Electronic Supplementary Information

Restoration of Triphenylphosphine by the "Sulfur Method": Two

Valuables from a Waste

Jian-Qiu Zhang,^a Xin Wang,^a Teng Wang,^a Tieqiao Chen,^{a,b} Li-Biao Han ^{a,b*}

^a Zhejiang Yangfan New Materials Co., Ltd., Shangyu, Zhejiang Province, 312369, China.

^b Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources,

Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering

Research Center, Hainan University, Haikou, 570228, China

E-mail: hlb@shoufuchem.com

Table of Contents

1. Experimental Section: General Information, Procedures	S2-S7
2. Cost estimation and economic analysis	S8-S12
3. Characterization of Products	S13-S14
4. Copies of ³¹ P, ¹ H and ¹³ C NMR Spectra of the Products	S15-end

1. Experimental Section

1.1. General Information

Unless otherwise noted, all chemicals were obtained from commercial sources and used without further purification. Ph₂P(S)Me and PhP(S)Me₂ was prepared by treating Ph₂PMe and PhPMe₂ with S₈ in toluene, respectively. All the reactions were carried out in oven-dried Schlenk tubes, three-neck flasks or 5L reactor under N₂ atmosphere. ¹H, ¹³C, and ³¹P NMR spectra of the partial products were acquired on a Bruker AVANCE NEO 600M (600 MHz for ¹H, 151 MHz for¹³C spectroscopy). Chemical shifts for ¹H NMR are referred to internal Me₄Si (0 ppm) and reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. Chemical shifts for ³¹P NMR were relative to H₃PO₄ (85% solution in D₂O, 0 ppm). ³¹P NMR and ¹H NMR spectra of Ph₂PMe and PhPMe₂ were obtained on a Magritek Spinsolve NMR Ultra 80M (81 MHz for ¹H, 33 MHz for ³¹P NMR spectroscopy).

1.2. General procedure for the reactions of Ph₃PS with sodium

Under nitrogen atmosphere, to a 25 mL of Schleck tube was added R_3PS (1a) (1.0 mmol), toluene (5.0 mL), and sodium (2.0 mmol). The tube was then sealed and heated 110 °C. As the metallic sodium melted, a brown solid was generated, and after heating for 3 h, a pale-yellow toluene solution with dark-brown solids was generated. Under nitrogen, the toluene solution was then transferred to a flask and toluene was removed under vacuum, the corresponding pure phosphine R_3P was obtained (Ph₃P, 91% yield; Ph₂PMe, 96% yield; PhPMe₂, 97%yield). And the remained dark-brown solids was washed twice with dry toluene to afford dark-brown solid anhydrous Na₂S.

1.3. Typical procedure for the preparation of anhydrous Na₂S. in three times

Under nitrogen atmosphere, sulfur (0.12 g, 3.8 mmol) was added drop by drop to Ph_3P (1 g, 3.8 mmol) dissolved in dry toluene (10 mL) in a 25 mL of Schleck tube at room temperature. As confirmed by GC, Ph_3P was completely converted to Ph_3PS after 1 h (Fig. 1). Metallic sodium (0.159 g, 6.9 mmol) was then added, and the mixture was heated at 110 °C for 3 h. Ph_3P was regenerated from Ph_3PS . The reaction mixture was passed through a filter paper, the toluene

solution (Fig. 2) containing Ph_3P and a little Ph_3PS (ca 2.5%) was then transferred to another glass tube. The remained Na_2S precipitate on the filtration paper was washed by a little toluene, and then it was dried under vacuum, the pure grey Na_2S was obtained. The washed toluene was also combined and transferred to the new glass tube. Again sulfur (0.12 g, 3.8 mmol) was added to the toluene solution and the above processes were repeated. By carrying out three cycles of the above reactions, a total amount of 0.85 g of anhydrous Na_2S was obtained as brown solid (average yield: 96%).

