Supporting Information

Practical conversion of gem-difluorocyclopropenes for the

chemodivergent assembly of fluorinated heterocyclic frameworks

Dongping Pan,^a Fu-Xiaomin Liu,^a Zhongyi Zeng,^a Junwei Ye,^a Ying Cai,^a Shengdong Wang,^a Zhi Zhou^{*a} and Wei Yi^{*a}

^aGuangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China

E-mail: zhouzhi@gzhmu.edu.cn and yiwei@gzhmu.edu.cn

Table of Contents

I.	General	S2
II.	Experimental Information and Characterization Data	S2
III.	Synthetic Application	S39
IV.	X-Ray Crystallographic Data	S62
V.	References	S66
VI.	Copies of ¹ H \ ¹³ C and ¹⁹ F NMR Spectra	S67

I. General

NMR spectra were recorded on JEOL 400 NMR (1H 400 MHz; 13C 100 MHz) in either CDCl₃ or DMSO-d₆. Abbreviations for data quoted are s, singlet; brs, broad singlet; d, doublet; t, triplet; dd, doublet of doublets; m, multiplet. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: $\delta_{\rm H}$ = 7.26 ppm, $\delta_{\rm C}$ = 77.16 ppm; *d*₆-DMSO: $\delta_{\rm H}$ = 2.50 ppm, $\delta_{\rm C}$ = 39.52 ppm). Mass spectra and high-resolution mass spectra were measured on an agilent TOF-G6230B mass spectrometer and Thermo-DFS mass spectrometer. Thin-layer chromatographies were done on pre-coated silica gel 60 F254 plates (Merck). Silica gel 60H (200-300 mesh) and preparative TLC (200x200 mm, 0.2-0.25 mm in thickness) manufactured by Qingdao Haiyang Chemical Group Co. (China) were used for general chromatography. Other chemicals were purchased from commercial suppliers and were dried and purified when necessary. gem-Difluorocyclopropenes^[1-4] were prepared according to published procedures. No attempts were made to optimize yields for substrate synthesis. Diastereomeric ratio (dr) was measured by ¹H and ¹⁹F NMR and indicated in ¹H NMR; PE: petrol ether; EA: ethyl acetate; DCM: dichloromethane; MeOH: methanol.

II. Experimental Information and Characterization Data

General procedure for the synthesis of 1-aminopyridinium ylides:

Method A^[5-10]: To a solution of pyridine, quinoline or isoquinoline derivative (6.0 mmol, 1 equiv) in acetonitrile (25 mL) was added O-(2,4-dinitrophenyl) hydroxylamine (6.6 mmol, 1.1 equiv). The reaction flask was sealed with rubber plug, and the reaction mixture was stirred for 24 h at room temperature, then upon filtering off the solvent. The orange solid product was obtained, which was carried out to the next step without further purification. The orange precipitate was dissolved in THF/

 H_2O (30 mL, 1/1, v/v), K_2CO_3 (21.0 mmol, 3.5 equiv) was added at room temperature, followed by the slow addition of propionyl chloride (12.0 mmol, 2 equiv). The reaction was monitored by TLC after 12 h, then the mixture was diluted with 20 mL of H_2O and extracted with DCM (10 x 3 mL). The combined organic phases were dried over anhydrous Na_2SO_4 , concentrated under reduced pressure, and purified by column chromatography on silica gel (DCM/CH₃OH = 20/1, v/v) to afford the corresponding product **1**.

Method B^[5-10]: In a 100 mL round bottom flask equipped with magnetic stir bar, *N*-aminopyridinium iodide (10 mmol, 1 equiv) was dissolved in aqueous NaOH (30 mL, 10% w/w) at 0 °C. The corresponding acyl chloride (20 mmol, 2 equiv) was added dropwise in 10 minutes and the resulting solution was allowed to warm to room temperature and stirred for 24 h. After completion, the suspension was extracted with DCM (100 x 3 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Purification was performed by column chromatography on silica gel to yield the desired imidoylides **1**.

The 1-aminopyridinium ylides derivatives **1a-z**, **1aa-ai** were known compounds and all characteristic data were in agreement with that reported.

(9-methyl-9H-pyrido[3,4-b]indol-2-ium-2-yl)(propionyl)amide (1aj)

This compound was synthesized following Method A using 9-methyl-9*H*- β -carboline (0.91 g, 5 mmol) in 75% (1.11 g) yield as a light yellow oil, $R_f = 0.2$ (DCM/MeOH = 20/1).

¹**H NMR (400 MHz, CDCl₃):** δ 9.08-9.01 (m, 1H), 8.26-8.21 (m, 1H), 8.17-8.01 (m, 2H), 7.75-7.63 (m, 1H), 7.53-7.43 (m, 1H), 7.37 (t, *J* = 7.8 Hz, 1H), 3.86 (s, 3H), 2.42 (q, *J* = 7.6 Hz, 2H), 1.31 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 178.6, 144.0, 136.4, 132.8, 130.6, 128.6, 127.1, 122.5, 121.5, 119.9, 116.0, 110.0, 30.0, 29.8, 11.2.

HRMS (ESI) calculated for C₁₅H₁₆N₃O ([M+H]⁺): 254.1288; found: 254.1283.

(3-(diethylcarbamoyl)pyridin-1-ium-1-yl)(propionyl)amide (1ak)

This compound was synthesized following Method A using Nikethamide (0.89 g, 5 mmol) in 89% (1.11 g) yield as light yellow oil, $R_f = 0.2$ (DCM/MeOH = 20/1).

¹**H NMR (400 MHz, CDCl₃):** δ 8.80 (s, 1H), 8.61 (d, *J* = 6.3 Hz, 1H), 7.92 (d, *J* = 7.9 Hz, 1H), 7.69 (dd, *J* = 7.7, 6.5 Hz, 1H), 3.69-3.47 (m, 2H), 3.45-3.29 (m, 2H), 2.34 (q, *J* = 7.6 Hz, 2H), 1.36-1.11 (m, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 178.5, 164.7, 142.6, 141.8, 135.5, 135.1, 126.1, 43.8, 40.1, 29.7, 14.3, 12.8, 10.9.

HRMS (ESI) calculated for $C_{13}H_{20}N_3O_2$ ([M+H]⁺): 250.1550; found: 250.1552.

(3-((3*S*,8*R*,9*S*,10*R*,13*S*,14*S*)-10,13-dimethyl-3-(propionyloxy)-2,3,4,7,8,9,10,11,12, 13,14,15-dodecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl)pyridin-1-ium-1-yl) (propionyl)amide (1al)

This compound was synthesized following Method A using Abiraterone (1.75 g, 5 mmol) in 80% (1.91 g) yield as light yellow oil, $R_f = 0.2$ (DCM/MeOH = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 8.63 (s, 1H), 8.47 (d, J = 6.2 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.53 (dd, J = 8.0, 6.3 Hz, 1H), 6.20 (dd, J = 3.1, 1.7 Hz, 1H), 5.41 (d, J = 5.1 Hz, 1H), 4.62 (tt, J = 10.2, 4.3 Hz, 1H), 2.39-2.26 (m, 8H), 2.14-1.99 (m, 3H), 1.911.84 (m, 2H), 1.78-1.44 (m, 7H), 1.24 (t, *J* = 7.6 Hz, 3H), 1.14 (t, *J* = 7.6 Hz, 3H), 1.08 (s, 3H), 1.05 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 178.3, 174.1, 148.8, 141.0, 140.7, 140.2, 136.4, 134.5, 133.9, 125.3, 122.1, 73.6, 57.5, 50.1, 47.6, 38.2, 37.0, 36.8, 35.0, 32.1, 31.5, 30.4, 29.8, 28.0, 27.8, 20.8, 19.3, 16.7, 11.1, 9.3.

HRMS (ESI) calculated for $C_{30}H_{41}N_2O_3$ ([M+H]⁺): 477.3112; found: 477.3117.

propionyl(5-((4-propionyl-1,4-diazepan-1-yl)sulfonyl)isoquinolin-2-ium-2-yl) amide (isomer) (1am)

This compound was synthesized following Method A using Fasudil Monohydrochloride Salt (1.64 g, 5 mmol) in 60% (2.51 g) yield as light yellow oil, $R_f = 0.2$ (DCM/MeOH = 20/1). A pair of inseparable keto-enol tautomerism isomers has been observed in NMR spectra.

¹**H NMR** (400 MHz, CDCl₃): δ 10.09-10.06 (m, 1H), 8.81-8.67 (m, 1H), 8.47-8.32 (m, 2H), 8.24 (d, *J* = 8.3 Hz, 1H), 7.85 (t, *J* = 7.9 Hz, 1H), 3.78-3.73 (m, 1H), 3.68 (q, *J* = 5.3, 2H), 3.62 (t, *J* = 6.4 Hz, 1H), 3.51-3.46 (m, 1H), 3.44 (t, *J* = 5.4 Hz, 2H), 3.36 (t, *J* = 6.1 Hz, 1H), 2.40 (q, *J* = 7.6 Hz, 2H), 2.31 (q, *J* = 7.3 Hz, 2H), 2.09-1.93 (m, 2H), 1.27 (t, *J* = 7.5 Hz, 3H), 1.17-1.12 (m, 3H).

¹³C NMR (400 MHz, CDCl₃): δ 178.77, 178.73, 173.5, 173.3, 145.00, 144.98, 137.7, 137.6, 135.5, 135.4, 134.4, 134.3, 133.48, 133.47, 129.5, 129.40, 129.35, 128.88, 128.86, 121.5, 121.4, 50.4, 49.7, 49.3, 48.7, 47.8, 47.1, 46.7, 44.7, 30.17, 30.15, 29.3, 27.8, 26.5, 26.1, 10.9, 9.42, 9.36.

HRMS (ESI) calculated for $C_{20}H_{27}N_4O_4S$ ([M+H]⁺): 419.1746; found: 419.1750.

This compound was synthesized following Method B in 45% (0.86 g) yield as light yellow oil, $R_f = 0.2$ (DCM/MeOH = 20/1).

¹**H NMR (400 MHz, CDCl₃):** δ 8.79-8.46 (m, 2H), 7.89 (t, *J* = 7.7 Hz, 1H), 7.63 (t, *J* = 7.1 Hz, 2H), 7.14 (d, *J* = 8.5 Hz, 2H), 6.62 (d, *J* = 8.5 Hz, 2H), 3.69 (t, *J* = 7.0 Hz, 4H), 3.61 (t, *J* = 6.4 Hz, 4H), 2.64 (t, *J* = 7.7 Hz, 2H), 2.35 (t, *J* = 7.5 Hz, 2H), 2.01 (p, *J* = 7.7 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 177.3, 144.2, 143.4, 137.2, 131.9, 129.9, 126.1, 112.2, 53.8, 40.7, 36.2, 34.8, 28.7.

HRMS (ESI) calculated for $C_{19}H_{24}Cl_2N_3O$ ([M+H]⁺): 380.1291; found: 380.1296.

General procedure for the [3+2] cycloaddition of 1-amino ylides with *gem*difluorocyclopropene:

In a 10 mL Schlenk tube was added 1-amino ylides 1 (0.2 mmol, 1 equiv) and *gem*difluorocyclopropene 2 (0.2 mmol, 1 equiv), the resulted mixture was sonicated in neat at room temperature using a ultrasonic cleaner (40 kHz) for 6 h without exclusion of air or moisture. Afterwards, the resulted mixture was diluted with EA and purified by preparative TLC to afford the corresponding pyrazolo[1,5-*a*]pyridine derivatives **3**-**8**.

Characterization of pyrazolo[1,5-*a*]pyridine products:

(The ratio of dr and rr isomers was determined by ¹H NMR and ¹⁹F NMR and indicated in ¹H NMR and ¹⁹F NMR.)

1-(1,1-difluoro-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4]pyrazolo[1,5*a*]pyridin-2-yl)propan-1-one (3aa)

This compound was obtained in 78% yield (47.1 mg, dr = 7:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.34-7.27 (m, 5H), 6.08 (d, *J* = 7.8 Hz, 1H), 5.74 (dd, *J* = 9.9, 5.4 Hz, 1H), 5.17-5.05 (m, 2H), 4.45 (d, *J* = 4.8 Hz, 1H), 3.75 (d, *J* = 7.1 Hz, 1H), 2.58-2.45 (m, 2H), 1.16 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.0, 136.0, 130.0, 129.9, 128.7, 128.6, 123.3, 117.4, 112.0 (dd, *J* = 296.2, 291.8 Hz), 103.9, 60.9 (dd, *J* = 5.4, 1.3 Hz), 53.6 (dd, *J* = 11.6, 4.8 Hz), 46.0 (t, *J* = 12.9 Hz), 27.2, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.99 (dd, J = 150.8, 6.9 Hz), -148.73 (d, J = 151.1 Hz).

