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Experimental section

Materials and reagents

Thioacetamide (TAA, ≥99%) was obtained from Sinopharm Ltd. Cobalt nitrate 

hexahydrate (Co(NO3)2·6H2O, 99%), 5-hydroxymethylfurfural (HMF, 97%), 2-

methylimidazole (2-MeIm, 98%), 2,5-furandicarboxylic acid (FDCA, 97%), 5-

hydroxymethyl-2-furancarboxylic acid (HMFCA, 97%), furfural (FF, 99%), furfuryl 

alcohol (FFA, 97%), 2-formyl-5-furancarboxylic acid (FFCA, >98%), 2-furoic acid 

(FA, 98%), benzyl alcohol (BA, ≥99%), benzoic acid (≥99%) and potassium hydroxide 

(KOH, 95%) were purchased from Macklin Ltd. 2-formyl-5-furancarboxylic acid 

(FFCA, 98%) and 2,5-diformylfuran (DFF, 98%) were purchased from Aladdin Ltd. 

All reagents were used without further purification. 

Characterization of materials

X-ray photoelectron spectroscopy (XPS) was performed on a Thermo ESCALAB 

Xi with Al Kα radiation and charge correction was carried out using the binding energy 

of C 1s (284.8 eV) as the energy standard. Morphologies of samples were observed by 

scanning electron microscopy (SEM, ZEISS GeminiSEM 300). Microstructures of 

ultrasonically exfoliated samples from NF were characterized with field-emission 

transmission electron microscopy (TEM, Talos F200X G2). In the HRTEM analyses, 

an energy dispersive X-ray spectrometer (EDS) connected to the instrument was used 

to determine elements of the sample. XRD patterns were obtained using an Ultima IV 

X-ray diffractometer with Cu-Ka radiation (Rigaku, Japan) as the X-ray tube at 40 kV 

and 40 mA and with a scanning rate of 4° min−1.



Electrochemical measurements

All electrochemical measurements were performed on a CHI 660E 

electrochemical workstation with a typical three-electrode system at room temperature. 

HMF electrooxidation performance was measured in an H-type device being divided 

with a Nafion 117 membrane. The anolyte cell had 20 mL of 1 M KOH electrolyte (pH 

13.6) with different concentrations of HMF (10 mM, 50 mM, 100 mM), while the 

catholyte cell contained 20 mL of 1 M KOH electrolyte. The Co-Ni3S2 nanotube arrays 

were supported on NF (1 × 2 cm2) and served as the working electrode directly. 

Ag/AgCl and Pt foil (1 × 1 cm2) were employed as the reference and counter electrodes, 

respectively. Measured potentials were converted to the RHE scale with the following 

equation: ERHE = EAg/AgCl + 0.059 × pH + 0.197. Linear sweep voltammetry (LSV) 

curves were recorded at a scan rate of 5 mV s-1 without iR compensation. The CVs with 

different scan rates (20, 30, 40, 50, 60) mV/s between the potential intervals of 1.07 V 

to 1.15 V vs. RHE were collected for calculating the double-layer capacitance (Cdl). 

Electrochemical impedance spectroscopy (EIS) tests were conducted at frequencies 

from 0.01 Hz to 105 Hz with an amplitude of 10 mV.

Product analyses

In general, 100 L electrolyte was periodically extracted during potentiostatic 

electrolysis experiments and diluted to 1 mL with deionized water, followed by 

neutralization with a strongly acidic ion exchange resin (Dowex 50wx8-100), which 

was then filtered with a 0.22 μm polyethersulfone membrane. HMF, FF, and FA and 

their oxidation products were analyzed using high-performance liquid chromatography 



(HPLC, Agilent 1260 Infinity II) equipped with an EC-C18 column (4.6 mm 150 mm, 

4 mm) and the wavelength of the UV-Vis detector was set at 265 nm. A solution of 20% 

ammonium formate (5 mM) and 80% methanol served as mobile phase A and mobile 

phase B, respectively, the flow rate was 0.5 mL·min–1 and the column temperature was 

controlled at 30 °C. BA and its oxidation products were analyzed with external standard 

method, using gas chromatography (GC, Agilent 8600) equipped with a Rtx-1700 

column (30 m × 0.25 mm, 0.25 μm) and flame ionization detector (FID). After the 

electrolysis reaction, the sample was neutralized with a strong acid ion exchange resin 

(Dowex 50wx8-100) and subsequently diluted with ethanol (chromatographic grade). 

Temperature program used in the GC analyses was as follows: initial temperature = 100 

°C, 1 min; final temperature = 250 °C, 10 min; heating rate = 20 °C min−1. The 

temperature of the detector was 300 °C. Before each run, the injection needle was 

flushed three times with ethanol (chromatographic grade) to eliminate cross-

contamination.



Figure S1. SEM images of Co-MOF.



Figure S2. SEM images of (a, b) Co3S4/Ni3S2-1 and (c, d) Co3S4/Ni3S2-5. Suffix values 

-1, -3, -5 refer to solvothermal sulfurization times in hours.



Figure S3. TEM images of (a) Co3S4/Ni3S2-1 and (b) Co3S4/Ni3S2-5; HRTEM images 

of (c) Co3S4/Ni3S2-1 and (d) Co3S4/Ni3S2-5. Suffix values -1, -3, -5 refer to 

solvothermal sulfurization times in hours



Figure S4. TEM-EDS of (a) Co3S4/Ni3S2-1, (b) Co3S4/Ni3S2-3 and (c) Co3S4/Ni3S2-5. 

Suffix values -1, -3, -5 refer to solvothermal sulfurization times in hours.



