Tobisu, Y. Masuya, K. Baba, N. Chatani, Chem. Sci. 2016, 7, 2587–2591.

8. (a) D. J. C. Constable, A. D. Curzons and V. L. Cunningham, Green Chem., 2002, 4, 521–527. (b) K. V. Aken, L. Strekowski and L. Patiny, Beilstein J. Org. Chem., 2006, 2, 3. (c) N. Mukherjee and T. Chatterjee, Adv. Synth. Catal. 2023, 365, 2255–2263.

 B. W. Wang, K. Jiang, J. X. Li, S. H. Luo, Z. Y. Wang and H. F. Jiang, Angew. Chem. Int. Ed., 2020, 59, 2338–2343

10. Y. F. Yang, C. Y. Li, T. Leng, X. B. Huang, W. X. Gao, Y. B. Zhou, M. C. Liu and H. Y.Wu, *Adv. Synth. Catal.*, 2020, **362**, 2168–2172.

11. N. Sun, K. Zheng, M. Zhang, G. Zheng, L. Jin, B. Hu, Z. Shen and X. Hu, Green Chem.,

2023, **25**, 2782–2789

- 12. F. A. Carey and O. Hernanj, J. Org. Chem., 1973, 58, 2670-2675
- 13. G. Zhang, J.G. Fu, Q. Zhao, G.S. Zhang, M.Y. Li, C.G. Feng and G. Q. Lin, Chem.

Commun., 2020, **56**, 4688

14. R. Sang, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed., 2021, 60, 25313-25317

15. M. Yang, J. Hua, H. Wang, T. Ma, C. Liu, W. He, N. Zhu, Y. Hu, Z. Fang, K. Guo, J. Org. Chem. 2022, 87, 8445–8457.