HRMS (ESI) calculated for $C_{17}H_{17}F_2N_2O$ ([M+H]⁺): 303.1304; found: 303.1297. ¹H-¹H NOESY of 3aa:

Crude ¹H-NMR spectrum of 3aa:

1-(1,1-difluoro-7b-(*o*-tolyl)-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4]pyrazolo [1,5-*a*]pyridine-2-yl)propan-1-one (3ab)

This compound was obtained in 66% yield (41.7 mg, dr = 6:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.26-7.19 (m, 3H), 7.14-7.09 (m, 1H), 6.06 (dt, *J* = 7.7, 0.9 Hz, 1H), 5.68 (dd, *J* = 9.8, 5.7 Hz, 1H), 5.17-5.12 (m, 1H), 5.04-4.99 (m, 1H), 4.46 (d, *J* = 5.1 Hz, 1H), 3.80 (dd, *J* = 7.0, 1.7 Hz, 1H), 2.58-2.48 (m, 2H), 2.29 (s, 3H), 1.17 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.9, 138.0, 136.2, 130.0, 129.09, 129.06, 128.9, 126.1, 123.6, 116.7, 112.1 (dd, *J* = 297.5, 289.8 Hz), 103.9, 60.7 (dd, *J* = 4.9, 1.3 Hz), 52.9 (dd, *J* = 11.4, 5.5 Hz), 45.0 (dd, *J* = 13.4, 12.0 Hz), 27.2, 19.6, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -122.39 (dd, J = 151.2, 10.6 Hz), -149.77 (d, J =

152.2 Hz).

HRMS (ESI) calculated for $C_{18}H_{19}F_2N_2O$ ([M+H]⁺): 317.1460; found: 317.1454.

1-(1,1-difluoro-7b-(m-tolyl)-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4]pyrazolo [1,5-*a*]pyridin-2-yl)propan-1-one (3ac)

This compound was obtained in 68% yield (43.0 mg, dr = 6:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.3$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.23-7.18 (m, 1H), 7.13-7.07 (m, 3H), 6.07 (d, *J* = 7.7 Hz, 1H), 5.75 (dd, *J* = 10.0, 5.6 Hz, 1H), 5.14 (dd, *J* = 9.8, 5.1 Hz, 1H), 5.11-5.06 (m, 1H), 4.43 (d, *J* = 5.0 Hz, 1H), 3.74 (d, *J* = 7.1 Hz, 1H), 2.61-2.47 (m, 2H), 2.33 (s, 3H), 1.16 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.9, 138.2, 136.0, 130.57, 130.55, 129.4, 128.4, 126.9, 123.2, 117.4, 112.1 (dd, *J* = 296.1, 291.6 Hz), 103.8, 60.9 (dd, *J* = 5.5, 1.5 Hz), 53.5 (dd, *J* = 11.4, 5.1 Hz), 45.9 (t, *J* = 12.8 Hz), 27.2, 21.5, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.04 (dd, J = 150.2, 10.3 Hz), -148.74 (d, J = 149.7 Hz).

HRMS (ESI) calculated for $C_{18}H_{19}F_2N_2O$ ([M+H]⁺): 317.1460; found: 37.1455.

1-(1,1-difluoro-7b-(p-tolyl)-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4]pyrazolo [1,5-*a*]pyridin-2-yl)propan-1-one (3ad)

This compound was obtained in 70% yield (44.2 mg, dr = 7:1, in 0.2 mmol scale) as light yellow oil, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer

were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.16-7.11 (m, 4H), 6.07 (d, *J* = 7.7 Hz, 1H), 5.76 (dd, *J* = 9.9, 5.6 Hz, 1H), 5.16-5.11 (m, 1H), 5.11-5.07 (m, 1H), 4.42 (d, *J* = 5.1 Hz, 1H), 3.72 (dd, *J* = 7.2, 1.2 Hz, 1H), 2.58-2.46 (m, 2H), 2.34 (s, 3H), 1.16 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.0, 138.5, 136.0, 129.82, 129.80, 129.3, 123.2, 117.5, 112.1 (dd, *J* = 295.8, 291.6 Hz), 103.8, 60.9 (dd, *J* = 5.5, 1.4 Hz), 53.3 (dd, *J* = 11.4, 5.0 Hz), 46.0 (dd, *J* = 13.1, 12.4 Hz), 27.2, 21.4, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.06 (dd, J = 150.8, 10.3 Hz), -148.79 (d, J = 151.4 Hz).

HRMS (ESI) calculated for $C_{18}H_{19}F_2N_2O$ ([M+H]⁺): 317.1460; found: 317.1454.

1-(1,1-difluoro-7b-(4-fluorophenyl)-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)propan-1-one (3ae)

This compound was obtained in 61% yield (39.0 mg, dr = 7:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.27-7.23 (m, 2H), 7.02-6.97 (m, 2H), 6.09-6.05 (m, 1H), 5.76 (dd, *J* = 9.4, 5.6 Hz, 1H), 5.14-5.07 (m, 2H), 4.41 (d, *J* = 5.2 Hz, 1H), 3.71 (d, *J* = 7.2 Hz, 1H), 2.55-2.44 (m, 2H), 1.15 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.9, 162.8 (d, J = 246.7 Hz), 136.0, 131.7 (dd, J = 8.3, 1.8 Hz), 123.4, 117.3, 115.8, 115.5, 112.0 (dd, J = 296.0, 291.7 Hz), 103.9, 60.8 (d, J = 5.5 Hz), 52.8 (dd, J = 11.7, 5.1 Hz), 46.2 (t, J = 12.8 Hz), 27.2, 8.8.

¹⁹F NMR (376 MHz, CDCl₃): δ -112.55, -120.89 (dd, J = 151.6, 9.3 Hz), -148.76 (d, J = 151.0 Hz).

HRMS (ESI) calculated for $C_{17}H_{16}F_3N_2O$ ([M+H]⁺): 321.1210; found: 321.1204.

1-(7b-(4-chlorophenyl)-1,1-difluoro-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)propan-1-one (3af)

This compound was obtained in 70% yield (47.1 mg, dr = 7:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.3$. NMR spectra of the major isomer were presented.

¹**H NMR** (400 MHz, CDCl₃): δ 7.30 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 6.08 (d, J = 7.5 Hz, 1H), 5.78 (dd, J = 9.8, 5.7 Hz, 1H), 5.15-5.08 (m, 2H), 4.43 (d, J = 5.0 Hz, 1H), 3.72 (d, J = 7.1 Hz, 1H), 2.57-2.46 (m, 2H), 1.16 (t, J = 7.5 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃): δ 176.9, 136.0, 134.6, 131.32, 131.30, 128.9, 123.6, 117.2, 111.8 (dd, J = 296.3, 291.7 Hz), 103.9, 60.8 (dd, J = 5.4, 1.2 Hz), 52.9 (dd, J =12.0, 5.0 Hz), 46.1 (t, J = 12.8 Hz), 27.2, 8.8.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.82 (dd, J = 152.0, 9.8 Hz), -148.70 (d, J = 152.0 Hz).

HRMS (ESI) calculated for C₁₇H₁₆ClF₂N₂O ([M+H]⁺): 337.0914; found: 337.0909.

1-(7b-(4-bromophenyl)-1,1-difluoro-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)propan-1-one (3ag)

This compound was obtained in 71% yield (53.9 mg, dr = 7:1, in 0.2 mmol scale) as light yellow oil, Eluent: PE/EA = 5/1. $R_f = 0.5$. NMR spectra of the major isomer were presented.

¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 6.09-6.04 (m, 1H), 5.78 (dd, *J* = 9.8, 5.7 Hz, 1H), 5.16-5.08 (m, 2H), 4.43 (d, *J* = 5.0

Hz, 1H), 3.72 (dd, J = 7.3, 1.1 Hz, 1H), 2.56-2.45 (m, 2H), 1.15 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.8, 136.0, 131.8, 131.61, 131.59, 123.6, 122.8, 117.1, 111.8 (dd, J = 296.4, 291.5 Hz), 103.9, 60.8 (dd, J = 5.7, 1.3 Hz), 53.0 (dd, J = 11.8, 4.8 Hz), 46.0 (t, J = 12.7 Hz), 27.2, 8.8.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.78 (dd, J = 150.6, 10.3 Hz), -148.68 (d, J = 151.8 Hz)

HRMS (ESI) calculated for $C_{17}H_{16}BrF_2N_2O$ ([M+H]⁺): 381.0409; found: 381.0403. Crude ¹H-NMR spectrum of 3ag:

1-(7b-([1,1'-biphenyl]-4-yl)-1,1-difluoro-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)propan-1-one (3ah)

This compound was obtained in 66% yield (49.9 mg, dr = 7:1, in 0.2 mmol scale) as light yellow oil, Eluent: PE/EA = 5/1. $R_f = 0.5$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.60-7.53 (m, 5H), 7.45-7.41 (m, 2H), 7.35-7.33 (m, 2H), 6.09 (dt, *J* = 7.7, 0.9 Hz, 1H), 5.78 (dd, *J* = 9.9, 5.7 Hz, 1H), 5.21-5.15 (m, 1H), 5.14-5.09 (m, 1H), 4.48 (d, *J* = 5.1 Hz, 1H), 3.78 (dd, *J* = 7.2, 1.2 Hz, 1H), 2.58-2.46 (m, 2H), 1.17 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.9, 141.4, 140.4, 136.0, 130.37, 130.35, 128.9, 127.7, 127.23, 127.15, 123.4, 117.4, 112.1 (dd, *J* = 296.3, 291.8 Hz), 103.8, 61.0 (dd, *J* = 5.4, 1.8 Hz), 53.3 (dd, *J* = 11.6, 5.0 Hz), 46.1 (t, *J* = 12.7 Hz), 27.2, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.83 (dd, J = 150.1, 10.5 Hz), -148.59 (d, J = 150.1 Hz)

HRMS (ESI) calculated for C₂₃H₂₁F₂N₂O ([M+H]⁺): 379.1617; found: 379.1612.

1-(1,1-difluoro-7b-(naphthalen-2-yl)-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)propan-1-one (3ai)

This compound was obtained in 68% yield (47.8 mg, dr = 7:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.75-7.67 (m, 5H), 7.42-7.38 (m, 2H), 7.30-7.25 (m, 1H), 6.04 (d, *J* = 7.6 Hz, 1H), 5.58 (dd, *J* = 9.8, 5.7 Hz, 1H), 5.08-5.00 (m, 2H), 4.44 (d, *J* = 5.0 Hz, 1H), 3.77 (d, *J* = 7.3 Hz, 1H), 2.53-2.40 (m, 2H), 1.10 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.0, 136.0, 133.2, 133.1, 129.3, 128.3, 128.0, 127.8, 127.23, 127.21, 126.7, 126.6, 123.4, 117.3, 112.2 (dd, *J* = 296.1, 291.8 Hz), 103.8, 61.0 (dd, *J* = 5.4, 1.4 Hz), 53.6 (dd, *J* = 11.5, 4.9 Hz), 46.1 (t, *J* = 12.3 Hz), 27.2, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.72 (dd, J = 150.5, 7.2 Hz), -148.40 (d, J = 151.6 Hz).

HRMS (ESI) calculated for $C_{21}H_{19}F_2N_2O$ ([M+H]⁺): 353.1460; found: 353.1453.

