Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

### **Electronic Supplementary Information**

# Improved chemical recyclability of 2,5-furandicarboxylate polyesters enabled by acid-sensitive spirocyclic ketal units

Nitin G. Valsange,<sup>1</sup> Niklas Warlin,<sup>1</sup> Smita V. Mankar,<sup>1</sup> Nicola Rehnberg,<sup>2</sup> Baozhong Zhang,<sup>\*1</sup> and Patric Jannasch<sup>\*1</sup>

 <sup>1</sup> Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
 <sup>2</sup> Bona Sweden AB, Box 210 74, 200 21 Malmö, Sweden

Corresponding authors

\*E-mail: patric.jannasch@chem.lu.se (P.J.).

\*E-mail: <u>baozhong.zhang@chem.lu.se</u> (B.Z.).

## Contents

#### **EXPERIMENTAL SECTION**

Polyester synthesis

#### FIGURES

Figure S1. Stacked <sup>13</sup>C NMR spectra of PBLFs
Figure S2. Stacked <sup>13</sup>C NMR spectra of PHLFs
Figure S3-S6. 2D NMR spectra (COSY, HMBC, HMQC and HSQC) of PBF
Figure S7-S10. 2D NMR spectra (COSY, HMBC, HMQC and HSQC) of PBLF-10

Figure S11-S14. 2D NMR spectra (COSY, HMBC, HMQC and HSQC) of PHF

Figure S15-S18. 2D NMR spectra (COSY, HMBC, HMQC and HSQC) of PHLF-10

Figure S19. TGA thermograms and corresponding first derivative curves of the PBLF (a and c) and PHLF (b and d) copolyesters recorded under nitrogen atmosphere

Figure S20. DSC heating traces of polyesters in the PBLF series after storage at room temperature for 2 weeks (a) and at 50  $^{\circ}$ C during 40 h (b)

Figure S21. DSC heating traces of the polyesters in the PHLF series after storage at room temperature for 2 weeks

Figure 22. DSC heating traces of the polyesters in the PBLF (a) and PHLF (b) series after annealing at ~10-15 °C below  $T_{\rm m}$  for 4 h

Figure S23. <sup>1</sup>H NMR spectra of PHF (a) and the remaining solid residues after acidic hydrolysis in 3 M (b), 6M (c) and 12 M (d) aqueous HCl at 60  $^{\circ}$ C

Figure S24. <sup>1</sup>H NMR spectra of PHF (a) and the remaining solid residues after acidic hydrolysis in 3 M (b), 6 M (c) and 12 M (d) aqueous HCl at 85  $^{\circ}$ C

Figure S25. <sup>1</sup>H NMR spectra of PHLF-10 (a) and the remaining solid residues after acidic hydrolysis in 3 M (b), 6 M (c) and 12 M (d) aqueous HCl at 60  $^{\circ}$ C

Figure S26. <sup>1</sup>H NMR spectra of PHLF-10 (a) and the remaining solid residues after acidic hydrolysis in 3 M (b), 6 M (c) and 12 M (d) aqueous HCl at 85  $^{\circ}$ C

Figure S27. <sup>1</sup>H NMR spectra of PHLF-20 (a) and the remaining solid residues after acidic hydrolysis in 3 M (b), 6 M (c) and 12 M (d) aqueous HCl at 60  $^{\circ}$ C

Figure S28. <sup>1</sup>H NMR spectra of PHLF-20 (a) and the remaining solid residues after acidic hydrolysis in 3 M (b) and 6 M (c) aqueous HCl at 85  $^{\circ}$ C

Figure S29. <sup>1</sup>H NMR spectrum recorded of the crude product extracted from the filtrate obtained after hydrolysis of PHLF-20 in 12 M aqueous HCl at 85 °C during 24 h

Figure S30. Photographs showing the reaction mixtures after the hydrolysis PHLF-20 in 6 M (a) and 12 M (b) aqueous  $H_2SO_4$  at 85 °C during 24 h

Figure S31. <sup>1</sup>H NMR spectrum recorded of the crude product extracted from the filtrate obtained after hydrolysis of PHLF-20 in 6 M aqueous  $H_2SO_4$  at 85 °C during 24 h

