Electronic Supplementary Information

Metal-free, *tert*-butyl nitrite promoted $C(sp^2)$ -S coupling reaction: Synthesis of aryl dithiocarbamates and analysis of antimicrobial activity by '*in silico*' and '*in vitro*' methods for drug modification

Satyajit Pal,^a Subhankar Sarkar,^a Anindita Mukherjee,^b Anupam Kundu,^c Animesh Sen,^d Jnanendra Rath,^c Sougata Santra,^b Grigory V. Zyryanov^{b,e} and Adinath Majee^{*a}

^aDepartment of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India; E-mail: adinath.majee@visva-bharati.ac.in

^bDepartment of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation

^cDepartment of Botany, Visva-Bharati (A Central University), Santiniketan-731235, India

^dBotany Section, Regional Ayurveda Research Institute, Gangtok, Sikkim- 737102

^e I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Str., Yekaterinburg, 620219, Russian Federation.

Sl. No.		Page No.		
1	Gene	S2		
2	Gene	eral experimental procedure for the synthesis of 3aa-3bj:	S2	
3	Expe dime	S2		
4	Struc	cture determination (X-ray crystallographic data for 3ar):	S3-S4	
5		1. Material method:	S5	
	Biology	1.1 Antibacterial assay:	S5	
		1.2 In-silico pharmacokinetic property analysis:	S 6	
		1.3 Molecular Docking:	S 6	
		2. Result and Discussion:	S 7	
		2.1 Antibacterial assay:	S 7	
		2.2 Pharmacokinetic properties of the three derivatives X1, X2, X3:	S 8	
		2.3 Molecular Docking:	S10	
6	Char	S12		
7	Refe	S25		
8	NMR spectra [¹ H, and ${}^{13}C{}^{1}H$] of synthesized products:			

Contents

1. General information:

¹H NMR spectra were determined on a Bruker 400 (400 MHz) spectrometer as solutions in CDCl₃. Chemical shifts are expressed in parts per million (δ), and the signals were reported as s (singlet), d (doublet), t (triplet), m (multiplet), and coupling constants *J* were given in Hz. ¹³C{¹H} NMR and ¹⁹F NMR spectra were recorded at 100 MHz and 376 MHz in CDCl₃ solution, respectively. Chemical shifts are expressed in parts per million (δ) and are referenced to CDCl₃ (δ = 77.16) as an internal standard. TLC was done on a silica gel-coated glass slide (Merck, Silica gel G for TLC). Silica gel (60-120 mesh, SRL, India) was used for column chromatography. Unless otherwise mentioned, petroleum ether refers to the fraction boiling in the 60-80 °C range. Commercially available substrates were freshly distilled before the reaction. Solvents, reagents, and chemicals were purchased from Aldrich, Merck, and Spectrochem Chemicals.

2. General experimental procedure for the synthesis of 3aa: A mixture of aniline (1) (0.5 mmol), 'BuONO (0.6 mmol), thiuram disulfide (2) (0.5 mmol) and 2 ml EtOAc was stirred under room temperature and open to the air for 6 hours. After the completion of the reaction, confirmed by TLC, the mixture was diluted with saturated saline water (3×15 mL), and extracted with ethyl acetate. The combined organic layer was collected and dried over anhydrous Na₂SO₄. The residue was purified by column chromatography on silica gel to afford the desired products **3aa** (eluent: ethyl acetate/petroleum ether).

3. Experimental procedure for the synthesis of N,N-dimethylbenzo[d]thiazol-2-amine(6):

Dithiocarbamate (0.75 mmol) was added in a mixture of 2-iodoaniline (5) (0.5 mmol), DMSO (3 mL), and KOt-Bu (1.5 mmol). The reaction mixture was heated at 100°C and checked by TLC until the starting material was finished. After that, the reaction mixture was cooled at room temperature, and the mixture was diluted with saturated saline water (3×15

mL), and extracted with ethyl acetate. The combined organic layer was collected and dried over anhydrous Na₂SO₄. The residue was purified by column chromatography on silica gel to afford the desired products **6** (eluent: ethyl acetate/petroleum ether).

4. Structure determination (X-ray crystallographic data for 3ar):

The yellow block crystal of 3ar was obtained by crystallization from a solution in dichloromethane/petroleum ether after purification by column chromatography. The chemical formula of compound 3ba: $C_9H_{10}N_2O_2S_2$.

Datablock mo_BIJON6060521_0m_a - ellipsoid plot

Table 1: Crystal data

Wavelength	0.71073Å			
Formula	$C_9H_{10}N_2O_2S_2$			
Crystal system	Monoclinic			
Space group	P 2	/c		
Unit cell dimensions	a = 7.5418(3) Å	$\alpha = 90$		
	b = 11.3152(4) Å	$\beta = 96.939(1)$		
	c = 12.9845(5) Å	$\gamma = 90$		
Volume	1099.94(7) Å ³			
Z	4			
R-factor (%)	4.75			

The crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as a supplementary publication with a CCDC reference number CCDC 2213230.