(Ph₃PS: 98.3%, T_M = 8.943min; Ph₃PO:1.7%, T_M = 8.615min)

Fig.1 GC spectra of	of Ph ₃ PS formed	from Ph ₃ P v	with S_8
---------------------	------------------------------	--------------------------	------------

 $(Ph_3P: 97.0\%, T_M = 7.376min; Ph_3PS: 3.0\%, T_M = 8.890min)$

Fig.2 GC spectra of Ph₃P formed from Ph₃PS and Na

1.4. Procedure for the preparation of bis(triethoxysilylpropyl) sulfide.

Under nitrogen atmosphere, to a 25 mL Schleck tube was added (EtO)₃SiCH₂CH₂CH₂Cl (1.5 mmol, 361.2g) in dry EtOH (20 mL) and then added Na₂S (1.0 mmol, 78.0 mg), the solution was stirred at 80 °C overnight. Filtration of solid in the reaction solution and removal of the volatiles under vacuum afforded the colorless oil bis(triethoxysilylpropyl) sulfide (398.5g, 90% yield, Fig.3).

Fig.3 GC spectra of bis(triethoxysilylpropyl) sulfide (94.5% purity)

1.5. Procedure for the preparation of bis(triethoxysilylpropyl) disulfide (Si-75).

Na₂S
$$\xrightarrow{S_8}$$
 Na₂S₂ $\xrightarrow{(EtO)_3Si}$ Cl $(EtO)_3Si$ S^{S} $Si(OEt)_3$
80°C, overnight Si-75 95% yield

Under nitrogen atmosphere, to a 25 mL Schleck tube was added Na₂S (1.0 mmol), sulfur (1.0 mmol) and DME (2.0 mL), the mixture was stirred at 50 °C for 4 h to generate Na₂S₂. Then, (EtO)₃SiCH₂CH₂CH₂CH₂Cl (1.5 mmol) was added. The mixture was stirred at 80 °C overnight to generate Si-75 highly selectively. The solid in the solution was filtered off and the volatiles were removed under a reduced pressure to obtain analytically pure **Si-75** as a pale-yellow oil (451.0 mg, 95% yield, 96% GC purity, Fig. 4).

Fig.4 GC spectra of bis(triethoxysilylpropyl) disulfide (96.3% purity)

1.6. Scale-up synthesis of Ph₃P from Ph₃PO (500g)

Under nitrogen atmosphere, triphenylphosphine oxide (500 g, 1.795 mol, 1.0 equiv) and toluene (3.0 L) were added to a 5 L glass reactor. The reactor was heated at 110 °C to distilled off ca. 500 mL toluene for azeotropic water removing. Then solution was cooled down to 70 °C, and P_2S_5 (87.8 g, 0.395 mol, 0.22 equiv) was added. The reactor was then heated again and kept refluxing at 110 °C for 2 h. GC analysis showed Ph₃PS was the only new phosphorus product, and >99% Ph₃PO was converted (Fig.5). Heating was stopped, and at ca. 60 °C, water (500 mL) was added. The organic layer was collected and washed with water twice (250 mL x 2), and was returned to the reactor. The solution was heated under nitrogen again to reflux and distilled off ca. 500 mL toluene for azeotropic water removing. Heating was stopped and sodium lump (94.0 g, 4.08 mol, 2.3 equiv) was added to the solution under nitrogen. The mixture was then heated to reflux again and heating was kept for 3 h. The reaction was monitored by GC to make sure that most of the Ph₃PS was transformed to Ph₃P (Fig.6, 99.1%).

mixture was cooled down to room temperature, and water (500 mL) was added. The organic layer was collected, and volatiles were pumped off to obtained crude Ph_3P as a pale-yellow solid. Recrystallization of the crude Ph_3P using ethanol produced white Ph_3P solid (381.4 g, 81% yield, GC purity =99.6%, Fig. 7).

 $(Ph_3PS: 98.3\%, T_M = 8.954min; Ph_3PO:0.2\%, T_M = 8.671min)$

Fig.5 GC spectra of Ph₃PS prepared from Ph₃PO with P₂S₅

(Ph₃P: 99.1%, $T_M = 7.399$ min; Ph₃PS: 0.14%, $T_M = 8.954$ min; Ph₃PO: 0.19%, $T_M = 8.674$ min) Fig.6 GC spectra of reaction mixture of Ph₃P prepared from Ph₃PS with Na

(**Ph₃P: 99.6%, T_M = 7.393min**; Ph₃PS: 0.1%, T_M = 8.959min; Ph₃PO: 0.28%, T_M = 8.683min)

Fig.7 GC spectra of purified Ph₃P

2. Cost estimations and economic analysis

2.1 Cost esitimations

A. Cost estimations of producing Ph₃P from Ph₃PS via one step

According to the results in Scheme 4 in the manuscript, a cost estimation was conducted.