Figure S32. Photos of initial PHLF-20, t-PHF and r-PHLF-8.3 obtained after the repolymerization of t-PHF

#### TABLES

Table S1. DSC data of polymers annealed below  $T_{\rm m}$  for 4 h

## Experimental section

#### **Polyester synthesis**

*PBF homopolyester*. Diethyl 2,5-furandicarboxylate (4.00 g, 18.8 mmol), 1,4-BD (1.87 g, 21.3 mmol), and DBTO (24 mg, 0.5 mol %) were added to a three-neck round bottom flask equipped with a mechanical stirrer, a nitrogen inlet, and a vacuum distillation outlet. Subsequently, the reaction mixture was degassed by three successive vacuum-nitrogen cycles at room temperature. The reaction mixture was heated at 180 °C under nitrogen for 5 h (transesterification step), and at 200 °C under vacuum for 3 h (polycondensation step). Next, the highly viscous reaction mixture was dissolved in hexafluoroisopropanol (HFIP) (20 mL), and the product was precipitated in 500 mL cold methanol. The precipitate was washed with fresh methanol (2 × 100 mL) and dried under vacuum to obtain PBF as a white solid (3.48 g, 88.0% yield).

<sup>1</sup>H NMR (400.13 MHz, CDCl<sub>3</sub>:TFA (9:1), δ, ppm): 1.92-1.99 (m, 4H), 4.49 (bt, 4H), 7.33 (s, 2H).

<sup>13</sup>C NMR (100.61 MHz, CDCl<sub>3</sub>:TFA (9:1), δ, ppm): 25.37, 65.11, 118.56, 146.92, 158.06.

*PHF homopolyester.* Diethyl 2,5-furandicarboxylate (4.00 g, 18.8 mmol), 1,6-HD (2.34 g, 19.8 mmol), and DBTO (24 mg, 0.5 mol %) were added to a three-neck round bottom flask equipped with a mechanical stirrer, a nitrogen inlet, and a vacuum distillation outlet. Subsequently, the reaction mixture was degassed by three successive vacuum-nitrogen cycles at room temperature. The reaction mixture was heated at 180 °C under nitrogen for 5 h (transesterification step) and at 200 °C under vacuum for 3 h (polycondensation step). Next, the highly viscous reaction mixture was dissolved in chloroform (20 mL), and the product was precipitated in 500 mL cold methanol. The precipitate was washed with fresh methanol ( $2 \times 100$  mL) and dried under vacuum to obtain PHF as a white solid (4.40 g, 98.0% yield).

<sup>1</sup>H NMR (400.13 MHz, CDCl<sub>3</sub>, δ, ppm): 1.41-1.53 (m, 4H), 1.66-1.85 (m, 4H), 4.33 (t, 4H), 7.18 (s, 2H).

<sup>13</sup>C NMR (100.61 MHz, CDCl<sub>3</sub>, δ, ppm): 25.58, 28.54, 65.48, 118.37, 146.93, 158.17.



Figure S1. Stacked <sup>13</sup>C NMR spectra of samples in the PBLF series.



Figure S2. Stacked <sup>13</sup>C NMR spectra of samples in the PHLF series.



Figure S4. HMBC spectrum of PBF.







Figure S6. HSQC spectrum of PBF.







Figure S8. HMBC spectrum of PBLF-10.







Figure S10. HSQC spectrum of PBLF-10.







Figure S12. HMBC spectrum of PHF.







Figure S14. HSQC spectrum of PHF.







Figure S16. HMBC spectrum of PHLF-10.



Figure S17. HMQC spectrum of PHLF-10.



Figure S18. HSQC spectrum of PHLF-10.



**Figure S19.** TGA thermograms and corresponding first derivative curves of the PBLF (a and c) and PHLF (b and d) series of copolyesters recorded under nitrogen atmosphere.



**Figure S20.** DSC heating traces of the polyesters in the PBLF series after storage at room temperature for 2 weeks (a) and at 50 °C during 40 h (b).