5. Biology:

1. Material method

1.1. Antibacterial assay

Resazurin microtiter plate-based assay is used to test the antibacterial activity of sulfacetamide (X) and its synthetic derivatives X1, X2, and X3 using a modified technique of Sarker¹ et al. 2007. Resazurin solution (0.01%) was prepared by dissolving the resazurin powder in sterile distilled water in a sterile vial. The solution was mixed for 1 h in a vortex mixer to ensure homogeneity. In this study, six pathogenic bacteria, including Bacillus cereus ATCC 13061, Bacillus subtilis MTCC 121, Listeria monocytogenes MTCC 657, Staphylococcus aureus MTCC 96, Salmonella typhimurium MTCC 98, and Escherichia coli MTCC 1667 were used which were procured from the Microbial Type Culture Collection (MTCC) IMTech, Chandigarh. Since the test materials are serially diluted while the bacterial concentration is lowered serially, this technique cannot provide a "true" indication of the minimum inhibitory concentration (MIC) intended to be assessed in this experiment. We modified the resazurin-based experiment, namely the dilution procedures, and used a standard concentration of the bacterial solution to obtain a "true" MIC result. At first, the bacterial test strains were taken out of the agar slants, inoculated in freshly produced nutrient broth, incubated at 37° C, and kept as instructed by MTCC. Pathogenic bacterial cultures were cultivated overnight, diluted with sterile nutrient broth, and quantified in a spectrophotometer to a specific OD of 0.00075. Each test metabolite solution was introduced to the relevant wells at a volume of 2.5 µl. The total test volume was increased to 100.0 µL by adding 97.5 µL of the diluted bacterial broth to each well. Negative control was used to ascertain whether the bacteria were growing; only bacterial suspensions were added to those wells. The resazurin solution was added to each well in a volume of 4.0 µL and well mixed. Plates were incubated at 37° C for 6–8 hours, and any color changes were visually observed. Samples with various concentrations were used to determine the Minimum Inhibitory Concentration (MIC) that produced positive findings in the antibacterial test, namely, 100.0 μg/mL, 50.0 μg/mL, 25.0 μg/mL, 12.5 μg/mL, 6.25 μg/mL, 3.12 μg/mL, 1.56μg/ml, 0.78μ g/ml were prepared by dissolved in DMSO. These various amounts were added to a predetermined volume of nutrient broth-based bacterial cultures. The creation of a precise MIC value, which can be compared to antibiotics currently on the market, gives the scientist the capacity to determine if the extracts and compounds are worthwhile to continue investigating regarding their antibacterial potential.

1.2. In-silico pharmacokinetic property analysis:

The in-silico prediction studies performed **SWISS** ADME were using (http://www.swissadme.ch/) and pkCSM (https://biosig.lab.uq.edu.au/pkcsm/) online prediction platforms (Pires, Blundell & Ascher 2015), to assess the theoretical pharmacokinetic parameters of the ligands to predict the drug-likeness of ligands. The software calculated pharmaceutically relevant properties such as H-bond donor, H-bond acceptor, octanol-water partition coefficient (LogP), surface area, and rotatable bonds count. In addition, the effect of ligands on ADMET parameters like water solubility, Caco2 permeability, human intestinal absorption, skin permeability, P-glycoprotein I, and II inhibition, the volume of distribution, fraction of unbound drug, Blood Brain Barrier (BBB), and Central Nervous System (CNS) permeability, cytochrome P450 inhibition, total clearance, OCT2 (organic cation transporter 2) substrate, Skin Sensitization, Hepatotoxicity, Carcinogenicity, etc. were also evaluated.

1.3. Molecular Docking:

Docking studies of sulfacetamide (X) and its three synthetic derivatives X1, X2, X3 against dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR) were done using molecular docking program AutoDock tools² in order to find the preferred binding conformations between them. The 3D structure of DHPS (PDB ID: 5U13) and DHFR (PDB ID: 4DFR) retrieve from the protein data bank (https://www.rcsb.org/). The protein structures were then minimized, and adding missing amino acids side chains were using Swiss PDB viewer³. Further protein preparation was done using AutoDock tools. The ligands were drawn using ChemDraw and optimized by PM6 of Semi-empirical Method using GaussView 5.0. For Docking, A grid box was generated that was large enough to cover the active site and accommodate ligands to move freely. The number of grid points in the x, y, and z-axes for DHPS and DHFR was 70×70×70 Å and 64×64×64 Å respectively. The distance between two connecting grid points for the two proteins was 0.375 Å. The center of the ligand in the X-ray crystal structure was used as the center of the grid box. AutoDock4 and a Lamarckian Genetic Algorithm (LGA), which has enhanced performance relative to simulated annealing and genetic algorithm alone, were used for receptor-fixed ligand-flexible docking calculations. Ten search attempts were performed for ligand. The maximum number of energy evaluations before the termination of the LGA run was 2500000, and the maximum number of generations of the LGA run before termination was 27000. Other parameters of docking were set to the default values. During the docking process, a maximum of 10 different conformations were considered for the ligand. The lowest binding free energy conformer was used for further analysis. The docked complex of protein and ligand was visualized by PyMOL and Discovery Studio Visualizer of Accelrys Discovery Studio.

2. Result and Discussion:

2.1 Antibacterial assay:

Table 2: MIC values of the mother drug X and their derivatives X1, X2, X3 against six different pathogenic bacteria.

Test bacteria	Gram- positive/ negative	MIC value of X (µg/ml)	MIC value of X1 (µg/ml)	MIC value of X2 (µg/ml)	MIC value of X3 (µg/ml)
Escherichia coli	Gram (-) ve	50µg/ml	3µg/ml	6µg/ml	3µg/ml
Bacillus subtilis	Gram (+) ve	100µg/ml	6µg/ml	3µg/ml	3µg/ml
Listeria monocytogenes	Gram (+) ve	100µg/ml	6µg/ml	6µg/ml	3µg/ml
Salmonella typhimurium	Gram (-) ve	25µg/ml	3µg/ml	3µg/ml	3µg/ml
Staphylococcus aureus	Gram (+) ve	50µg/ml	6µg/ml	3µg/ml	3µg/ml
Bacillus cereus	Gram (+) ve	100µg/ml	3µg/ml	3µg/ml	3µg/ml

2.2 Pharmacokinetic properties of the three derivatives X1, X2, X3:

Table 3: Pharmacokinetic	properties	of the three	derivatives	X1, X2	, X3
---------------------------------	------------	--------------	-------------	--------	------