1-(1,1-difluoro-7b-(thiophen-2-yl)-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)propan-1-one (3aj)

This compound was obtained in 79% yield (48.5 mg, dr = 8:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.29-7.27 (m, 1H), 7.00-6.95 (m, 2H), 6.06 (dt, *J* = 7.7, 1.0 Hz, 1H), 5.87 (dd, *J* = 9.8, 5.7 Hz, 1H), 5.31-5.24 (m, 1H), 5.15-5.09 (m, 1H), 4.38 (d, *J* = 5.2 Hz, 1H), 3.81 (dd, *J* = 7.0, 1.2 Hz, 1H), 2.56-2.46 (m, 2H), 1.15 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.8, 135.9, 129.81, 129.80, 127.0, 126.8, 124.0, 116.8, 111.7 (dd, *J* = 296.7, 291.5 Hz), 104.1, 60.9 (dd, *J* = 5.4, 1.6 Hz), 48.4 (dd, *J* = 12.8, 5.4 Hz), 47.3 (dd, *J* = 13.2, 11.8 Hz), 27.2, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.28 (dd, J = 148.9, 9.0 Hz), -148.35 (d, J = 149.0 Hz).

HRMS (ESI) calculated for $C_{15}H_{15}F_2N_2O$ ([M+H]⁺): 309.0868; found: 309.0863.

1-(1,1-difluoro-7b-(thiophen-3-yl)-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)propan-1-one (3ak)

This compound was obtained in 65% yield (40.1 mg, dr = 7:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.3$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.28-7.26 (m, 1H), 7.25-7.23 (m, 1H), 6.98 (dd, *J* = 8.8, 1.2 Hz, 1H), 6.07 (d, *J* = 7.7 Hz, 1H), 5.85-5.80 (m, 1H), 5.19-5.11 (m, 2H), 4.39 (d, *J* = 5.1 Hz, 1H), 3.68 (dd, 1H), 2.54-2.45 (m, 2H), 1.16 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.9, 136.2, 129.00, 128.98, 126.1, 125.8, 123.5, 117.4, 112.0 (dd, *J* = 295.7, 292.7 Hz), 103.7, 60.7 (dd, *J* = 5.6, 1.6 Hz), 48.9 (dd, *J* = 11.9, 5.1 Hz), 46.3 (dd, *J* = 13.2, 12.3 Hz), 27.2, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.83 (dd, J = 150.5, 9.2 Hz), -148.80 (d, J = 150.3 Hz).

HRMS (ESI) calculated for $C_{15}H_{15}F_2N_2O$ ([M+H]⁺): 309.0868; found: 309.0861.

1-(1,1-difluoro-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4]pyrazolo[1,5*a*]pyridin-2-yl)-3-phenylpropan-1-one (3ba)

This compound was obtained in 72% yield (54.4 mg, dr = 8:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.5$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.25-7.23 (m, 5H), 7.21-7.16 (m, 5H), 5.81 (d, *J* = 7.6 Hz, 1H), 5.66-5.60 (m, 1H), 5.05-4.99 (m, 1H), 4.98-4.94 (m, 1H), 4.28 (d, *J* = 4.3 Hz, 1H), 3.67 (d, *J* = 6.9 Hz, 1H), 2.94-2.88 (m, 2H), 2.82-2.68 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 175.2, 141.0, 135.8, 129.89, 129.88, 128.64, 128.59, 128.58, 128.55, 126.3, 123.2, 117.3, 111.9 (dd, *J* = 296.5, 291.7 Hz), 104.0, 60.9 (dd, *J* = 5.5, 1.0 Hz), 53.5 (dd, *J* = 11.6, 5.1 Hz), 45.9 (t, *J* = 12.9 Hz), 35.4, 30.7.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.93 (dd, J = 150.6, 6.8 Hz), -148.38 (d, J = 150.1 Hz).

HRMS (ESI) calculated for C₂₃H₂₁F₂N₂O ([M+H]⁺): 379.1617; found: 379.1612. **Crude** ¹**H-NMR spectrum of 3ba:**

(*E*)-1-(1,1-difluoro-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4]pyrazolo [1,5-*a*]pyridin-2-yl)but-2-en-1-one (3ca)

This compound was obtained in 57% yield (35.8 mg, dr = 10:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.3$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.33-7.28 (m, 5H), 7.15-7.05 (m, 1H), 6.55-6.48 (m, 1H), 6.08 (d, *J* = 7.6 Hz, 1H), 5.77-5.72 (m, 1H), 5.15-5.07 (m, 2H), 4.47 (d, *J* = 5.0 Hz, 1H), 3.82 (d, *J* = 7.0 Hz, 1H), 1.92 (d, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 167.8, 144.9, 136.2, 129.91, 129.89, 128.6, 128.5, 123.2, 120.9, 117.3, 112.1 (dd, *J* = 296.7, 291.6 Hz), 103.9, 60.9 (dd, *J* = 5.4, 1.4 Hz), 53.3 (dd, *J* = 11.5, 5.1 Hz), 45.9 (dd, *J* = 13.3, 12.6 Hz), 18.4.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.90 (dd, J = 151.0, 10.7 Hz), -148.64 (d, J = 149.5 Hz).

HRMS (ESI) calculated for $C_{18}H_{17}F_2N_2O$ ([M+H]⁺): 315.1304; found: 315.1298.

1-(1,1-difluoro-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4]pyrazolo[1,5*a*]pyridin-2-yl)pentan-1-one (3da)

This compound was obtained in 82% yield (54.1 mg, dr = 7:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.32-7.26 (m, 5H), 6.07 (d, *J* = 7.7 Hz, 1H), 5.74 (dd, *J* = 10.0, 5.4 Hz, 1H), 5.17-5.06 (m, 2H), 4.44 (d, *J* = 5.0 Hz, 1H), 3.75 (d, *J* = 7.2 Hz, 1H), 2.58-2.43 (m, 2H), 1.68-1.58 (m, 2H), 1.41-1.34 (m, 2H), 0.93 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.2, 136.1, 129.92, 129.90, 128.62, 128.55, 123.3, 117.4, 112.1 (dd, *J* = 296.3, 291.7 Hz), 103.8, 60.9 (dd, *J* = 5.4, 1.4 Hz), 53.5 (dd, *J* = 11.5, 5.0 Hz), 45.9 (t, *J* = 13.2 Hz), 33.4, 26.7, 22.5, 14.0.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.97 (dd, J = 150.8, 9.3 Hz), -148.58 (d, J = 151.5 Hz)

HRMS (ESI) calculated for $C_{19}H_{21}F_2N_2O$ ([M+H]⁺): 331.1617; found: 331.1610.

cyclopentyl(1,1-difluoro-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)methanone (3ea)

This compound was obtained in 71% yield (48.5 mg, dr = 9:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.32-7.26 (m, 5H), 6.12-6.08 (m, 1H), 5.74 (dd, *J* = 9.8, 5.7 Hz, 1H), 5.17-5.06 (m, 2H), 4.43 (d, *J* = 5.0 Hz, 1H), 3.75 (d, *J* = 6.5 Hz, 1H), 3.29-3.06 (m, 1H), 1.92-1.87 (m, 2H), 1.77-1.52 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 179.4, 136.5, 129.94, 129.92, 128.6, 128.5, 123.3, 117.3, 112.1 (dd, *J* = 296.2, 291.5 Hz), 103.8, 61.0 (dd, *J* = 5.4, 1.4 Hz), 53.5 (dd, *J* = 11.5, 5.1 Hz), 46.2 (t, *J* = 12.8 Hz), 42.2, 30.0, 29.8, 26.3, 26.1.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.73 (dd, J = 150.7, 9.3 Hz), -148.93 (d, J = 150.8 Hz).

HRMS (ESI) calculated for $C_{20}H_{21}F_2N_2O$ ([M+H]⁺): 343.1617; found: 343.1611.

cyclohexyl(1,1-difluoro-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)methanone (3fa)

This compound was obtained in 75% yield (53.4 mg, dr = 10:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.33-7.27 (m, 5H), 6.09 (dt, *J* = 7.7, 1.0 Hz, 1H), 5.74 (dd, *J* = 9.8, 5.7 Hz, 1H), 5.17-5.12 (m, 1H), 5.12-5.08 (m, 1H), 4.44 (d, *J* = 5.1 Hz, 1H), 3.75 (dd, *J* = 7.3, 1.4 Hz, 1H), 2.87-2.69 (m, 1H), 1.81-1.57 (m, 6H), 1.43-1.26 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 178.9, 136.4, 129.90, 129.88, 128.6, 128.5, 123.2, 117.4, 111.9 (dd, *J* = 296.2, 291.6 Hz), 103.9, 61.1 (dd, *J* = 5.4, 1.5 Hz), 53.3 (dd, *J* = 11.5, 5.1 Hz), 46.1 (dd, *J* = 13.1, 12.4 Hz), 41.3, 29.0, 28.6, 25.8, 25.7, 25.5.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.12 (dd, J = 150.5, 9.3 Hz), -149.21 (d, J = 150.0 Hz)

HRMS (ESI) calculated for $C_{21}H_{23}F_2N_2O$ ([M+H]⁺): 357.1773; found: 357.1765.

1-(1,1-difluoro-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4]pyrazolo[1,5*a*]pyridin-2-yl)-3,3-dimethylbutan-1-one (3ga)

This compound was obtained in 66% yield (45.5 mg, dr = 8:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.6$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.25-7.18 (m, 5H), 6.01 (d, *J* = 7.7 Hz, 1H), 5.66 (dd, *J* = 9.9, 5.4 Hz, 1H), 5.10-4.97 (m, 2H), 4.35 (d, *J* = 5.0 Hz, 1H), 3.69 (d, *J* = 7.1 Hz, 1H), 2.47 (d, *J* = 14.3 Hz, 1H), 2.27 (d, *J* = 14.1 Hz, 1H), 1.01 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 174.3, 136.3, 129.92, 129.90, 128.6, 128.5, 123.3, 117.4, 112.1 (dd, *J* = 296.8, 291.6 Hz), 104.1, 60.9 (d, *J* = 5.5 Hz), 53.3 (dd, *J* = 11.5, 5.4 Hz), 45.8 (t, *J* = 13.2 Hz), 45.0, 31.4, 29.8.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.81 (dd, J = 150.9, 7.7 Hz), -147.89 (d, J = 150.9 Hz).

HRMS (ESI) calculated for C₂₀H₂₃F₂N₂O ([M+H]⁺): 345.1773; found: 345.1768.

1-(1,1-difluoro-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4]pyrazolo[1,5*a*]pyridin-2-yl)-2-methylpropan-1-one (3ha)

This compound was obtained in 53% yield (33.3 mg, dr = 9:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.5$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.35-7.31 (m, 3H), 7.29-7.26 (m, 2H), 6.10 (d, *J* = 7.5 Hz, 1H), 5.75 (dd, *J* = 9.8, 5.5 Hz, 1H), 5.18-5.08 (m, 2H), 4.46 (d, *J* = 5.1 Hz, 1H), 3.76 (d, *J* = 7.3 Hz, 1H), 3.12-2.99 (m, 1H), 1.20 (d, *J* = 6.8 Hz, 3H), 1.10 (d, *J* =

6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 180.0, 136.3, 129.93, 129.91, 128.63, 128.56, 123.3, 117.4, 112.0 (dd, *J* = 296.0, 291.7 Hz), 104.0, 61.0 (dd, *J* = 5.4, 1.5 Hz), 53.4 (dd, *J* = 11.5, 5.0 Hz), 46.1 (dd, *J* = 13.0, 12.3 Hz), 31.7, 19.1, 18.8.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.02 (dd, J = 151.0, 9.3 Hz), -149.29 (d, J = 149.3 Hz).

HRMS (ESI) calculated for $C_{18}H_{19}F_2N_2O$ ([M+H]⁺): 317.1460; found: 317.1460.

1-(1,1-difluoro-5,7-dimethyl-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)propan-1-one (3ia)

This compound was obtained in 60% yield (39.6 mg, dr = 7:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.3$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.29-7.25 (m, 5H), 5.74 (s, 1H), 5.47 (s, 1H), 4.13 (s, 1H), 3.68 (dd, *J* = 7.4, 1.1 Hz, 1H), 2.56-2.41 (m, 2H), 1.66 (s, 3H), 1.42 (s, 3H), 1.14 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.4, 130.60, 130.58, 128.7, 128.5, 128.3, 127.4, 124.3, 113.3, 112.1 (dd, J = 295.3, 292.8 Hz), 66.0 (dd, J = 5.4, 1.6 Hz), 52.3 (dd, J = 11.9, 4.7 Hz), 47.4 (t, J = 12.9 Hz), 27.3, 21.1, 17.6, 9.0.