**Figure S21.** DSC heating traces of the polyesters in the PHLF series after storage at room temperature for 2 weeks.



**Figure S22.** DSC heating traces of the polyesters in the PBLF (a) and PHLF (b) series of polyesters after annealing at approx. 10-15 °C below  $T_{\rm m}$  for 4 h.

| Polyester | T <sub>m</sub> (°C) | Annealing<br>temp. (°C) | $T_g (^{\circ}C)^a$ | $T_m (^{\circ}C)^a$ | $\Delta H_m \left(J/g\right)^a$ |
|-----------|---------------------|-------------------------|---------------------|---------------------|---------------------------------|
| PBF       | 168                 | 155                     | 38                  | 164                 | 47                              |
| PBLF-5    | 165                 | 150                     | 31                  | 167                 | 56                              |
| PBLF-10   | 158                 | 150                     | 24                  | 165                 | 61                              |
| PBLF-15   | 150                 | 135                     | 28                  | 159                 | 42                              |
| PBLF-20   |                     | 120                     | 32                  | 141                 | 25                              |
|           |                     |                         |                     |                     |                                 |
| PHF       | 143                 | 132                     | 17                  | 148                 | 58                              |
| PHLF-5    | 136                 | 130                     | 18                  | 145                 | 68                              |
| PHLF-10   | 129                 | 120                     | 16                  | 137                 | 62                              |
| PHLF-12.5 | 125                 | 115                     | 15                  | 131                 | 51                              |
| PHLF-15   | 122                 | 110                     | 16                  | 131                 | 37                              |

**Table S1.** DSC data of polymers annealed below  $T_{\rm m}$  for 4 h

<sup>a</sup>Measured from the first heating DSC scan of the annealed samples



**Figure S23.** <sup>1</sup>H NMR spectra of PHF (a) and the remaining solid residues after acidic hydrolysis in 3 M (b), 6M (c) and 12 M (d) aqueous HCl at 60 °C.



**Figure S24.** <sup>1</sup>H NMR spectra of PHF (a) and the remaining solid residues after acidic hydrolysis in 3 M (b), 6 M (c) and 12 M (d) aqueous HCl at 85 °C.



**Figure S25.** <sup>1</sup>H NMR spectra of PHLF-10 (a) and the remaining solid residues after acidic hydrolysis in 3 M (b), 6 M (c) and 12 M (d) aqueous HCl at 60 °C.



**Figure S26.** <sup>1</sup>H NMR spectra of PHLF-10 (a) and the remaining solid residues after acidic hydrolysis in 3 M (b), 6 M (c) and 12 M (d) aqueous HCl at 85 °C.



**Figure S27.** <sup>1</sup>H NMR spectra of PHLF-20 (a) and the remaining solid residues after acidic hydrolysis in 3 M (b), 6 M (c) and 12 M (d) aqueous HCl at 60 °C.



**Figure S28.** <sup>1</sup>H NMR spectra of PHLF-20 (a) and the remaining solid residues after acidic hydrolysis in 3 M (b) and 6 M (c) aqueous HCl at 85 °C.



**Figure S29.** <sup>1</sup>H NMR spectrum recorded of the crude product extracted from the filtrate obtained after hydrolysis of PHLF-20 in 12 M aqueous HCl at 85 °C during 24 h. Signals originating from the original building block and monomers of PHLF-20, i.e., 2,5-furandicarboxylic acid, 1,6-hexanediol, and levulinic acid, are indicated. The signals of side products (1,6-dichlorohexane or 1-chlorohexanol) are denoted by asterisk (\*).



**Figure S30.** Photographs showing the reaction mixtures after the hydrolysis PHLF-20 in 6 M (a) and 12 M (b) aq.  $H_2SO_4$  at 85 °C after 24 h.

![](_page_23_Figure_0.jpeg)

**Figure S31.** <sup>1</sup>H NMR spectrum recorded of the crude product extracted from the filtrate obtained after hydrolysis of PHLF-20 in 6 M aqueous  $H_2SO_4$  at 85 °C after 24 h. Signals originating from the original building block and the monomers of PHLF-20 are indicated.

![](_page_23_Figure_2.jpeg)

**Figure S32.** Photographic images of initial PHLF-20, t-PHF and r-PHLF-8.3 obtained after the repolymerization of t-PHF.