S1.	Properties	X1	X2	X3
No.				
1.	LogP	1.45	2.2302	3.7906
2.	Rotatable Bond	3	5	9
3.	Acceptor	5	5	5
4.	Donars	1	1	1
5.	Surface area	121.970	134.700	160.160
6.	Water Solubility (Log mol/L)	-3.581	-3.549	-5.082
7.	Caco2 Permeability (log Papp in 10-	0.896	1.043	0.968
	6cm/s)			
8.	Intestinal absorption (human) (%	92.27	88.815	90.868
	Absorbed)			
9.	Skin Permeability (log Kp)	-3.023	-2.98	-2.852
10.	P-glycoprotein substrate (Yes/No)	NO	NO	YES
11.	P-glycoprotein I inhibitor (Yes/No)	NO	NO	NO
12.	P-glycoprotein II inhibitor (Yes/No)	NO	NO	NO
13.	VDss (human) (log L/kg)	-0.267	-0.219	0.072
14.	Fraction unbound (human) (Fu)	0.524	0.393	0.28
15.	BBB permeability (log BB)	-0.256	-0.183	-0.18
16.	CNS permeability (log PS)	-2.976	-2.559	-2.597
17.	CYP2D6 substrate (Yes/No)	NO	NO	YES
18.	CYP3A4 substrate (Yes/No)	NO	YES	YES
19.	CYP1A2 inhibitors (Yes/No)	NO	NO	NO
20.	CYP2C19 inhibition (Yes/No)	NO	NO	NO
21.	CYP2C9 inhibitor (Yes/No)	NO	NO	YES
22.	CYP2D6 inhibitor (Yes/No)	NO	NO	NO
23.	CYP3A4 inhibitors (Yes/No)	NO	NO	NO
24.	Total Clearance (log ml/min/kg)	0.083	0.013	0.139

25.	Renal OCT2 substrate (Yes/No)	NO	NO	NO
26.	AMES toxicity (Yes/No)	NO	NO	NO
27.	Max. tolerated dose (human) (log mg/kg/day)	0.198	0.4	0.227
28.	hERG I inhibitor (Yes/No)	NO	NO	NO
29.	hERG II inhibitor (Yes/No)	NO	NO	YES
30.	Oral Rat Acute Toxicity (LD50) (mol/kg)	2.49	2.812	2.427
31.	Oral Rat Chronic Toxicity (LOAEL) (log mg/kg_bw/day)	1.379	0.599	1.061
32.	Hepatotoxicity (Yes/No)	NO	YES	YES
33.	Skin Sensitisation (Yes/No)	NO	NO	NO
34.	T.Pyriformis toxicity (log ug/L)	0.864	1.148	1.252
35.	Minnow toxicity (log mM)	1.365	1.269	-0.704

13-16= distribution (D)

17-

1-5 = molecular properties 6-12= absorption (A)
23= metabolism (M) 24-25= excretion (E)
26-35= toxicity (T)

2.3 Molecular Docking:

Table 4: Interaction details of the sulfacetamide (X) and its three synthetic derivatives X1, X2, and X3 with the DHFR and DHPS enzymes.

SL.	Docked Complex	Binding	Interacting	Types of	Bond
NO.		Affinity	resides	bond	Distance (Å)
		(kcal/mol)			
1.	X_DHFR	-5.26	ILE5	H-Bond	2.03
			ALA7	Pi-sigma	3.90
			TRP22	Pi-Sulfur	5.64
			TRP22	Pi-Sulfur	5.07
			TRP22	H-Bond	2.22
			TRP22	H-Bond	2.24
			ASP27	H-Bond	1.91
			ILE94	H-Bond	2.17
2.	X1_DHFR	-6.53	ALA7	H-Bond	2.03
			ASP27	H-Bond	2.49
			PHE31	Pi-Pi	3.93
				Stacked	
3.	X2_DHFR	-6.61	ILE5	H-Bond	2.13
			ILE50	Alkyl	4.28
			ILE50	Alkyl	4.70
			LEU54	Alkyl	5.11
			ILE94	Pi- Alkyl	5.18
			ILE94	H-Bond	3.02
4.	X3_DHFR	-7.04	ALA7	H-Bond	2.64
			ASP27	H-Bond	2.12
			PHE31	Pi-Alkyl	4.52
			PHE31	Pi-Pi	3.86
			LYS32	Stacked	4.09
			ARG52	Alkyl	5.01
				Alkyl	
5.	X_DHPS	-5.58	THR62	H-Bond	2.15

			THR62	H-Bond	2.44
			PRO64	Pi-Alkyl	5.36
			ASN197	H-Bond	3.09
			LYS221	Pi-Cation	4.82
			LYS221	Pi-Alkyl	4.97
			SER222	H-Bond	2.81
6.	X1_DHPS	-6.06	THR62	H-Bond	1.99
			ARG63	Pi-Alkyl	5.27
			PHE190	Pi-Sulfur	4.26
			LYS221	H-Bond	5.09
			ARG255	H-Bond	2.12
7.	X2_DHPS	-6.30	ILE20	Alkyl	5.23
			GLY58	Carbon	3.50
			THR62	H-Bond	2.37
			THR62	H-Bond	2.77
			ARG63	Carbon	3.04
			ARG63	Pi-Alkyl	4.94
			PRO64	Carbon	3.37
			SER222	H-Bond	2.13
			ARG255	H-Bond	2.67
8.	X3_DHPS	-6.40	THR62	H-Bond	1.90
			THR62	H-Bond	2.92
			PRO64	Alkyl	4.74
			PHE190	Pi-Sigma	3.79
			PHE190	Pi-Sulfur	5.50
			ARG220	Alkyl	4.77
			ARG255	Pi-Cation	3.26
			HIS257	Pi-Alkyl	5.37

6. Characterization data of the synthesized compounds:

phenyl dimethylcarbamodithioate (3aa)⁴: Yield: 79%, 78 mg; white solid; Mp: 95-95.7 °C; $R_f = 0.5$ (EA: PE=6: 94); ¹H NMR (CDCl₃, 400 MHz): δ 7.49-7.45 (m, 5H), 3.56 (s, 3H), 3.51 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 197.8, 137.1, 131.9, 130.2, 129.3, 45.8, 42.1.

o-tolyl dimethylcarbamodithioate (3ab)⁴: Yield: 71%, 75 mg; white solid; Mp: 81.2-82 °C; $R_f = 0.5$ (EA: PE = 6: 94); ¹H NMR (CDCl₃, 400 MHz): δ 7.44-7.38 (m, 2H), 7.36-7.34 (m, 1H), 7.28-7.24 (m, 2H), 3.56 (s, 3H), 3.52 (s, 3H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 196.7, 144.0, 137.9, 131.3, 130.9, 130.8, 126.9, 45.7, 42.1, 21.0.