Figure S5. XRD patterns of Co-MOF.



Figure S6. XPS survey spectrum of Co-MOF and Co3S4/Ni3S2-t (t = 1 h, 3 h, 5 h).



Figure S7. Linear sweep voltammetry curves of (a) Co3S4/Ni3S2-1, (b) Co3S4/Ni3S2-5 

and (c) Co-MOF in 1 M KOH with and without 10 mM HMF.

Figure S8. Linear sweep voltammetry curves of nickel foam (NF) in 1 M KOH with 

and without 10 mM HMF.



Figure S9. Nyquist plots of Co3S4/Ni3S2-3 in 1 M KOH with and without 50 mM HMF.



Figure S10. Cyclic voltammetry curves of: (a) Co3S4/Ni3S2-1, (b) Co3S4/Ni3S2-3 and 

(c) Co3S4/Ni3S2-5 at different scan rates. Suffix values -1, -3, -5 refer to solvothermal 

sulfurization times in hours.



Figure S11. Nyquist plots of Co-MOF in 1 M KOH with 50 mM HMF.

Figure S12. Electrochemical characterization of Co-MOF in 1 M KOH: (a) Cyclic 

voltammetry curves and (b) capacitive currents.



Figure S13. Linear sweep voltammetry curves for Co3S4/Ni3S2 electrode in 1 M KOH 

for HMF concentrations of (0, 10, 50) mM. 



Figure S14. Current versus time and current versus charge for Co3S4/Ni3S2 electrode at 

different applied potentials in 1.0 M KOH for 10 mM HMF after 58 C charges were 

passed vs. RHE: (a) 1.35 V, (b) 1.40 V, (c) 1.45 V, (d) 1.50 V, (e)1.60 V, (f) 1.70 V 

and (g) 1.80 V.



Figure S15. Two possible HMF oxidation pathways to FDCA: 5-hydroxymethyl-2-

furanformic acid (HMFCA) pathway and 2,5-diformylfuran (DFF) pathway.



Figure S16. Linear sweep voltammetry curves of Co3S4/Ni3S2 in 1 M KOH with and 

without 10 mM organic substrate: (a) furfural (FF), (b) furfuryl alcohol (FFA), (c) 

benzyl alcohol (BA).



Figure S17. Crystal structure and morphological of Co3S4/Ni3S2 electrode after 

electrocatalytic oxidation of HMF: (a) XRD patterns, (b) SEM image, (c) TEM image 

and (d) TEM-EDS elemental mappings.



Figure S18. XPS spectrums of Ni 2p, Co 2p, S 2p and O 1s of used-Co3S4/Ni3S2 and 

fresh-Co3S4/Ni3S2.



Table S1. EIS fitted simulation parameters of Co3S4/Ni3S2-1, Co3S4/Ni3S2-3 and 

Co3S4/Ni3S2-5.

Samples Rct (Ω) Rs (Ω) Cdl (F)

Co3S4/Ni3S2-1 4.53 2.59 1.65

Co3S4/Ni3S2-3 4.08 1.37 2.07

Co3S4/Ni3S2-5 5.04 9.30 2.62



Table S2. Performance of Co3S4/Ni3S2-3 electrode developed in this work (*) and 

literature reported materials for oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-

furandicarboxylic acid (FDCA) showing applied potentials and faradaic efficiencies 

(FE).

Electrode

Material
Electrolyte

HMF

Conc.

(mM)

Applied 

potential 

(V vs. RHE)

FDCA 

yield 

(%)

FE of 

FDCA 

(%)

Ref.

Co3S4/Ni3S2 1 M KOH 10 1.43 ~100 ~100 This work

Co3S4/Ni3S2 1 M KOH 50 1.43 98.5 97.2 This work

Co3S4/Ni3S2 1 M KOH 100 1.43 91.8 90.2 This work

NiO-CMK-1 0.2 M KOH 20 1.73 - 51.4 1

NiCoBDC-NF 0.1 M KOH 10 1.55 99 78.8 2

NiCoFe-LDHs 1 M NaOH 10 1.52 ~82 - 3

P-HEOs/CP 1 M KOH 10 1.50 97.4 96.6 4

NiCo2O4 1 M KOH 5 1.50 72 80 5

d-NiFe LDH/CP 1 M KOH 10 1.48 96.8 84.5 6

NiSx/Ni2P 1 M KOH 10 1.46 98.5 95.1 7

Ni0.9Cu0.1(OH)2 1 M KOH 5 1.45 91.2 91.2 8

CoO-CoSe2 1 M NaOH 10 1.43 99 97.9 9

hp-Ni 1 M KOH 10 1.42 - 92−98 10

InOOH-OV 1 M KOH 10 1.48 91.6 90.7 11

t-Ni1Co1-MOF 1 M KOH 10 1.40 96 96 12

Key.  CMK: carbon mesostructured from Korea; NF: nickel foam; LDH: layered double hydroxide; 

HEO: high entropy oxide; CP: carbon paper; hp: hierarchically porous; PBA: Prussian Blue 

Analogue; t: transformed; MOF: metal-organic framework. 



Table S3. Electrochemical oxidation of biomass-related substrates with Co3S4/Ni3S2-3 

electrode.

Electrolyte
Applied potential

(V vs. RHE)

Oxidation 

product

Yield 

(%)

FE 

(%)

1 M KOH + 10 mM FF 1.43 FA 99.2 98.3

1 M KOH + 10 mM FFA 1.43 FA 98.7 99.0

1 M KOH + 10 mM BA 1.43 BA 98.5 96.4
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