¹⁹F NMR (376 MHz, CDCl₃): δ -119.93 (dd, J = 150.6, 9.1 Hz), -148.17 (d, J = 151.1 Hz).

HRMS (ESI) calculated for $C_{19}H_{21}F_2N_2O$ ([M+H]⁺): 331.1617; found: 331.1618.

1-(1,1-difluoro-4-methyl-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)propan-1-one (3ja)

This compound was obtained in 58% yield (36.6 mg, dr = 4:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.3$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.32-7.29 (m, 3H), 7.24-7.20 (m, 2H), 5.71-5.67 (m, 1H), 5.13 (dd, *J* = 9.8, 5.2 Hz, 1H), 4.99-4.96 (m, 1H), 4.38 (d, *J* = 5.2 Hz, 1H), 3.70 (dd, *J* = 7.3, 1.6 Hz, 1H), 2.63-2.52 (m, 2H), 1.94 (s, 3H), 1.15 (t, *J* = 7.5 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃):** δ 178.2, 142.6, 129.93, 129.91, 128.6, 128.5, 124.5, 115.7, 112.3 (dd, *J* = 298.4, 293.2 Hz), 102.6, 62.7 (dd, *J* = 5.8, 1.5 Hz), 54.0 (dd, *J* = 11.5, 4.6 Hz), 45.8 (t, *J* = 12.7 Hz), 27.1, 18.5, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -119.73 (dd, J = 150.6, 9.2 Hz), -147.94 (d, J = 151.9 Hz).

HRMS (ESI) calculated for C₁₈H₁₉F₂N₂O ([M+H]⁺): 317.1460; found: 317.1460.

1-(1,1-difluoro-5-methyl-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)propan-1-one (3ka)

This compound was obtained in 62% yield (39.2 mg, dr = 8:1, rr = 7:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.37-7.34 (m, 2H), 7.31-7.29 (m, 3H), 6.01 (d, *J* = 7.7 Hz, 1H), 5.59 (d, *J* = 5.1 Hz, 1H), 5.14 (dd, *J* = 7.6, 5.9 Hz, 1H), 4.23 (s, 1H), 3.68 (dd, *J* = 7.4, 1.4 Hz, 1H), 2.57-2.47 (m, 2H), 1.40 (s, 3H), 1.16 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.7, 133.4, 130.73, 130.71, 128.6, 128.3, 127.0, 120.1, 112.2 (dd, *J* = 294.2, 293.4 Hz), 104.3, 66.1 (dd, *J* = 5.7, 1.4 Hz), 52.8 (dd, *J* = 11.7, 4.7 Hz), 47.3 (t, *J* = 12.7 Hz), 27.2, 21.2, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -119.62 (dd, J = 151.1, 9.3 Hz), -148.13 (d, J = 151.6 Hz).

HRMS (ESI) calculated for $C_{18}H_{19}F_2N_2O$ ([M+H]⁺): 317.1460; found: 317.1459.

1-(1,1-difluoro-6-methyl-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)propan-1-one (3la)

This compound was obtained in 82% yield (51.8 mg, dr = 7:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.31-7.29 (m, 3H), 7.26-7.24 (m, 2H), 6.05 (d, *J* = 7.7 Hz, 1H), 4.98 (dd, *J* = 7.7, 1.8 Hz, 1H), 4.83-4.79 (m, 1H), 4.38 (dd, *J* = 5.1, 1.3 Hz, 1H), 3.76 (dd, *J* = 7.2, 1.6 Hz, 1H), 2.57-2.46 (m, 2H), 1.48 (s, 3H), 1.15 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.0, 135.6, 131.8, 129.88, 129.86, 128.5, 128.4, 112.4, 112.0 (dd, *J* = 295.7, 293.8 Hz), 107.9, 61.5 (dd, *J* = 5.4, 1.4 Hz), 53.4 (dd, *J* = 11.5, 4.6 Hz), 46.2 (dd, *J* = 13.2, 12.5 Hz), 27.2, 20.8, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.24 (dd, J = 151.1, 10.7 Hz), -148.72 (d, J = 151.1 Hz).

HRMS (ESI) calculated for $C_{18}H_{19}F_2N_2O$ ([M+H]⁺): 317.1460; found: 317.1460.

1-(1,1-difluoro-6-methyl-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)propan-1-one (3ma)

This compound was obtained in 75% yield (53.7 mg, dr = 7:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.28-7.23 (m, 5H), 6.06 (dd, *J* = 8.0, 0.9 Hz, 1H), 5.18 (dd, *J* = 8.0, 2.2 Hz, 1H), 4.90-4.86 (m, 1H), 4.37 (d, *J* = 5.3 Hz, 1H), 3.78 (dd, *J* = 7.2, 1.5 Hz, 1H), 2.59-2.46 (m, 2H), 1.15 (t, *J* = 7.5 Hz, 3H), 0.72 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 176.9, 143.7, 135.7, 129.85, 129.84, 128.4, 128.3, 112.1 (dd, J = 296.3, 291.4 Hz), 109.1, 105.3, 61.2 (dd, J = 5.2, 1.4 Hz), 53.5 (dd, J = 11.7, 4.8 Hz), 45.6 (t, J = 12.9 Hz), 33.6, 28.1, 27.2, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.41 (dd, J = 150.8, 10.0 Hz), -148.65 (d, J = 151.8 Hz).

HRMS (ESI) calculated for C₂₁H₂₅F₂N₂O ([M+H]⁺): 359.1930; found: 359.1928.

1-(1,1-difluoro-6,7b-diphenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4]pyrazolo [1,5-*a*]pyridin-2-yl)propan-1-one (3na)

This compound was obtained in 65% yield (49.1 mg, dr = 7:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.5$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.33-7.29 (m, 5H), 7.22-7.19 (m, 3H), 6.87 (dd, *J* = 6.6, 3.0 Hz, 2H), 6.21 (d, *J* = 7.8 Hz, 1H), 5.42 (dd, *J* = 7.9, 1.9 Hz, 1H), 5.24-5.20 (m, 1H), 4.58 (d, *J* = 5.3 Hz, 1H), 3.83 (d, *J* = 7.0 Hz, 1H), 2.60-2.46 (m, 2H), 1.18 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.0, 138.9, 136.7, 135.6, 129.82, 129.80, 128.7, 128.6, 128.5, 128.0, 125.6, 113.5, 112.0 (dd, *J* = 297.6, 293.4 Hz), 106.0, 61.3 (dd, *J* = 5.5, 1.4 Hz), 53.7 (dd, *J* = 11.7, 5.0 Hz), 46.0 (dd, *J* = 13.1, 12.5 Hz), 27.3, 8.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -121.17 (dd, *J* = 151.4, 9.3 Hz), -148.35 (d, *J* = 151.3 Hz).

HRMS (ESI) calculated for $C_{23}H_{21}F_2N_2O$ ([M+H]⁺): 379.1617; found: 379.1617.

1-(6-benzyl-1,1-difluoro-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]pyridin-2-yl)propan-1-one (3oa)

This compound was obtained in 65% yield (50.9 mg, dr = 7:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.3$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.40-7.33 (m, 3H), 7.23 (t, *J* = 7.1 Hz, 2H), 7.15-7.12 (m, 3H), 6.59-6.54 (m, 2H), 6.04 (d, *J* = 7.8 Hz, 1H), 4.92 (dd, *J* = 7.8, 1.9 Hz, 1H), 4.85 (d, *J* = 5.1 Hz, 1H), 4.39 (d, *J* = 5.2 Hz, 1H), 3.79 (d, *J* = 7.0 Hz, 1H), 3.18-3.04 (m, 2H), 2.56-2.44 (m, 2H), 1.15 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.9, 137.8, 136.2, 135.1, 129.85, 129.84, 129.1, 128.7, 128.5, 128.4, 126.4, 113.3, 112.1 (dd, *J* = 297.4, 295.4 Hz), 106.6, 61.3 (d, *J* = 4.7 Hz), 53.4 (dd, *J* = 11.4, 5.1 Hz), 45.8 (t, *J* = 12.9 Hz), 41.0, 27.2, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.60 (dd, J = 150.9, 9.3 Hz), -148.75 (d, J = 149.9 Hz).

HRMS (ESI) calculated for C₂₄H₂₃F₂N₂O ([M+H]⁺): 393.1773; found: 393.1778.

1-(1,1-difluoro-7b-phenyl-6-(trifluoromethyl)-1,1a,7a,7b-tetrahydro-2*H*cyclopropa[3,4]pyrazolo[1,5-*a*]pyridin-2-yl)propan-1-one (3pa)

This compound was obtained in 85% yield (62.9 mg, dr = 5:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.5$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.35-7.32 (m, 3H), 7.27-7.24 (m, 2H), 6.26 (d, *J* = 8.0 Hz, 1H), 5.56-5.51 (m, 1H), 5.20 (dd, *J* = 7.9, 1.9 Hz, 1H), 4.57-4.53 (m, 1H), 3.79 (dd, *J* = 7.1, 1.0 Hz, 1H), 2.54-2.46 (m, 2H), 1.16 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.9, 137.9, 129.62, 129.60, 129.3, 128.9, 127.1 (q, *J* = 33.3 Hz), 122.0 (q, *J* = 271.8 Hz), 117.8 (q, *J* = 5.9 Hz), 111.8 (dd, *J* = 297.5, 294.0 Hz), 98.5 (q, *J* = 2.1 Hz), 59.9 (dd, *J* = 5.9, 1.4 Hz), 53.6 (dd, *J* = 11.4, 5.8 Hz), 46.0 (dd, *J* = 13.5, 12.2 Hz), 27.2, 8.8.

¹⁹F NMR (376 MHz, CDCl₃): δ -69.68 (s), -121.26 (dd, J = 152.2, 9.3 Hz), -147.94 (d, J = 152.0 Hz).

HRMS (ESI) calculated for C₁₈H₁₆F₅N₂O ([M+H]⁺): 371.1178; found: 371.1178.

1-(9,9-difluoro-9a-phenyl-8a,9,9a,9b-tetrahydro-8*H*-cyclopropa[3,4]pyrazolo[5,1*a*]isoquinolin-8-yl)propan-1-one (4aa)

This compound was obtained in 81% yield (57.1 mg, dr = 9:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.15-7.11 (m, 2H), 7.07-7.03 (m, 3H), 7.00-6.94 (m, 1H), 6.88-6.78 (m, 3H), 6.18 (d, *J* = 7.8 Hz, 1H), 5.66 (d, *J* = 7.8 Hz, 1H), 4.95 (s, 1H), 3.94 (d, *J* = 7.0 Hz, 1H), 2.64-2.49 (m, 2H), 1.18 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.6, 136.1, 130.03, 130.01, 129.95, 128.6, 128.2, 128.1, 126.9, 126.5, 125.0, 112.3 (dd, *J* = 298.0, 293.3 Hz), 108.3, 65.2 (dd, *J* = 5.5, 1.4 Hz), 53.8 (dd, *J* = 11.4, 5.6 Hz), 47.1 (dd, *J* = 13.2, 12.4 Hz), 27.3, 9.0.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.58 (dd, J = 150.1, 9.3 Hz), -147.72 (d, J =151.0 Hz).

HRMS (ESI) calculated for $C_{21}H_{19}F_2N_2O$ ([M+H]⁺): 353.1460; found: 353.1463. Crude ¹H-NMR spectrum of 4aa:

1-(1-bromo-9,9-difluoro-9a-phenyl-8a,9,9a,9b-tetrahydro-8H-cyclopropa[3,4] pyrazolo[5,1-*a*]isoquinolin-8-yl)propan-1-one (4ba)

This compound was obtained in 91% yield (78.3 mg, dr = 7.1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹H NMR (400 MHz, CDCl₃):
$$\delta$$
 7.38-7.33 (m, 2H), 7.09-7.05 (m, 4H), 6.86 (t, J = 7.8 S₂₆

Hz, 1H), 6.77 (d, J = 7.4 Hz, 1H), 6.23 (d, J = 7.6 Hz, 1H), 5.64 (d, J = 7.7 Hz, 1H), 5.16 (s, 1H), 3.86 (d, J = 7.1 Hz, 1H), 2.62-2.50 (m, 2H), 1.19 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.6, 137.1, 132.8, 130.4, 130.04, 130.02, 129.99, 128.5, 127.9, 127.0, 124.2, 123.4, 112.2 (dd, J = 298.7, 293.5 Hz), 107.8, 64.5 (dd, J = 5.8, 1.4 Hz), 53.1 (dd, J = 11.5, 6.1 Hz), 47.3 (dd, J = 13.8, 12.4 Hz), 27.2, 8.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -121.03 (dd, J = 149.0, 8.8 Hz), -148.75 (d, J = 149.9 Hz).