As shown in the below Table. 1, the material cost of producing a ton of Ph₃P was ca. 5453 RMB, equal to \$742.5.

The total cost of producing a ton of Ph₃P was ca. 26143 RMB (\$3560) (including material

cost 5453+manufacture cost 20000 + solid waste treatment 690).

And the products (Ph₃P & anhydrous Na₂S) sale price was ca. 84726 RMB (\$11661).

Therefore, by producing a ton of Ph₃P, along with 0.29 tons of anhydrous Na₂S, the profit

was up to ca. 58582 RMB (\$7977), demonstrating our protocol is of great economic benefit.

		$Ph_3PS + N$	Na toluene	► Ph ₃ P+	Na ₂ S + solid			
		1.32 t 0.	.24 t	1 t	0.29t 0.27 t			
Materials	m.w.	Mass/mg	Molar mass /mmol	Equiv	Unit comsuption /(t/t)	Price /(rmb/t)	Total Price /(rmb/t)	Remarks
Ph ₃ PS	294.35	294.40	1.00	1.00	1.32	0	0	
Na	23.00	46.00	2.00	2.00	0.24	16000	3840	
Toluene	/	513.43			0.22	7500	1613	2v/w, Recycle 90%
Cost							5453	
Manufacture co	st					20000	20000	Including devices,electricity,wate r, and labor, solid waste treatment
Solid waste					0.27	2600	690	
Cost							20690	
Products								
Ph3P	262.28	238.70	0.91	0.91	1.00	70000	70000	91% yield
Na ₂ S	78.04	70.30	0.90	0.90	0.29	50000	14726	90% yield
Total sales							84726	
Total cost = Mate	Total cost = Material cost + manufactur cost					26143		
The profit = Produ	ucts sales - (Material cos	t + manufactur	cost)			58582	

Note: Ph₃PS is an industry byproduct and waste, the cost is near to zero.

Table 1. Cost estimations: production of Ph₃P from Ph₃PS via one step

B. Cost estimations of producing Ph₃P from Ph₃PO via two steps

According to the results in Scheme 8 in the manuscript, a cost estimation was conducted. the material cost (not includes the manufacture cost, etc.) of producing a ton of Ph₃P was ca. 9608 RMB (\$1308), more than the cost of using Ph₃PS (5453 RMB, \$742.5), but it is also very economical.

	Ph ₃ F	$Ph_3PO + 0.2 P_2O_5$ $Ph_3PS + PO + 0.2 P_2S$	- 0.2 P ₂ S ₅ + 0.6 H ₂ O 2 Na ₅ + 0.6 H ₂ O	toluene $\frac{1}{2}$ toluene $$	► $Ph_3PS + 0.2 P_2C$ ► $0.4 H_3PO_4$ ► $Ph_3P + Na_2S$ ← $Ph_3P + Na_2S$	 + 0.4 H ₃ PO ₄	_	
Materials	m.w.	Mass/mg	Molar mass /mmol	Equiv	Unit comsuption /(t/t)	Price /(rmb/t)	Total Price /(rmb/t)	Remarks
Ph ₃ PO	278.29	500.00	1.80	1.00	1.31	0	0	
P_2S_5	222.25	87.80	0.40	0.22	0.23	11000	2532	
Toluene	/	872.00			0.23	7500	1715	Recycle 90%
H_2O		1000.00			2.62	4	10	twice addition
Na	22.99	94.00	4.09	2.28	0.25	16000	3943	
EtOH		789.00			0.21	6800	1407	Recycle 90%
cost							9608	
Products								
Ph ₃ P	262.28	381.40	1.45	0.81	1.00	70000	70000	81% yield
Na2S(aq.)					/			
H ₃ PO ₄ (aq.)					/			

Note: Ph_3PO is an industry byproduct and waste, the cost is near to zero.