2-methoxyphenyl dimethylcarbamodithioate (3ac)⁴: Yield: 76%, 86 mg; white solid; Mp: 88-89.7 °C; $R_f = 0.5$ (EA: PE = 10: 90); ¹H NMR (CDCl₃, 400 MHz): δ 7.51-7.47 (m, 1H), δ 7.42-7.40 (m, 1H), δ 7.05-7.00 (m, 2H), 3.86 (s, 3H), 3.54 (s, 3H), 3.52 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 198.9, 160.6, 138.9, 132.6, 121.3, 119.9, 111.9, 56.3, 45.8, 42.1.

m-tolyl dimethylcarbamodithioate (3ad)⁵: Yield: 75%, 79 mg; white solid; deep yellow liquid; $R_f = 0.5$ (EA: PE = 6: 94); ¹H NMR (CDCl₃, 400 MHz): δ 7.36-7.27 (m, 4H), 3.56 (s, 3H), 3.50 (s, 3H), 2.39 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 198.0, 139.1, 137.6, 134.1, 131.5, 131.1, 129.1, 45.8, 42.1, 21.4.

3-methoxyphenyl dimethylcarbamodithioate (3ae)^{5,6}: Yield: 78%, 86 mg; deep yellow liquid; $R_f = 0.5$ (EA: PE = 10: 90); ¹H NMR (CDCl₃, 400 MHz): δ 7.37-7.33(m, 1H), δ 7.09-7.06 (m, 1H), δ 7.04-7.00 (m, 2H), 3.82 (s, 3H), 3.56 (s, 3H), 3.49 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 197.5, 159.9, 132.6, 129.9, 129.2, 122.0, 116.4, 55.5, 45.8, 42.1.

p-tolyl dimethylcarbamodithioate (3af)⁴: Yield: 84%, 88.6 mg; white solid; Mp: 112.8-113.5 °C; $R_f = 0.5$ (EA: PE = 6: 94); ¹H NMR (CDCl₃, 400 MHz): δ 7.30 (d, J = 8 Hz, 2H), δ 7.20 (d, J = 8 Hz, 2H), 3.50 (s, 3H), 3.43 (s, 3H), 2.35 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 198.2, 140.5, 136.9, 130.1, 128.3, 45.8, 42.1, 21.6.

4-methoxyphenyl dimethylcarbamodithioate (3ag)⁴: Yield: 81%, 92 mg; white solid; Mp: 97-99 °C; $R_f = 0.5$ (EA: PE = 10: 90); ¹H NMR (CDCl₃, 400 MHz): δ 7.38-7.35 (m, 2H), 6.97-6.94 (m, 2H), 3.85 (s, 3H), 3.56 (s, 3H), 3.49 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 198.9, 161.3, 138.6, 122.7, 114.9, 55.4, 45.9, 42.0.

4-(tert-butyl)phenyl dimethylcarbamodithioate (3ah)⁴: Yield: 80 %, 101 mg; white solid; Mp: 61-62 °C; $R_f = 0.5$ (EA: PE = 8: 92); ¹H NMR (CDCl₃, 400 MHz): δ 7. 40-7.38 (m, 2H), 7.34-7.31 (m, 2H), 3.48 (s, 3H), 3.42 (s, 3H), 1.28 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 198.0, 153.3, 136.5, 130.0, 128.3, 126.3, 126.1, 45.8, 42.1, 34.9, 31.3.

2-chlorophenyl dimethylcarbamodithioate (3ai)⁴: Yield: 78 %, 90 mg; grey solid; Mp: 105-106.8 °C; $R_f = 0.5$ (EA: PE = 15: 85); ¹H NMR (CDCl₃, 400 MHz): δ 7.57-7.54 (m, 2H), δ 7.45-7.41 (m, 1H), δ 7.36-7.32 (m, 2H), 3.56 (s, 3H), 3.53 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 195.1, 140.7, 139.3, 131.9, 131.1, 130.4, 127.6, 45.8, 42.3.

2-iodophenyl dimethylcarbamodithioate (3aj): Yield: 80%, 129 mg; red solid; white solid; Mp 64-66 °C; $R_f = 0.45$ (EA: PE = 10: 90); ¹H NMR (CDCl₃, 400 MHz): δ 8.02-7.99 (m, 1H), 7.64-7.62 (m, 1H), 7.45-7.41 (m, 1H), 7.16-7.11 (m, 1H), 3.57 (s, 3H), 3.53 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 195.2, 140.3, 138.3, 137.4, 131.5, 129.2, 110.5, 45.7, 42.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for [C₉H₁₁INS₂]⁺ : 323.9372; Found : 323.9337.

3-chlorophenyl dimethylcarbamodithioate (3ak)⁵: Yield: 77 %, 89 mg; deep yellow liquid ; $R_f = 0.5$ (EA: PE = 15: 85); ¹H NMR (CDCl₃, 400 MHz): δ 7.48-7.47 (m, 1H), δ 7.45-7.41 (m, 1H), δ 7.39-7.36 (m, 2H), 3.55 (s, 3H), 3.48 (s, 3H); ¹³C

NMR (CDCl₃, 100 MHz): δ 196.4, 136.8, 135.2, 134.5, 133.4, 130.3, 130.1, 45.8, 42.1.

4-bromophenyl dimethylcarbamodithioate (3al)⁴: Yield: 82%, 113 mg; white solid; Mp: 120-121.4 °C; $R_f = 0.5$ (EA: PE = 15: 85); ¹H NMR (CDCl₃, 400 MHz): δ 7.58-7.55 (m, 2H), 7.34-7.30 (m, 2H), 3.55 (s, 3H), 3.48 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 196.7, 138.5, 132.5, 130.9, 125.1, 45.9, 42.2.