HRMS (ESI) calculated for $C_{21}H_{18}BrF_2N_2O$ ([M+H]⁺): 431.0566; found: 431.0565. ¹H-¹H NOESY of 4ba:

1-(4-bromo-9,9-difluoro-9a-phenyl-8a,9,9a,9b-tetrahydro-8*H*-cyclopropa[3,4] pyrazolo[5,1-*a*]isoquinolin-8-yl)propan-1-one (4ca)

This compound was obtained in 85% yield (73.1 mg, dr = 8:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.13-7.08 (m, 1H), 7.06-7.00 (m, 5H), 6.72-6.62 (m, 2H), 6.20 (d, *J* = 8.0 Hz, 1H), 5.95 (d, *J* = 8.0 Hz, 1H), 4.82 (s, 1H), 3.85 (dd, *J* = 7.0, 1.4 Hz, 1H), 2.52-2.40 (m, 2H), 1.10 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.5, 137.9, 132.6, 129.95, 129.93, 129.7, 128.9, 128.5, 128.2, 127.3, 120.5, 112.1 (dd, *J* = 297.8, 293.6 Hz), 106.8, 64.9 (dd, *J* = 5.7, 1.4 Hz), 53.9 (dd, *J* = 11.2, 5.8 Hz), 47.0 (dd, *J* = 13.5, 12.4 Hz), 27.3, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.64 (dd, J = 150.2, 6.7 Hz), -147.57 (d, J = 151.6 Hz).

HRMS (ESI) calculated for C₂₁H₁₈BrF₂N₂O ([M+H]⁺): 431.0566; found: 431.0567.

1-(3-bromo-9,9-difluoro-9a-phenyl-8a,9,9a,9b-tetrahydro-8*H*-cyclopropa[3,4] pyrazolo[5,1-*a*]isoquinolin-8-yl)propan-1-one (4da)

This compound was obtained in 90% yield (77.4 mg, dr = 9:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.14-7.08 (m, 1H), 7.05-6.99 (m, 5H), 6.72-6.62 (m, 2H), 6.20 (d, *J* = 8.0 Hz, 1H), 5.95 (d, *J* = 8.0 Hz, 1H), 4.82 (s, 1H), 3.85 (d, *J* = 7.0 Hz, 1H), 2.52-2.39 (m, 2H), 1.11 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.5, 137.9, 132.6, 129.96, 129.95, 129.7, 128.9, 128.6, 128.2, 127.3, 120.6, 112.1 (dd, *J* = 296.3, 292.0 Hz), 106.8, 64.9 (dd, *J* = 5.8, 1.3 Hz), 53.9 (dd, *J* = 11.3, 5.9 Hz), 47.0 (dd, *J* = 13.5, 12.4 Hz), 27.3, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.67 (dd, J = 150.0, 9.1 Hz), -147.62 (d, J = 151.8 Hz).

HRMS (ESI) calculated for $C_{21}H_{18}BrF_2N_2O$ ([M+H]⁺): 431.0566; found: 431.0566.

1-(3-chloro-9,9-difluoro-9a-phenyl-8a,9,9a,9b-tetrahydro-8*H*-cyclopropa[3,4] pyrazolo[5,1-*a*]isoquinolin-8-yl)propan-1-one (4ea)

This compound was obtained in 85% yield (65.6 mg, dr = 8.1, in 0.2 mmol scale) as

light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.3$. NMR spectra of the major isomer were presented.

¹H NMR (400 MHz, CDCl₃): δ 7.05-7.01 (m, 5H), 6.94-6.90 (m, 1H), 6.89-6.86 (m, 1H), 6.62 (d, J = 8.1 Hz, 1H), 6.15 (d, J = 7.7 Hz, 1H), 5.51 (d, J = 7.8 Hz, 1H), 4.83 (s, 1H), 3.85 (d, J = 7.0 Hz, 1H), 2.53-2.41 (m, 2H), 1.10 (t, J = 7.5 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃): δ 176.6, 137.4, 132.0, 129.91, 129.90, 129.6, 129.1,

128.6, 128.4, 127.8, 125.8, 122.4, 112.1 (dd, *J* = 297.8, 293.8 Hz), 106.9, 64.6 (dd, *J* = 5.6, 1.3 Hz), 53.7 (dd, *J* = 11.2, 5.8 Hz), 47.1 (dd, *J* = 13.4, 12.4 Hz), 27.2, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.68 (dd, J = 149.8, 9.2 Hz), -147.63 (d, J = 150.5 Hz).

HRMS (ESI) calculated for C₂₁H₁₈ClF₂N₂O ([M+H]⁺): 387.1067; found: 387.1071.

1-(2-bromo-9,9-difluoro-9a-phenyl-8a,9,9a,9b-tetrahydro-8*H*-cyclopropa[3,4] pyrazolo[5,1-*a*]isoquinolin-8-yl)propan-1-one (4fa)

This compound was obtained in 87% yield (74.8 mg, dr = 8:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.05-7.00 (m, 5H), 6.76 (dd, *J* = 8.1, 2.1 Hz, 1H), 6.72 (d, *J* = 2.0 Hz, 1H), 6.68 (d, *J* = 8.1 Hz, 1H), 6.16 (d, *J* = 7.8 Hz, 1H), 5.52 (d, *J* = 7.8 Hz, 1H), 4.85 (s, 1H), 3.86 (d, *J* = 7.0 Hz, 1H), 2.54-2.42 (m, 2H), 1.10 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.6, 137.3, 134.3, 131.7, 129.91, 129.89, 129.3, 128.6, 128.4, 126.2, 125.3, 124.8, 112.1 (dd, J = 297.8, 293.5 Hz), 107.0, 64.6 (dd, J = 5.5, 1.4 Hz), 53.8 (dd, J = 11.3, 5.7 Hz), 47.1 (dd, J = 13.6, 12.3 Hz), 27.2, 8.9.
¹⁹F NMR (376 MHz, CDCl₃): δ -121.69 (dd, J = 146.9, 7.9 Hz), -147.62 (d, J = 150.9 Hz).

HRMS (ESI) calculated for C₂₁H₁₈BrF₂N₂O ([M+H]⁺): 431.0566; found: 431.0568.

1-(9,9-difluoro-6-methyl-9a-phenyl-8a,9,9a,9b-tetrahydro-8*H*-cyclopropa[3,4] pyrazolo[5,1-*a*]isoquinolin-8-yl)propan-1-one (4ga)

This compound was obtained in 75% yield (54.9 mg, dr = 10:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.3$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.07-7.03 (m, 2H), 6.99-6.96 (m, 3H), 6.66-6.59 (m, 2H), 6.53 (s, 1H), 6.08 (d, *J* = 7.9 Hz, 1H), 5.54 (d, *J* = 7.8 Hz, 1H), 4.85 (s, 1H), 3.85 (d, *J* = 7.0 Hz, 1H), 2.54-2.40 (m, 2H), 2.03 (s, 3H), 1.10 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.6, 138.3, 136.0, 130.02, 130.01, 129.7, 128.2, 128.1, 128.0, 127.2, 125.7, 124.0, 112.3 (dd, J = 297.8, 293.2 Hz), 108.4, 65.2 (dd, J = 5.3, 1.4 Hz), 53.7 (dd, J = 11.4, 5.4 Hz), 47.2 (dd, J = 13.3, 12.4 Hz), 27.3, 21.1, 9.0.
¹⁹F NMR (376 MHz, CDCl₃): δ -120.62 (dd, J = 149.4, 9.2 Hz), -147.17 (d, J = 149.7 Hz).

HRMS (ESI) calculated for C₂₂H₂₁F₂N₂O ([M+H]⁺): 367.1617; found: 367.1614.

1-(9,9-difluoro-4-nitro-9a-phenyl-8a,9,9a,9b-tetrahydro-8*H*-cyclopropa[3,4] pyrazolo[5,1-*a*]isoquinolin-8-yl)propan-1-one (4ha)

This compound was obtained in 85% yield (67.7 mg, dr = 8:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.65 (d, *J* = 8.2 Hz, 1H), 7.18-7.14 (m, 2H), 7.12-7.08 (m, 4H), 6.99 (t, *J* = 7.9 Hz, 1H), 6.49-6.40 (m, 2H), 5.01 (s, 1H), 3.97 (d, *J* = 7.6 Hz, 1H), 2.60-2.50 (m, 2H), 1.19 (t, *J* = 7.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.5, 144.5, 140.6, 133.1, 129.9, 129.8, 129.7, 128.9, 128.5, 126.2, 125.3, 125.2, 112.0 (dd, J = 297.9, 294.0 Hz), 102.3, 64.4 (dd, J = 5.8, 1.4 Hz), 54.0 (dd, J = 11.1, 6.2 Hz), 46.8 (dd, J = 13.7, 12.3 Hz), 27.3, 8.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -121.80 (dd, J = 150.3, 10.1 Hz), -147.41 (d, J = 150.3, 10.1 Hz)

151.5 Hz).

HRMS (ESI) calculated for $C_{21}H_{18}F_2N_3O_3$ ([M+H]⁺): 398.1311; found: 398.1314.

1-(7,7-difluoro-6b-phenyl-6a,6b,7,7a-tetrahydro-8*H*-cyclopropa[3,4]pyrazolo[1,5*a*]quinolin-8-yl)propan-1-one (5aa)

This compound was obtained in 86% yield (60.5 mg, dr = 7:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.27-7.18 (m, 4H), 7.03-6.94 (m, 3H), 6.88 (d, *J* = 6.9 Hz, 2H), 6.28 (d, *J* = 9.8 Hz, 1H), 5.38 (dd, *J* = 9.9, 5.3 Hz, 1H), 4.64 (d, *J* = 5.3 Hz, 1H), 3.88 (d, *J* = 7.3 Hz, 1H), 2.62-2.46 (m, 2H), 1.18 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.8, 142.4, 130.0, 129.72, 129.70, 128.6, 128.5, 127.4, 127.3, 122.8, 119.5, 113.7, 112.3 (dd, J = 298.9, 293.2 Hz), 62.5 (dd, J = 5.7, 1.4 Hz), 52.8 (dd, J = 11.3, 5.7 Hz), 47.8 (dd, J = 13.6, 12.3 Hz), 26.8, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.28 (dd, J = 150.8, 10.3 Hz), -147.53 (d, J = 151.3 Hz).

HRMS (ESI) calculated for $C_{21}H_{19}F_2N_2O$ ([M+H]⁺): 353.1460; found: 353.1458.

Crude ¹H-NMR spectrum of 5aa:

1-(4-bromo-7,7-difluoro-6b-phenyl-6a,6b,7,7a-tetrahydro-8*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]quinolin-8-yl)propan-1-one (5ba)

This compound was obtained in 91% yield (78.3 mg, dr = 6:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.19-7.09 (m, 4H), 7.02 (t, *J* = 8.1 Hz, 1H), 6.90 (d, *J* = 8.1 Hz, 1H), 6.81 (d, *J* = 6.4 Hz, 2H), 6.63 (d, *J* = 10.3 Hz, 1H), 5.39 (dd, *J* = 10.2, 5.3 Hz, 1H), 4.56 (dd, *J* = 5.3, 1.3 Hz, 1H), 3.80 (d, *J* = 8.3 Hz, 1H), 2.50-2.34 (m, 2H), 1.10 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.7, 144.0, 130.4, 129.63, 129.61, 128.77, 128.75, 126.9, 126.0, 122.7, 121.8, 121.1, 112.9, 112.1 (dd, *J* = 298.9, 293.4 Hz), 62.2 (dd, *J*

= 5.8, 1.4 Hz), 52.8 (dd, *J* = 11.3, 6.0 Hz), 47.9 (dd, *J* = 13.8, 12.4 Hz), 26.8, 8.8. ¹⁹F NMR (376 MHz, CDCl₃): δ -121.45 (dd, *J* = 150.8, 10.4 Hz), -147.33 (d, *J* = 150.8 Hz).