Table 2. Cost estimations of production of Ph₃P from Ph₃PO via two steps

2.2 Green metric analysis

Green metrics analysis mainly encourages reducing the use of toxic chemicals/reagents, using energy-efficient equipment, generating minimal waste, etc.

In this work, Ph_3PS and Ph_3PO are the waste from the industry, by applying our strategy, they are converted to high valuable product Ph_3P and Na_2S , and H_3PO_4 . The AE and E factor value of the reactions are satisfying.

Evaluation Result of our work Twelve Green Chemistry Principle 1 Waste prevention not The product Ph₃P, Na₂S, and H₃PO₄ are useful remediation chemicals, and the solvent PhMe & ErOH are recycled, with less waste. E factor of two reactions are around 0.1. 2 Atom efficiency The AE of two reactions are over 90%. 3 Less hazardous/toxic materials Ph₃PS and Ph₃PO are stable and less toxic starting material Ph₃P and Na₂S, and H₃PO₄ are safe products. 4 . Safer products by design 5 Innocuous solvents and Toluene, water and EtOH are green solvents and auxiliaries auxiliaries 6 Energy efficient by design The reactions were conducted in normal temperature and pressure. The Ph₃P is restored efficiently by our strategy. 7 Renewable rather than depleting raw material 8 Shorter synthesis (avoid Only one/two-step reaction and facial post-processing derivatization) procedures 9 Catalytic rather than / stoichiometric reagents 10 Design products for degradation 11 Analytical methods for pollution prevention 12 Inherently safer processes Under N₂, the reaction proceeded safely. The 5L-scale reaction in Scheme 8 proceeded smoothly and safely.

Below are the 12 principles of Green Chemistry Metrics.

Table 3. Green metric analysis

2.2.1 The AE and E factor value of the reaction of Ph_3PS with Na: producing Ph_3P and Na_2S

Reaction stoichiometry						
Ph₃PS	+ 2 Na	toluene Ph₃P	+	Na_2S		
294.35	46.00	262.28		78.04		
		91%		90%		

Theoretical Atom Economy = mass of products/the total mass = 100%

Experimental Atom economy = mass of products/the total mass

= (262.28*91%+78.04*90%)/(262.28+78.04) = ca. 90.8%

Mass of Waste = 294.35+46+513.43-(238.70+70.30+462.09) = 82.74 mg

E factor = mass of the waste/ mass of the products= 82.74/(238.70+70.30+462.09+82.74) = ca. 0.097

2.2.2 The AE and E factor value of the reaction of Ph_3PO with P_2S_5 and then with Na: producing Ph_3P , Na_2S and H_3PO_4

$Ph_{3}PO + 1/5P_{2}S_{5} Ph_{3}PS +$	1/5 P ₂ O ₅
278.29 222.25 294.35	141.94*0.2 ⁽¹⁾
$1/5 P_2O_5 + 3/5 H_2O \longrightarrow 2/5 H_3P_1$	O ₄ <u>4</u> (2)
DL DQ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	·
$Ph_3PS + 2 Na Ph_3P + N$ toluene	a_2S (3)
294.35 46 262.28 7	8.04

Reaction Stoichiometry:

$Ph_{3}PO + 1/5 P_{2}S_{5}$	+ 3/5 H ₂ O +	2 Na ——>	Ph₃P +	Na ₂ S +	· 2/5 H ₃ PO ₄
278.29 222.25*0.2	18*0.6	46	262.28	78.04	97.99*0.4
			81%	a%	b%

Theoretical Atom Economy = mass of products/the total mass = 100%

Experimental Atom Economy = mass of products/the total mass

 $=(262.28*81\%+78.04*a\%+97.99*0.4*b\%)/(262.28+78.04+97.99*0.4)\leqslant ca.86.9\%$