4-chlorophenyl dimethylcarbamodithioate (3am)⁴: Yield: 83 %, 96 mg; white solid; Mp: 100.9-101.4 °C; $R_f = 0.5$ (EA: PE = 15: 85); ¹H NMR (CDCl₃, 400 MHz): δ 7.42-7.37 (m, 4H), 3.55 (s, 3H), 3.48 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 196.8, 138.3, 136.6, 130.2, 129.5, 45.9, 42.1.

4-fluorophenyl dimethylcarbamodithioate (3an)⁴: Yield: 85%, 92 mg; white solid; Mp: 91.7-92.7 °C; $R_f = 0.45$ (EA: PE = 10: 90); ¹H NMR (CDCl₃, 400 MHz): δ 7.45-7.42 (m, 2H), 7.15- 7.10 (m, 2H), 3.54 (s, 3H), 3.48 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 197.4, 163.9 (d, J = 250 Hz), 139.1 (d, J = 9 Hz), 132.8 (d, J = 9 Hz), 127.2 (d, J = 3 Hz), 116.4 (d, J = 220 Hz), 45.8, 42.

2-(trifluoromethyl)phenyl dimethylcarbamodithioate (3ao): Yield: 83%, 110 mg; white solid; Mp: 96-98 °C; $R_f = 0.5$ (EA: PE = 12: 88); ¹H NMR (CDCl₃, 400 MHz): δ 7.79 (d, J = 7.2 Hz, 1H), 7.65-7.62 (m, 2H), 7.61-7.57 (m, 1H), 3.54 (s, 3H), 3.53 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 195.9, 141.6, 133.9 (q, J= 310 Hz), 132.3, 130.4 (2C), 126.9 (q, J= 6 Hz), 123.3 (q, J= 273 Hz), 45.7, 42.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for[C₁₀H₁₁F₃NS₂]⁺ : 266.0280; Found : 266.0291.

3-nitrophenyl dimethylcarbamodithioate (3ap): Yield: 82%, 99 mg; yellowishwhite; Mp 153-155 °C; $R_f = 0.5$ (EA: PE = 15: 85); ¹H NMR (CDCl₃, 400 MHz): δ 8.32-8.30 (m, 2H), 7.79-7.77 (m, 1H), 7.63-7.59 (m, 1H), 3.55 (s, 3H), 3.52 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 195.2, 148.4, 143.2, 134.0, 131.9, 129.8, 124.9, 45.9, 42.2. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calculated for[C₉H₁₁N₂O₂S₂]⁺ : 243.0256; Found : 243.0257.

4-cyanophenyl dimethylcarbamodithioate (3aq)⁴: Yield: 81%, 90 mg; white solid; Mp: 125-126 °C; $R_f = 0.5$ (EA: PE = 16: 84); ¹H NMR (CDCl₃, 400 MHz): δ 7.69 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 3.54 (s, 3H), 3.50 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 195.0, 137.6, 137.5, 132.5, 118.4, 113.7, 45.8, 42.3.

4-nitrophenyl dimethylcarbamodithioate (3ar)⁴: Yield: 87%, 105 mg; yellow solid Mp: 153-154.5 °C; $R_f = 0.5$ (EA: PE = 20: 80); ¹H NMR (CDCl₃, 400 MHz): δ 8.25 (d, J = 8.8 Hz, 2H), 7.64 (d, J = 8.8 Hz, 2H), 3.55 (s, 3H), 3.51 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 194.6, 148.6, 139.6, 137.8, 124.0, 45.8, 42.3.

ethyl 4-((dimethylcarbamothioyl)thio)benzoate (3as): Yield: 88%, 119 mg; white solid; Mp: 78-80 °C; $R_f = 0.5$ (EA: PE = 16: 84); ¹H NMR (CDCl₃, 400 MHz): δ 8.09 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 4.41-4.35 (m, 2H), 3.54 (s, 3H), 3.49 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 196.1, 166.0, 136.9, 136.8, 131.7, 130.1, 61.3, 45.7, 42.2, 14.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for[C₁₂H₁₆NO₂S₂]⁺ : 270.0617; Found : 270.0592.

4-(trifluoromethyl)phenyl dimethylcarbamodithioate (3at)⁴: Yield: 84%, 112 mg; white solid; Mp: 85.2-86.2 °C; $R_f = 0.5$ (EA: PE = 12: 88); ¹H NMR (CDCl₃, 400 MHz): δ 7.67 (d, J = 8.4 Hz, 2H), δ 7.59 (d, J = 8.4 Hz, 2H), 3.54 (s, 3H), 3.48 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 195.6, 137.2, 136.1, 132.6 (q, J = 320 Hz), 125.8 (q, J = 4 Hz), 123.9 (q, J = 271 Hz), 45.6, 42.1.

2,3-dimethylphenyl dimethylcarbamodithioate (3au): Yield: 74 %, 83.5 mg; yellow solid; Mp 71-73 °C; $R_f = 0.5$ (EA: PE = 6: 94); ¹H NMR (CDCl₃, 400 MHz): δ 7.32-7.27 (m, 2H), 7.15 (t, J = 8.4 Hz, 1H), 3.56 (s, 3H), 3.52 (s, 3H), 2.35 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 197.2, 142.5, 138.1, 135.6, 132.5, 131.4, 126.2, 45.7, 42.1, 21.2, 17.6. Anal. Calcd. For C₁₁H₁₅NS₂: C, 58.62; H, 6.71; N, 6.22%; Found: C, 58.54; H, 6.65; N, 6.15%.

2,4-dimethylphenyl dimethylcarbamodithioate (3av): Yield: 76%, 85.5 mg; red solid; Mp 76 -78 °C; $R_f = 0.5$ (EA: PE = 6: 94); ¹H NMR (CDCl₃, 400 MHz): δ 7.31-7.27 (m, 1H), 7.20-7.18 (m, 2H), 3.56 (s, 6H), 2.40 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 195.7, 144.2, 131.1, 130.4, 128.4, 45.6, 42.1, 29.8, 21.9. HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for[C₁₁H₁₆NS₂]⁺ : 226.0719; Found : 226.0712.