HRMS (ESI) calculated for $C_{21}H_{18}BrF_2N_2O$ ([M+H]⁺): 431.0566; found: 431.0567.

1-(4-chloro-7,7-difluoro-6b-phenyl-6a,6b,7,7a-tetrahydro-8*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]quinolin-8-yl)propan-1-one (5ca)

This compound was obtained in 78% yield (60.2 mg, dr = 6:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.5$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.19-7.13 (m, 3H), 7.09 (t, *J* = 8.1 Hz, 1H), 6.94-6.91 (m, 1H), 6.86 (d, *J* = 8.2 Hz, 1H), 6.84-6.80 (m, 2H), 6.65 (d, *J* = 10.3 Hz, 1H), 5.40 (dd, *J* = 10.2, 5.3 Hz, 1H), 4.59-4.56 (m, 1H), 3.80 (d, *J* = 7.3 Hz, 1H), 2.52-2.36 (m, 2H), 1.10 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.7, 143.9, 132.2, 130.0, 129.62, 129.61, 128.8, 128.7, 123.6, 123.3, 120.9, 120.4, 112.2, 112.2 (dd, *J* = 297.4, 291.8 Hz), 62.2 (d, *J* = 5.8, 1.4 Hz), 52.8 (dd, *J* = 11.3, 5.9 Hz), 47.8 (dd, *J* = 13.9, 12.2 Hz), 26.8, 8.8.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.46 (dd, J = 151.3, 8.0 Hz), -147.37 (d, J = 151.3 Hz).

HRMS (ESI) calculated for C₂₁H₁₈ClF₂N₂O ([M+H]⁺): 387.1071; found: 387.1072.

1-(7,7-difluoro-6-methyl-6b-phenyl-6a,6b,7,7a-tetrahydro-8*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]quinolin-8-yl)propan-1-one (5da)

This compound was obtained in 85% yield (62.4 mg, dr = 9:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.3$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.18-7.12 (m, 2H), 7.10-7.04 (m, 2H), 6.92 (dd, J = 15.0, 7.6 Hz, 2H), 6.84 (d, J = 7.2 Hz, 1H), 6.76 (d, J = 7.4 Hz, 2H), 6.02 (s, 1H), 4.32 (s, 1H), 3.72 (d, J = 7.5 Hz, 1H), 2.55-2.41 (m, 2H), 1.48 (s, 3H), 1.11 (t, J = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.5, 141.1, 130.4, 130.3, 129.0, 128.6, 128.5, 128.3, 126.5, 124.1, 123.5, 123.1, 113.6, 112.5 (dd, J = 298.3, 294.3 Hz), 67.4 (dd, J = 5.7, 1.4 Hz), 48.8 (t, J = 13.0 Hz), 26.8, 21.1, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.03 (dd, J = 151.9, 9.1 Hz), -146.97 (d, J = 151.0 Hz).

HRMS (ESI) calculated for C₂₂H₂₁F₂N₂O ([M+H]⁺): 367.1617; found: 367.1618.

1-(7,7-difluoro-3-methoxy-6b-phenyl-6a,6b,7,7a-tetrahydro-8*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]quinolin-8-yl)propan-1-one (5ea)

This compound was obtained in 89% yield (68.0 mg, dr = 9:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.3$. NMR spectra of the major isomer were presented.

¹H NMR (400 MHz, CDCl₃): δ 7.17-7.10 (m, 3H), 6.86 (d, *J* = 8.8 Hz, 1H), 6.81-6.77 (m, 2H), 6.74 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.43 (d, *J* = 2.8 Hz, 1H), 6.14 (d, *J* = 9.9 Hz, 1H), 5.34 (dd, J = 9.9, 5.4 Hz, 1H), 4.51 (dd, J = 5.4, 0.9 Hz, 1H), 3.79 (dd, J = 7.4, 1.0 Hz, 1H), 3.70 (s, 3H), 2.56-2.38 (m, 2H), 1.10 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.6, 155.5, 136.0, 129.69, 129.67, 128.6, 128.5, 127.3, 124.0, 120.6, 115.0, 114.6, 113.1, 112.2 (dd, J = 298.8, 293.1 Hz), 62.7 (dd, J = 5.6, 1.3 Hz), 55.6, 52.6 (dd, J = 11.5, 5.6 Hz), 47.8 (t, J = 12.8 Hz), 26.9, 8.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -121.38 (dd, J = 150.4, 10.3 Hz), -147.57 (d, J = 12.8 Hz), 26.9, 8.9.

149.4 Hz).

HRMS (ESI) calculated for $C_{22}H_{21}F_2N_2O_2$ ([M+H]⁺): 383.1566; found: 383.1564.

1-(7,7-difluoro-2-methyl-6b-phenyl-6a,6b,7,7a-tetrahydro-8*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]quinolin-8-yl)propan-1-one (5fa)

This compound was obtained in 85% yield (62.2 mg, dr = 9:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.15-7.08 (m, 3H), 6.82-6.77 (m, 2H), 6.76-6.72 (m, 2H), 6.71-6.66 (m, 1H), 6.16 (d, *J* = 9.9 Hz, 1H), 5.23 (dd, *J* = 9.9, 5.3 Hz, 1H), 4.53 (d, *J* = 5.3 Hz, 1H), 3.81-3.78 (m, 1H), 2.55-2.40 (m, 2H), 2.28 (s, 3H), 1.11 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.9, 142.2, 140.3, 129.8, 129.7, 128.53, 128.45, 127.4, 127.1, 123.5, 120.3, 118.3, 114.4, 112.3 (dd, *J* = 298.8, 293.1 Hz), 62.6 (dd, *J* = 5.6, 1.4 Hz), 52.8 (dd, *J* = 11.4, 5.5 Hz), 47.8 (dd, *J* = 13.5, 12.4 Hz), 26.8, 21.9, 8.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -121.17 (dd, *J* = 151.2, 9.1 Hz), -147.59 (d, *J* = 151.4 Hz).

HRMS (ESI) calculated for $C_{22}H_{21}F_2N_2O$ ([M+H]⁺): 367.1617; found: 367.1618.

methyl-7,7-difluoro-6b-phenyl-8-propionyl-6a,6b,7a,8-tetrahydro-7*H*-cyclopropa

[3,4]pyrazolo[1,5-*a*]quinoline-3-carboxylate (5ga)

This compound was obtained in 68% yield (55.8 mg, dr = 9:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.2$. NMR spectra of the major isomer were presented.

¹**H NMR** (400 MHz, CDCl₃): δ 7.61 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.16-7.13 (m, 2H), 7.08-7.05 (m, 3H), 7.01-6.97 (m, 1H), 6.92 (t, *J* = 7.7 Hz, 1H), 6.31 (d, *J* = 8.3 Hz, 1H), 4.96 (s, 1H), 3.98-3.91 (m, 1H), 3.83 (s, 3H), 3.04-2.23 (m, 2H), 1.19 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.6, 167.1, 138.2, 132.2, 131.02, 131.01, 130.0, 129.9, 128.5, 128.3, 125.7, 124.9, 112.1 (dd, J = 297.7, 293.6 Hz), 105.7, 65.0 (dd, J = 5.6, 1.4 Hz), 53.9 (dd, J = 11.2, 5.7 Hz), 52.2, 46.8 (dd, J = 13.4, 12.3 Hz), 27.3, 8.9.
¹⁹F NMR (376 MHz, CDCl₃): δ -121.80 (dd, J = 149.5, 6.8 Hz), -147.74 (d, J = 149.7 Hz).

HRMS (ESI) calculated for $C_{23}H_{21}F_2N_2O_3([M+H]^+)$: 411.1515; found: 411.1517.

1-(7,7-difluoro-3-iodo-6b-phenyl-6a,6b,7,7a-tetrahydro-8*H*-cyclopropa[3,4] pyrazolo[1,5-*a*]quinolin-8-yl)propan-1-one (5ha)

This compound was obtained in 84% yield (80.3 mg, dr = 9:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.
¹**H NMR (400 MHz, CDCl₃):** δ 7.46 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.17-7.06 (m, 5H), 6.80 (d, *J* = 7.5 Hz, 1H), 6.56 (t, *J* = 7.7 Hz, 1H), 6.24 (d, *J* = 8.0 Hz, 1H), 5.90 (d, *J* = 8.0 Hz, 1H), 4.84 (s, 1H), 3.93 (dd, *J* = 7.0, 1.4 Hz, 1H), 2.78-2.27 (m, 2H), 1.18 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.6, 139.3, 138.3, 132.8, 129.99, 129.97, 128.6, 128.34, 128.29, 128.23, 127.7, 112.1 (dd, J = 297.7, 293.8 Hz), 111.8, 96.5, 65.2 (dd, J = 5.7, 1.3 Hz), 53.9 (dd, J = 11.4, 5.8 Hz), 47.0 (dd, J = 13.6, 12.4 Hz), 27.3, 9.0. ¹⁹F NMR (376 MHz, CDCl₃): δ -121.64 (dd, J = 150.4, 7.7 Hz), -147.56 (d, J = 120.4, 7.7 Hz), -147.50 (d, J = 120.4, 7.7 Hz), -147.50

151.3 Hz).

HRMS (ESI) calculated for C₂₁H₁₈F₂IN₂O ([M+H]⁺): 479.0427; found: 479.0430.

1-(11,11-difluoro-11a-phenyl-10a,11,11a,11b-tetrahydro-10*H*-cyclopropa[3,4] pyrazolo[1,5-*f*]phenanthridin-10-yl)propan-1-one (6)

This compound was obtained in 47% yield (37.8 mg, dr = 11:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.5$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃)**: δ 7.61 (d, *J* = 7.8 Hz, 1H), 7.57 (d, *J* = 7.8 Hz, 1H), 7.41-7.34 (m, 1H), 7.28-7.20 (m, 1H), 7.20-7.12 (m, 2H), 7.12-7.05 (m, 2H), 6.99-6.95 (m, 1H), 6.95-6.89 (m, 2H), 6.62-6.58 (m, 2H), 5.07 (s, 1H), 4.02 (d, *J* = 7.3 Hz, 1H), 2.88-2.46 (m, 2H), 1.22 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 177.2, 143.1, 130.3, 129.80, 129.78, 129.76, 129.1, 128.5, 128.13, 128.11, 127.74, 127.69, 123.9, 123.7, 123.5, 122.3, 115.9, 112.7 (dd, *J* = 298.4, 291.4 Hz), 66.9 (dd, *J* = 5.8, 1.4 Hz), 53.3 (dd, *J* = 11.2, 6.1 Hz), 48.4 (dd, *J* = 13.8, 12.9 Hz), 27.0, 9.0.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.23 (dd, J = 150.2, 7.7 Hz), -146.52 (d, J = 147.9 Hz).

HRMS (ESI) calculated for $C_{25}H_{21}F_2N_2O$ ([M+H]⁺): 403.1617; found: 403.1620.

1-(8,8-difluoro-8a-phenyl-7a,8,8a,8b-tetrahydro-7*H*-cyclopropa[3,4]pyrazolo[1,5*a*]thieno[3,2-c]pyridin-7-yl)propan-1-one (7)

This compound was obtained in 70% yield (56.3 mg, dr = 8:1, in 0.2 mmol scale) as light yellow solid, Eluent: PE/EA = 5/1. $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.21-7.16 (m, 2H), 7.16-7.12 (m, 3H), 6.94 (d, J = 5.0 Hz, 1H), 6.61 (d, J = 5.0 Hz, 1H), 6.14 (d, J = 7.8 Hz, 1H), 5.75 (d, J = 7.8 Hz, 1H), 5.21 (s, 1H), 3.90 (d, J = 7.0 Hz, 1H), 2.64-2.49 (m, 2H), 1.19 (t, J = 7.5 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃):** δ 176.8, 134.0, 132.6, 130.30, 130.28, 128.4, 128.2, 125.9, 125.6, 124.0, 112.0 (dd, J = 297.1, 294.5 Hz), 103.0, 63.7 (dd, J = 6.0, 1.4 Hz), 53.5 (dd, J = 11.3, 5.2 Hz), 47.8 (dd, J = 13.3, 12.2 Hz), 27.2, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.78 (dd, J = 152.5, 7.3 Hz), -148.18 (d, J = 152.2 Hz).