Materials	m.w.	Mass/g	Molar mass /mol	Equiv	Remark
Ph ₃ PO	278.29	500.00	1.80	1.00	
P_2S_5	222.25	87.80	0.40	0.22	
Toluene	/	872.00			
H_2O		1000.00			
Na	22.99	94.00	4.09	2.28	
EtOH		789.00			
Products					
H ₃ PO ₄ (aq.)	98.00	535.22	0.36	0.20	
Na ₂ S (aq.)	78.04	640.21	1.80	1.00	
Ph ₃ P	262.28	381.40	1.45	0.81	
Toluene		784.80			Recycle 90%
EtOH		710.10			Recycle 90%
waste		291.07			

Note: yield of $Na_2S = a\%$, yield of $H_3PO_4 = b\%$ (a%, b% $\leq 100\%$)

Ph₃PO (500g)		H_3PO_4/H_2O	
P ₂ S ₅ (87.8g)			
H ₂ O (500g*2)	PhMe	Na_2S/H_2O	+ waste
Na (94.0g)		Ph₃P (447.2g)	

Waste (g) = mass of starting materials mass- mass of products

 $= (500+87.8+872+500*2+94.0+789) \cdot (535.22+640.21+381.40+784.80+710.10) = 291.07$

(If a%, b% =100%)

E factor = mass of the waste / mass of the products

= 291.07/(535.22+64.021+381.40+784.80+710.10+291.07) = **ca. 0.105**

3. Characterization of products

Triphenylphosphine. Prepared by procedure 1.2. White solid, 238.7mg, 91% yield. ¹H NMR (81 MHz, CDCl₃): δ 7.49-7.43 (m, 15H); ³¹P NMR (33 MHz, CDCl₃): δ -5.29. This compound was known.¹

Diphenylmethylphosphine. Prepared by procedure 1.2. Colorless oil, 192.2mg, 96% yield. ¹H NMR (81 MHz, CDCl₃): δ 7.47-7.17 (m, 10H), δ 1.56 (d, 3H, J_{P-H} = 3.56 Hz); ³¹P NMR (33 MHz, CDCl₃): δ -26.98. This compound was known.²

Dimethylphenylphosphine. Prepared by procedure 1.2. Colorless oil, 134.1mg, 97% yield.. ¹H NMR (81 MHz, CDCl₃): δ 7.61-7.30 (m, 5H), 1.36 (d, 6H, $J_{P-H} = 2.67$ Hz); ³¹P NMR (33 MHz, CDCl₃): δ -45.64. This compound was known.³

Bis(triethoxysilylpropyl) sulfide. Prepared by procedure 1.4. Pail-yellow oil, 398.5mg 90% yield. ¹H NMR (600 MHz, CDCl₃): δ 3.83–3.79 (q, 12H, J = 7.2 Hz), 2.53–2.51 (m, 4H), 1.72–1.67 (m, 4H), 1.22 (t, 18H, J = 7.2 Hz), 0.74–0.72 (m, 4H). ¹³C NMR (151 MHz, CDCl₃): δ 58.34, 35.01, 23.27, 18.27, 9.93. This compound was known.⁴

Bis[3-(triethoxysilyl)propyl] disulfide (Si-75). Prepared by procedure 1.5. Pail-yellow oil, 451.1mg, 95% yield. ¹H NMR (600 MHz, CDCl₃): δ 3.84–3.80 (q, 12H, *J* = 7.2 Hz), 2.72–2.69 (m, 4H), 1.83–1.78(m, 4H), 1.23 (t, 18H, *J* = 7.2 Hz), 0.75–0.72 (m, 4H). ¹³C NMR (151 MHz, CDCl₃): δ 58.38, 41.88, 22.62, 18.28, 9.45. This compound was known.⁵

References:

- 1) C. Petit, et al., ACS Catal., 2013, **3**, 1431-1438.
- 2) M. Mehta, et al., Organometallics, 2016, 35, 1030-1035.
- 3) L.T. Mika, et al. Organometallics, 2009, 28, 1593-1596.
- 4) C. Hu, et al. Syntheses of Organofunctional Chlorosilanes Catalyzed by A Sulfur-Containing

PolysilaxamePlatinum Coinplex. Kexue Tongbao, 1988, 33, 843-847.

5) M. Khiterer, et al., Chem. Mater., 2006, 18, 3665-3673.

3. Copies of ¹H, ³¹P NMR spectra of the products