2-chloro-4-methylphenyl dimethylcarbamodithioate (3aw): Yield: 74 %, 91 mg; white solid; Mp: 96-98 °C; $R_f = 0.5$ (EA: PE = 15: 85); ¹H NMR (CDCl₃, 400 MHz): δ 7.42 (d, J = 8 Hz, 1H), 7.38 (s, 1H), 7.15 (d, J = 7.6 Hz, 1H), 3.56 (s, 3H), 3.52 (s, 3H), 2.39 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 195.7, 142.8, 140.3, 138.9, 131.1, 128.6, 127.6, 45.8, 42.2, 21.4. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calculated for[C₁₀H₁₂ClNNaS₂]⁺ : 267.9992; Found : 267.9979.

2-bromo-4-methylphenyl dimethylcarbamodithioate (3ax): Yield: 80 %, 116 mg; white solid; Mp: 85-87 °C; $R_f = 0.5$ (EA: PE = 15: 85); ¹H NMR (CDCl₃, 400 MHz): δ 7.57 (s, 1H), 7.45 (d, J = 8 Hz, 1H), 7.20- 7.18 (m, 1H), 3.56 (s, 3H), 3.51 (s, 3H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 195.6, 142.7, 138.9, 134.3, 131.7, 129.8, 126.2, 45.8, 42.2, 21.3. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calculated for[C₁₀H₁₂BrNNaS₂]⁺ : 311.9487; Found : 311.9492.

3-chloro-4-fluorophenyl dimethylcarbamodithioate (3ay): Yield: 78%, 97.5 mg; gummy mass; $R_f = 0.45$ (EA: PE = 15: 85); ¹H NMR (CDCl₃, 400 MHz): δ 7.52-7.50 (m, 1H), 7.35-7.31 (m, 1H), 7.19 (t, J = 8.8 Hz, 1H), 3.54 (s, 3H), 3.47 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 196.3, 159.3 (d, J = 252 Hz), 139.1, 137.2 (d, J = 8 Hz), 128.3 (d, J = 4 Hz), 121.5 (d, J = 18 Hz), 117.2 (d, J = 22 Hz), 45.9, 42.0. Anal. Calcd. For: C₉H₉ClFNS₂: C, 43.28; H, 3.63; N, 5.61%; Found: C, 43.36; H, 3.54; N, 5.55%.

4-ethynylphenyl dimethylcarbamodithioate (3az): Yield: 78 %, 86.5 mg; gummy mass; $R_f = 0.5$ (EA: PE = 10: 90); ¹H NMR (CDCl₃, 400 MHz): δ 7. 55-7.53 (m, 2H), 7.43-7.41 (m, 2H), 3.53 (s, 3H), 3.47 (s, 3H), 3.18 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 196.5, 136.8, 132.6, 128.5, 123.9, 83.0, 79.2, 45.7, 42.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for[C₁₁H₁₂NS₂]⁺ : 222.0406; Found : 222.0398.

4-vinylphenyl dimethylcarbamodithioate (3ba)⁵: Yield: 70 %, 78 mg; light yellow solid; Mp. 66-67 °C; $R_f = 0.5$ (EA: PE = 10: 90); ¹H NMR (CDCl₃, 400 MHz): δ 7.49-7.47 (m, 2H), 7.43-7.41 (m, 2H), 6.78 -6.70 (m, 1H), δ 5.82 (d, J = 17.6 Hz, 1H), 5.34 (d, J = 11.2 Hz, 2H), 3.56 (s, 3H), 3.50 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 197.7, 139.4, 137.2, 136.3, 130.9, 127.1, 115.8, 45.8, 42.1.

benzo[d][1,3]dioxol-5-yl dimethylcarbamodithioate (3bb): Yield: 79%, 95.5 mg; white solid; Mp: 111-113 °C; $R_f = 0.45$ (EA: PE = 15: 85); ¹H NMR (CDCl₃, 400 MHz): δ 6.97-6.95 (m, 1H), 6.90 (d, J = 1.6 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 6.03 (s, 2H), 3.55 (s, 3H), 3.47 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 198.4, 149.6, 148.1,

131.6, 123.8, 117.0, 109.0, 101.8, 45.9, 42. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calculated for $[C_{10}H_{12}NO_2S_2]^+$: 242.0304; Found : 242.2999.

[1,1'-biphenyl]-2-yl dimethylcarbamodithioate (3bc): Yield: 85 %, 116 mg; white solid; Mp: 122-124 °C; $R_f = 0.5$ (EA: PE = 10: 90); ¹H NMR (CDCl₃, 400 MHz): δ 7.60 -7.58 (m, 1H), 7.56 -7.52 (m, 1H), 7.46-7.42 (m, 4H), 7.39-7.34 (m, 3H), 3.50 (s, 3H), 3.33 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 197.8, 147.4, 141.0, 139.2, 131.1, 130.5, 130.4, 129.5, 128.2, 127.7, 127.4, 45.7, 42.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for[C₁₅H₁₆NS₂]⁺ : 274.0719; Found : 274.0731.