HRMS (ESI) calculated for $C_{19}H_{17}F_2N_2OS$ ([M+H]⁺): 359.1024; found: 359.1021.

III. Synthesis applications

Late-stage modification of drug or drug intermediate:

N-(2-(1,1-difluoro-7b-phenyl-1,1a,7a,7b-tetrahydro-2*H*-cyclo propa[3,4]pyrazolo [1,5-*a*]pyridin-2-yl)-2-oxoethyl)-*N*-phenylpropionamide (8a)

This compound was obtained in 61% yield (53.0 mg, dr > 20:1, in 0.2 mmol scale) as light yellow solid, m.p.: 120-122 °C, Eluent: PE/EA = 5/1, $R_f = 0.3$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.43-7.41 (m, 4H), 7.37-7.29 (m, 4H), 7.26 (dd, *J* = 6.6, 3.0 Hz, 2H), 6.27 (d, *J* = 8.1 Hz, 1H), 5.73 (dd, *J* = 9.9, 5.7 Hz, 1H), 5.16-5.09 (m, 2H), 4.84 (d, *J* = 17.0 Hz, 1H), 4.42 (d, *J* = 5.0 Hz, 1H), 4.26 (d, *J* = 17.0 Hz, 1H), 3.81 (d, *J* = 6.9 Hz, 1H), 2.18 (q, *J* = 7.4 Hz, 2H), 1.08 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 174.5, 170.9, 143.4, 135.6, 129.90, 129.88, 129.78, 128.7, 128.6, 128.4, 128.2, 123.3, 117.4, 111.8 (dd, *J* = 298.1, 293.3 Hz), 104.5, 60.9 (dd, *J* = 5.3, 1.4 Hz), 53.2 (dd, *J* = 11.5, 5.2 Hz), 51.9, 45.9 (t, *J* = 13.0 Hz), 27.5, 9.5. ¹⁹F NMR (376 MHz, CDCl₃): δ -121.07 (dd, *J* = 151.3, 6.8 Hz), -148.05 (d, *J* = 151.4 Hz).

HRMS (ESI) calculated for $C_{25}H_{24}F_2N_3O_2$ ([M+H]⁺): 436.1832; found: 436.1823.

1-(1,1-difluoro-10-methyl-10c-phenyl-1a,10,10b,10c-tetrahydrocyclopropa[3',4'] pyrazolo[1',5':1,2]pyrido[3,4-*b*]indol-2(1*H*)-yl)propan-1-one (8b)

This compound was obtained in 50% yield (40.5 mg, dr = 10:1, in 0.2 mmol scale) as as light yellow solid, Eluent: PE/EA = 5/1, $R_f = 0.6$. NMR spectra of the major isomer were presented.

¹**H** NMR (400 MHz, CDCl₃): δ 7.49 (dd, J = 6.7, 1.5 Hz, 1H), 7.19 (d, J = 6.9 Hz, 2H), 7.11-7.05 (m, 2H), 7.04-6.96 (m, 4H), 6.07-6.05 (m, 2H), 5.30 (s, 1H), 3.90 (dd, J = 7.3, 1.1 Hz, 1H), 3.41 (s, 3H), 2.72-2.54 (m, 2H), 1.20 (t, J = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.7, 137.5, 129.78, 129.76, 129.3, 128.6, 128.2, 126.8, 123.3, 122.1, 120.1, 118.5, 112.2 (dd, *J* = 295.2, 294.0 Hz), 109.1, 108.5, 101.0, 62.1 (dd, *J* = 6.3, 1.6 Hz), 52.6 (dd, *J* = 11.6, 4.3 Hz), 49.2 (dd, *J* = 12.9, 12.2 Hz), 30.0, 27.3, 9.0.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.35 (dd, J = 152.6, 7.3 Hz), -147.93 (d, J = 151.9 Hz).

HRMS (ESI) calculated for $C_{24}H_{22}F_2N_3O$ ([M+H]⁺): 406.1726; found: 406.1716.

N,*N*-diethyl-1,1-difluoro-7b-phenyl-2-propionyl-1a,2,7a,7b-tetrahydro-1*H*cyclopropa[3,4]pyrazolo[1,5-*a*]pyridine-5-carboxamide (8c)

This compound was obtained in 55% yield (44.1 mg, dr = 5:1, in 0.2 mmol scale) as as light yellow solid, Eluent: PE/EA = 5/1, $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H** NMR (400 MHz, CDCl₃): δ 7.40-7.32 (m, 3H), 7.27-7.22 (m, 2H), 6.56 (s, 1H), 5.81 (d, J = 10.0 Hz, 1H), 5.19 (dd, J = 10.4, 4.6 Hz, 1H), 4.52 (d, J = 5.0 Hz, 1H), 3.83 (d, J = 6.9 Hz, 1H), 3.27 (q, J = 7.0 Hz, 4H), 2.60-2.49 (m, 2H), 1.16 (t, J = 7.5 Hz, 3H), 1.11 (t, J = 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 177.0, 168.2, 138.1, 129.69, 129.67, 128.9, 128.8, 123.0, 116.4, 113.1, 111.9 (dd, *J* = 298.4, 293.6 Hz), 60.5 (dd, *J* = 5.8, 1.4 Hz), 53.6 (dd, *J* = 11.2, 5.8 Hz), 45.8 (dd, *J* = 13.8, 12.1 Hz), 41.2, 21.1, 13.6, 8.7.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.60 (dd, J = 151.5, 6.8 Hz), -148.10 (d, J = 151.4 Hz).

HRMS (ESI) calculated for $C_{22}H_{26}F_2N_3O_2$ ([M+H]⁺): 402.1988; found: 402.1987.

(3*S*,8*R*,9*S*,10*R*,13*S*,14*S*)-17-(1,1-difluoro-7b-phenyl-2-propionyl-1a,2,7a,7btetrahydro-1*H*-cyclopropa[3,4]pyrazolo[1,5-*a*]pyridin-5-yl)-10,13-dimethyl-

2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1*H*-cyclopenta[*a*] phenanthren-3-yl propionate (8d)

This compound was obtained in 64% yield (80.5 mg, dr = 9:1, rr = 13:1, in 0.2 mmol scale) as as light yellow solid, Eluent: PE/EA = 5/1, $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.22-7.15 (m, 3H), 7.15-7.11 (m, 2H), 6.09 (d, J = 7.5 Hz, 1H), 5.88 (d, J = 6.3 Hz, 1H), 5.69 (s, 1H), 5.34 (d, J = 4.8 Hz, 1H), 5.18 (dd, J = 7.5, 6.3 Hz, 1H), 4.64 (s, 1H), 4.62-4.54 (m, 1H), 3.71 (d, J = 7.2 Hz, 1H), 2.57-2.43 (m, 2H), 2.30-2.24 (m, 5H), 2.20-2.11 (m, 1H), 1.97-1.71 (m, 6H), 1.60-1.47 (m, 5H), 1.37-1.28 (m, 2H), 1.16-1.04 (m, 6H), 0.94 (s, 3H), 0.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 176.8, 174.1, 151.4, 140.2, 134.8, 131.6, 129.8, 128.2, 127.7, 127.3, 124.1, 122.3, 117.9, 112.5 (t, *J* = 294.4), 104.6, 73.7, 62.8 (d, *J* = 5.8 Hz), 56.9, 53.2 (dd, *J* = 11.8, 4.6 Hz), 50.1, 47.6 (t, *J* = 12.8 Hz), 46.3, 38.2, 36.9, 36.7, 34.0, 31.6, 31.3, 30.1, 28.0, 27.8, 27.2, 20.7, 19.3, 16.3, 9.3, 8.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -119.30 (dd, J = 150.6, 7.6 Hz), -149.11 (d, J = 150.2 Hz).

HRMS (ESI) calculated for $C_{25}H_{24}F_2N_3O_2$ ([M+H]⁺): 629.3550; found: 629.3546.

1-(9,9-difluoro-9a-phenyl-4-((4-propionyl-1,4-diazepan-1-yl)sulfonyl)-8a,9,9a,9btetrahydro-8*H*-cyclopropa[3,4]pyrazolo[5,1-*a*]isoquinolin-8-yl)propan-1-one (8e)

This compound was obtained in 78% yield (88.9 mg, dr = 7:1, in 0.2 mmol scale) as as light yellow solid, Eluent: DCM/MeOH = 30/1, $R_f = 0.3$. NMR spectra of the major isomer were presented.

¹**H NMR** (400 MHz, CDCl₃): δ 7.54 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.15-7.11 (m, 2H), 7.11-7.04 (m, 4H), 7.03-6.98 (m, 1H), 6.45-6.40 (m, 1H), 6.39-6.35 (m, 1H), 4.96 (s,

1H), 3.96 (d, *J* = 6.7 Hz, 1H), 3.70-3.49 (m, 4H), 3.28-3.10 (m, 4H), 2.60-2.48 (m, 2H), 2.40-2.25 (m, 2H), 1.99-1.84 (m, 2H), 1.22-1.11 (m, 6H).

¹³C NMR (100 MHz, CDCl₃): Two groups of peaks were observed owing to the keto-enol tautomerism. δ 176.43, 176.39, 173.5, 173.1, 139.1, 139.0, 132.9, 132.8, 132.7, 129.83, 129.78, 129.65, 129.50, 129.47, 129.1, 128.6, 128.5, 128.33, 128.28, 125.8, 111.9 (dd, *J* = 298.0, 293.6 Hz), 103.94, 103.88, 64.6 (d, *J* = 5.1 Hz), 53.9 (dd, *J* = 11.1, 5.8 Hz), 49.9, 49.6, 49.1, 48.1, 47.9, 46.7, 46.5, 44.5, 28.8, 27.5, 27.2, 26.4, 26.0, 9.5, 9.3, 8.8.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.83 (dd, J = 151.0, 8.9 Hz), -147.42 (d, J = 149.5 Hz).

HRMS (ESI) calculated for C₂₉H₃₃F₂N₄O₃S ([M+H]⁺): 571.2186; found: 571.2187.

4-(4-(bis(2-chloroethyl)amino)phenyl)-1-(1,1-difluoro-7b-phenyl-1,1a,7a,7btetrahydro-2*H*-cyclopropa[3,4]pyrazolo[1,5-*a*]pyridin-2-yl)butan-1-one (8f)

This compound was obtained in 70% yield (73.1 mg, dr = 7:1, in 0.2 mmol scale) as as light yellow solid, Eluent: PE/EA = 5/1, $R_f = 0.4$. NMR spectra of the major isomer were presented.

¹**H NMR (400 MHz, CDCl₃):** δ 7.33-7.30 (m, 3H), 7.28-7.26 (m, 2H), 7.10 (d, J = 8.6 Hz, 2H), 6.62 (d, J = 8.7 Hz, 2H), 6.03 (d, J = 7.7 Hz, 1H), 5.77-5.68 (m, 1H), 5.13-5.05 (m, 2H), 4.43 (d, J = 5.1 Hz, 1H), 3.76 (d, J = 7.1 Hz, 1H), 3.70-3.67 (m, 4H), 3.64-3.61 (m, 4H), 2.63-2.53 (m, 3H), 2.51-2.40 (m, 1H), 2.00-1.85 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 175.8, 144.3, 136.0, 130.9, 129.91, 129.89, 129.80, 128.64, 128.55, 123.2, 117.3, 112.2, 112.1 (dd, *J* = 297.7, 293.3 Hz), 103.9, 60.9 (dd, *J* = 5.4, 1.6 Hz), 53.7, 53.5 (dd, *J* = 11.5, 4.9 Hz), 45.9 (t, *J* = 12.9 Hz), 40.6, 34.0, 33.0, 26.4.

¹⁹F NMR (376 MHz, CDCl₃): δ -120.89 (dd, J = 150.4, 7.0 Hz), -148.39 (d, J =

150.7 Hz).

HRMS (ESI) calculated for C₂₈H₃₀Cl₂F₂N₃O₂ ([M+H]⁺): 532.1729; found: 532.1730.