6-methylbenzo[d]thiazol-2-yl dimethylcarbamodithioate (3bd): Yield: 81 %, 108.5 mg; white solid; Mp: 144-146 °C $R_f = 0.5$ (EA: PE = 20: 80); ¹H NMR (CDCl₃, 400 MHz): δ 7.73 (d, J = 8.0 Hz 2H), 7.34 (d, J = 8 Hz 2H), 7.29 (d, J = 6.8 Hz 2H), 3.53 (s, 3H), 3.50 (s, 3H), 2.78 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 192.0, 157.5, 152.5, 138.6, 134.2, 127.0, 126.3, 119.1, 45.5, 42.6, 18.7. Anal. Calcd. For: C₁₁H₁₂N₂S₃: C, 49.22; H, 4.51; N, 10.44%; Found: C, 49.31; H, 4.60; N, 10.36%

p-tolyl diethylcarbamodithioate (3be)⁴: Yield: 82 %, 98 mg; white solid; Mp: 75-76 °C; $R_f = 0.5$ (EA: PE = 6: 94); ¹H NMR (CDCl₃, 400 MHz): δ 7.38 (d, J = 8.0 Hz 2H), 7.27 (d, J = 7.6 Hz 2H), 4.08-4.03 (m, 2H), 3.91-3.85 (m, 2H), 2.42 (s, 3H), 1.42 (t, J = 7.2 Hz, 3H), 1.31 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 196.6, 140.4, 137.1, 130.1, 128.3, 50.0, 47.3, 21.6, 12.8, 11.7.

4-methoxyphenyl diethylcarbamodithioate (3bf)⁴: Yield: 80 %, 102 mg; white solid; Mp: 73-75 °C; $R_f = 0.5$ (EA: PE = 15: 85); ¹H NMR (CDCl₃, 400 MHz): δ 7.38 (d, J = 8.8 Hz 2H), 6.95 (d, J = 8.8 Hz 2H), 4.05-4.00 (m, 2H), 3.88-3.86 (m, 2H), 3.84 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 197.2, 161.1, 138.7, 122.5, 114.7, 55.4, 50.1, 47.2, 12.8, 11.7.

4-(hydroxymethyl)phenyl diethylcarbamodithioate (3bg): Yield: 85%, 108.5 mg; yellow gummy mass; $R_f = 0.5$ (EA: PE = 20: 80); ¹H NMR (CDCl₃, 400 MHz): δ 7.49-7.43 (m, 1H), 4.74 (d, J = 7.2 Hz, 2H), 4.03(s, 3H), 3.87 (s, 3H), 1.88 (s, 1H), 1.4 (s, 1H), 1.30 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 196.2, 143.1, 137.4, 130.7, 127.5, 65.0, 50.0, 47.4, 12.9, 11.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for [C₁₂H₁₈NOS₂]⁺ : 256.0824; Found : 256.0818.

3-chloro-4-fluorophenyl diethylcarbamodithioate (3bh): Yield: 83%, 115.5 mg; yellow liquid; $R_f = 0.5$ (EA: PE = 15: 85); ¹H NMR (CDCl₃, 400 MHz): δ 7.53-7.51 (m, 1H), 7.36-7.32 (m, 1H), 7.18 (t, J = 8.4 Hz, 3H), 4.03-3.98 (m, 2H), 3.85-3.79 (m, 2H), 1.38 (t, J = 7.2 Hz, 3H), 1.27 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 194.6, 159.3 (d, J = 252 Hz), 139.3, 137.4 (d, J = 9 Hz), 128.2 (d, J = 4 Hz), 121.4 (d, J = 17 Hz), 117.1 (d, J = 22 Hz), 50.1, 47.4, 12.8, 11.6. Anal. Calcd. For: C₁₁H₁₃ClFNS₂: C, 47.56; H, 4.72; N, 5.04%; Found: C, 47.65; H, 4.79; N, 5.12%.

4-methoxyphenyl dibutylcarbamodithioate (3bi)⁴: Yield: 79 %, 123 mg; yellow oil; $R_f = 0.5$ (EA: PE = 8: 92); ¹H NMR (CDCl₃, 400 MHz): δ 7.39-7.36 (m, 2H), 6.95-6.93 (m, 2H), 3.94 (t, J = 8 Hz, 2H), 3.81 (s, 3H), 3.75 (t, J = 8 Hz, 2H), 1.84- 1.75 (m, 2H), 1.73 -1.68 (m, 2H), 1.45 -1.40 (m, 2H) 1.37- 1.32 (m, 2H), 1.01 (t, J = 7.2 Hz, 3H), 0.95 (t, J = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 197.1, 160.8, 138.4, 122.4, 114.4, 55.3, 55.1, 52.7, 29.4, 28.3, 20.0, 13.7, 13.6.

benzo[d]thiazol-2-yl dibutylcarbamodithioate (3bj)⁷: Yield: 76%, 151.5 mg; yellow liquid; $R_f = 0.5$ (EA: PE = 20: 80); ¹H NMR (CDCl₃, 400 MHz): δ 8.11 (d, J = 8 Hz, 2H), 7.9 (d, J = 8 Hz, 2H), 7.52-7.42 (m, 2H),), 3.92 (t, J = 8 Hz, 2H), 3.75 (t, J = 8 Hz, 2H), 1.86 -1.80 (m, 2H), 1.78 -1.70 (m, 2H), 1.48-1.40 (m, 2H), 1.38-1.31 (m, 2H), 1.00 (t, J = 7.6 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 190.1, 159.6, 152.8, 138.4, 126.4, 126.1, 124.0, 121.5, 55.2, 53.9, 51.3, 30.0, 28.3, 20.2, 13.9, 13.8.

naphthalen-1-yl dimethylcarbamodithioate (3bk)⁴: Yield: 74%, 91.5 mg; yellow solid; Mp: 150.8-152.8 °C ; $R_f = 0.5$ (EA: PE = 10: 90); ¹H NMR (CDCl₃, 400 MHz): δ 8.25 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.75 (d, J = 7.2 Hz, 1H), 7.58-7.50 (m, 3H),), 3.63 (s, 3H), 3.57 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 196.7, 137.2, 135.2, 134.3, 131.7, 129.1, 128.8, 127.4, 126.5, 125.9, 45.7, 42.3.

pyridin-3-yl dimethylcarbamodithioate (3bl)⁴: Yield: 78%, 77 mg; brown solid; Mp: 58-58.6 °C; $R_f = 0.5$ (EA: PE = 20: 80); ¹H NMR (CDCl₃, 400 MHz): δ 8.64 (d, J = 4.8 Hz, 1H), 8.58 (s, 1H), 7.76 (d, J = 8 Hz, 1H), 7.38-7.35 (m, 1H),), 3.52 (s, 3H), 3.49 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 195.8, 156.4, 150.4, 144.6, 129.4, 124.0, 45.9, 42.1.

2,2,6,6-tetramethyl-1-(4-nitrophenoxy)piperidine (4)^{8–10}: Yield: 43%, 60 mg; yellowish white; M.p: 73–75 °C; $R_f = 0.5$ (EA: PE = 4: 96); ¹H NMR (CDCl₃, 400 MHz): δ 8.15-8.12 (m, 2H), 7.28-7.25 (m, 2H), 1.66- 1.58 (m, 5H), 1.46- 1.42 (m, 1H), 1.23 (s, 6H), 0.98 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 168.8, 141.2, 125.7, 114.3, 61.0, 39.8, 32.4, 20.6, 17.0.

N,N-dimethylbenzo[d]thiazol-2-amine (6)¹¹: Yield: 82%, 73 mg; Brown solid, Mp: 83–85°C.; $R_f = 0.5$ (EA: PE = 15: 85); ¹H NMR (CDCl₃, 400 MHz): δ 7.59-7.56 (m, 2H), 7.31-7.26 (m, 1H), 7.07-7.03 (m, 2H), 3.16 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 168.8, 153.3, 131.2, 126.0, 121.0, 120.7, 118.8, 40.2.

4-(*N***-acetylsulfamoyl)phenyl dimethylcarbamodithioate (X1):** Yield: 71 %, 113 mg; white solid; Mp: 135-137 °C; $R_f = 0.5$ (EA: PE = 30: 70); ¹H NMR (CDCl₃, 400 MHz): δ 8.09-8.06 (m, 2H), 7.66 -7.63 (m, 2H), 3.55 (m, 3H), 3.51 (m, 3H), 2.07 (m,

3H); ¹³C NMR (CDCl₃, 100 MHz): δ 194.9, 168.5, 139.7, 138.9, 137.3, 128.7, 45.8, 42.4, 23.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for[C₁₁H₁₅N₂O₃S₃]⁺ : 319.0239; Found : 319.0212.

4-(*N***-acetylsulfamoyl)phenyl diethylcarbamodithioate (X2):** Yield: 74 %, 128 mg; white solid; Mp: 144-146 °C ; $R_f = 0.5$ (EA: PE = 25: 75); ¹H NMR (CDCl₃, 400 MHz): δ 9.17 (s, 1H), 8.07 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 4.03- 3.98 (m, 2H), 3.88 - 3.82 (m, 2H), 2.07 (m, 3H), 1.40 (t , J = 7.2 Hz, 2H), 1.28 (t , J = 7.6 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 193.2, 168.6, 139.5, 138.8, 137.4, 128.6, 50.0, 47.8, 23.7, 12.9, 11.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for[C₁₃H₁₉N₂O₃S₃]⁺ : 347.0552; Found : 347.0572.

4-(*N***-acetylsulfamoyl)phenyl dibutylcarbamodithioate (X3):** Yield: 78 %, 157 mg; white solid; Mp: 120-122 °C; $R_f = 0.5$ (EA: PE = 20: 80); ¹H NMR (CDCl₃, 400 MHz): δ 8.05 (d , J = 8.4 Hz, 2H), 7.63 (d , J = 8.4 Hz, 2H), 3.91 (t , J = 7.6 Hz, 2H), 3.75 (t , J = 7.6 Hz, 2H), 2.04 (m, 3H), 1.83 -1.76 (m, 2H), 1.74 -1.67 (m, 2H), 1.45-1.39 (m, 2H), 1.36-1.30 (m, 2H), 0.99 (t, J = 7.6 Hz, 3H), 0.92 (t, J = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 193.5, 168.9, 139.5, 138.8, 137.2, 128.5, 55.4, 53.5, 29.7, 28.4, 23.7, 20.1, 13.9, 13.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for[C₁₇H₂₇N₂O₃S₃]⁺: 403.1178; Found: 403.1195.

7. References:

- 1 S. D. Sarker, L. Nahar and Y. Kumarasamy, *Methods*, 2007, 42, 321–324.
- G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell and
 A. J. Olson, *J. Comput. Chem.*, 2009, 30, 2785–2791.
- 3 N. Guex, Protein Data Bank Quarterly Newsletter, 1996, 77, 7.
- 4 Z.-B. Dong, X. Liu and C. Bolm, *Org. Lett.*, 2017, **19**, 5916–5919.
- 5 Y. Wang, H. Shen, J. Qiu, M. Chen, W. Song, M. Zhao, L. Wang, F. Bai, H. Wang and Z. Wu, *Front. Chem.*,2022, **10**, 867806., DOI:10.3389/fchem.2022.867806.
- 6 W. Xu, F. Gao and Z.-B. Dong, *European J. Org. Chem.*, 2018, **2018**, 821–828.
- 7 C. Cheng, M. Zhao, M. Lai, K. Zhai, B. Shi, S. Wang, R. Luo, L. Zhang and Z. Wu, *Eur. J. Org.*, 2019, **2019**, 2941–2949.
- 8 D. Felipe-Blanco, F. Alonso and J. C. Gonzalez-Gomez, *Adv. Synth. Catal.*, 2017, **359**, 2857–2863.
- 9 Z. Xia and Q. Zhu, Org. Lett., 2013, 15, 4110–4113.
- 10 D. P. Hari, P. Schroll and B. König, J. Am. Chem. Soc., 2012, 134, 2958–2961.
- 11 W. Xu, M. T. Zeng, M. Liu, X. Liu, C. Z. Chang, H. Zhu and Z. B. Dong, *J. Sulphur Chem.*, 2017, **38**, 644–654.

8. NMR spectra [¹H, and ¹³C{¹H}] of synthesized products:

S28

S29

S33

1

S39

¹³C{1H} NMR: 100 MHz; Solvent: CDCl3

S42

S51

70

60 50

40 30 20

10 ppm

200 190 180 170 160 150 140 130 120 110 100 90 80

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

S63

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

S67

S69