Photo-mediated ring-opening/rearrangement of product 3-5, 7 and 8:

In a 10 mL Schlenk tube with a magnetic stirring bar was added with 1,2dihydropyridine derivatives (0.2 mmol) in MeOH (1.0 mL) under the N₂ atmosphere. Then, the tube was placed at a reaction bath equipped with Kessil PR 450 nm blue LEDs (24W, 1 cm distance) and allowed to stir at room temperature for 24 h. Afterwards, the resulted mixture was purified by preparative TLC to afford the corresponding *N*-(2-fluoro-1-phenylindolizin-3-yl)propionamide derivatives **9a-9n**.

Table S1. Comparison of different solvents for the photo-induced rearrangement.

O Et H F F Saa	solvent, rt, 24 h under N ₂	Et H N F 9a
Entry	Solvent	Yield (%)
1	MeOH	81
2	EtOH	72
3	2-Me THF	55
4	GVL	60

Characterization of fluorinated indolizine products:

N-(2-fluoro-1-phenylindolizin-3-yl)propionamide (9a)

This compound was obtained in 81% yield (45.7 mg, in 0.2 mmol scale) as light yellow solid, m.p.: 152-153 °C, Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 9.84 (s, 1H), 7.86 (d, *J* = 7.1 Hz, 1H), 7.67 (dt, *J* = 8.8, 1.0 Hz), 7.54 (d, *J* = 8.1 Hz, 2H), 7.48 (t, *J* = 8.0 Hz, 2H), 7.30-7.24 (m, 1H), 6.97-6.92 (m, 1H), 6.77 (td, *J* = 7.8, 1.2 Hz, 1H), 2.46 (q, *J* = 7.6 Hz, 2H), 1.15 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, DMSO-d₆): δ 174.0, 145.4 (d, J = 244.6 Hz), 131.7, 129.0, 127.8, 126.0, 122.9 (d, J = 5.8 Hz), 122.5, 119.7, 116.7 (d, J = 4.5 Hz), 111.2, 104.1 (d, J = 25.4 Hz), 98.4 (d, J = 10.6 Hz), 28.2, 9.6.

¹⁹F NMR (**376** MHz, DMSO-*d*₆): δ -163.79.

HRMS (ESI) calculated for C₁₇H₁₆FN₂O ([M+H]⁺): 283.1247; found: 283.1234.

N-(2-fluoro-1-(*p*-tolyl)indolizin-3-yl)propionamide (9b)

This compound was obtained in 60% yield (35.6 mg, in 0.2 mmol scale) as light yellow solid, m.p.: 151-152 °C, Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 9.81 (s, 1H), 7.83 (dt, *J* = 7.0, 1.1 Hz, 1H), 7.64 (dt, *J* = 9.0, 1.2 Hz, 1H), 7.44 (d, *J* = 7.8 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 6.95-6.89 (m, 1H), 6.75 (td, *J* = 6.8, 1.3 Hz, 1H), 2.50-2.45 (m, 2H), 2.35 (s, 3H), 1.15 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d₆*): δ 174.0, 145.3 (d, J = 245.8 Hz), 135.1, 129.6, 128.7 (d, J = 2.8 Hz), 127.7, 122.8 (d, J = 5.8 Hz), 122.4, 119.4, 116.8 (d, J = 4.6 Hz), 111.1, 104.0 (d, J = 25.5 Hz), 98.5 (d, J = 10.6 Hz), 28.2, 20.8, 9.6.

¹⁹F NMR (**376** MHz, DMSO-*d*₆): δ -163.86.

HRMS (ESI) calculated for C₁₈H₁₈FN₂O ([M+H]⁺): 297.1398; found: 297.1395.

N-(2-fluoro-1-(4-fluorophenyl)indolizin-3-yl)propionamide (9c)

This compound was obtained in 68% yield (40.8 mg, in 0.2 mmol scale) as light yellow solid, m.p.: 143-145 °C, Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR (400 MHz, DMSO-***d*₆**):** δ 9.83 (s, 1H), 7.86 (d, *J* = 7.0 Hz, 1H), 7.64 (d, *J* = 9.1 Hz, 1H), 7.57 (dd, *J* = 8.5, 5.6 Hz, 2H), 7.32 (t, *J* = 8.9 Hz, 2H), 6.99-6.92 (m, 1H), 6.77 (td, *J* = 6.8, 1.2 Hz, 1H), 2.47 (q, *J* = 7.6 Hz, 2H), 1.15 (t, *J* = 7.5 Hz, 3H). ¹³**C NMR (100 MHz, DMSO-***d*₆**):** δ 174.0, 160.6 (d, *J* = 243.0 Hz), 145.3 (d, *J* = 245.7 Hz), 129.7 (dd, *J* = 7.9, 1.8 Hz), 128.1 (t, *J* = 3.1 Hz), 122.9 (d, *J* = 5.6 Hz), 122.5, 119.7, 116.6 (d, *J* = 4.6 Hz), 116.0, 115.8, 111.2 (d, *J* = 2.1 Hz), 104.1 (d, *J* = 25.4 Hz), 97.5 (d, *J* = 10.6 Hz), 28.2, 9.6.

¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -116.21, -164.13.

HRMS (ESI) calculated for $C_{17}H_{15}F_2N_2O$ ([M+H]⁺): 301.1147; found: 301.1141.

N-(1-(4-chlorophenyl)-2-fluoroindolizin-3-yl)propionamide (9d)

This compound was obtained in 72% yield (45.5 mg, in 0.2 mmol scale) as light yellow solid, m.p.: 165-167 °C, Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹H NMR (400 MHz, DMSO-*d₆*): δ 9.84 (s, 1H), 7.87 (dt, *J* = 7.1, 1.2 Hz, 1H), 7.68 (dt, *J* = 9.1, 1.2 Hz, 1H), 7.58 (d, *J* = 8.5 Hz, 2H), 7.55-7.51 (m, 2H), 7.01-6.95 (m, 1H), 6.79 (td, *J* = 6.8, 1.2 Hz, 1H), 2.47 (q, *J* = 7.6 Hz, 2H), 1.15 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, DMSO-d₆): δ 174.0, 145.3 (d, J = 246.3 Hz), 130.6 (d, J = 2.8 Hz), 130.3, 129.3 (d, J = 2.0 Hz), 129.0, 123.0 (d, J = 5.6 Hz), 122.6, 120.1, 116.6 (d, J = 4.4 Hz), 111.4, 104.3 (d, J = 25.5 Hz), 97.2 (d, J = 10.3 Hz), 28.2, 9.5.

¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -163.60.

HRMS (ESI) calculated for $C_{17}H_{15}CIFN_2O$ ([M+H]⁺): 317.0852; found: 317.0846.

N-(1-(4-bromophenyl)-2-fluoroindolizin-3-yl)propionamide (9e)

This compound was obtained in 82% yield (59.0 mg, in 0.2 mmol scale) as light yellow solid, m.p.: 185-188 °C, Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 9.85 (s, 1H), 7.88 (d, *J* = 7.0 Hz, 1H), 7.70-7.64 (m, 3H), 7.52 (d, *J* = 8.2 Hz, 2H), 7.02-6.95 (m, 1H), 6.83-6.76 (m, 1H), 2.47 (q, *J* = 7.5 Hz, 2H), 1.15 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, DMSO-d₆): δ 174.0, 145.3 (d, J = 246.5 Hz), 131.9, 131.0 (d, J = 2.2 Hz), 129.6, 123.0 (d, J = 5.7 Hz), 122.7, 120.1, 118.7, 116.6 (d, J = 4.6 Hz), 111.4, 104.4 (d, J = 25.3 Hz), 97.2 (d, J = 10.0 Hz), 28.2, 9.5.

¹⁹F NMR (**376** MHz, DMSO-*d*₆): δ -163.54.

HRMS (ESI) calculated for C₁₇H₁₅BrFN₂O ([M+H]⁺): 361.0347; found: 361.0339.

N-(8-fluoro-9-phenylthieno[3,2-g]indolizin-7-yl)propionamide (9f)

This compound was obtained in 53% yield (35.8 mg, in 0.2 mmol scale) as light yellow solid, m.p.: 142-143 °C, Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹H NMR (400 MHz, DMSO- d_6): δ 9.85 (s, 1H), 7.81 (d, J = 7.3 Hz, 1H), 7.61-7.54

(m, 3H), 7.54-7.49 (m, 2H), 7.45-7.39 (m, 1H), 7.38 (d, *J* = 5.2 Hz, 1H), 7.20 (d, *J* = 7.3 Hz, 1H), 2.51-2.48 (m, 2H), 1.17 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 174.2, 145.0 (d, *J* = 244.1 Hz), 132.5, 130.7 (d, *J* = 2.1 Hz), 130.0, 128.7, 127.4, 127.1 (d, *J* = 3.9 Hz), 124.4, 124.2, 120.1, 118.3 (d, *J* = 5.8 Hz), 107.1 (d, *J* = 1.8 Hz), 104.6 (d, *J* = 24.8 Hz), 99.9 (d, *J* = 13.4 Hz), 28.2, 9.5.

¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -165.45.

HRMS (ESI) calculated for C₁₉H₁₆FN₂OS ([M+H]⁺): 339.0962; found: 339.0959.

N-(2-fluoro-7-methyl-1-phenylindolizin-3-yl)propionamide (9g)

This compound was obtained in 51% yield (30.3 mg, in 0.2 mmol scale) as light yellow solid, m.p.: 158-160 °C, Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 9.76 (s, 1H), 7.76 (d, *J* = 7.1 Hz, 1H), 7.54 (d, *J* = 8.1 Hz, 2H), 7.49-7.44 (m, 3H), 7.29-7.25 (m, 1H), 6.62 (dd, *J* = 7.1, 1.7 Hz, 1H), 2.46 (q, *J* = 7.6 Hz, 2H), 2.30 (s, 3H), 1.13 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 174.1, 145.4 (d, *J* = 245.7 Hz), 132.0 (d, *J* = 2.3 Hz), 129.8, 129.0, 127.7 (d, *J* = 1.8 Hz), 125.7, 123.1 (d, *J* = 5.7 Hz), 122.2 (d, *J* = 1.0 Hz), 114.7 (d, *J* = 3.7 Hz), 113.7 (d, *J* = 2.1 Hz), 103.4 (d, *J* = 25.5 Hz), 97.2 (d, *J* = 10.4 Hz), 28.2, 20.9, 9.6.

¹⁹F NMR (**376** MHz, DMSO-*d*₆): δ -164.07.

HRMS (ESI) calculated for C₁₈H₁₈FN₂O ([M+H]⁺): 297.1398; found: 297.1390.

N-(2-fluoro-1-phenyl-7-(trifluoromethyl)indolizin-3-yl)propionamide (9h)

This compound was obtained in 58% yield (40.6 mg, in 0.2 mmol scale) as light yellow solid, m.p.: 153-156 °C, Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 10.09 (s, 1H), 8.08 (d, *J* = 7.3 Hz, 1H), 7.91 (s, 1H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.41-7.35 (m, 1H), 6.99 (dd, *J* = 7.4, 1.9 Hz, 1H), 2.56-2.51 (m, 2H), 1.16 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 173.9, 145.6 (d, *J* = 248.4 Hz), 130.3 (d, *J* = 2.8 Hz), 129.3, 128.3, 127.0, 124.1 (q, *J* = 270.9 Hz), 123.9, 120.3 (d, *J* = 5.9 Hz), 119.1 (q, *J* = 33.5 Hz), 115.1 (t, *J* = 5.1 Hz), 107.1 (d, *J* = 25.3 Hz), 106.3, 103.0 (d, *J* = 10.8 Hz), 28.2, 9.4.

¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -61.44, -160.73.

HRMS (ESI) calculated for $C_{18}H_{15}F_4N_2O$ ([M+H]⁺): 351.1116; found: 351.1109.

N-(2-fluoro-1-phenylindolizin-3-yl)-3-phenylpropanamide (9i)

This compound was obtained in 71% yield (50.8 mg, in 0.2 mmol scale) as light yellow solid, m.p.: 140-141 °C, Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 9.88 (s, 1H), 7.66 (dt, *J* = 9.0, 1.2 Hz, 1H), 7.54 (d, *J* = 7.8 Hz, 2H), 7.50-7.44 (m, 3H), 7.37-7.29 (m, 5H), 7.28-7.25 (m, 1H), 6.96-6.89 (m, 1H), 6.69 (td, *J* = 6.8, 1.2 Hz, 1H), 2.99 (t, *J* = 7.6 Hz, 2H), 2.79 (t, *J* = 7.6 Hz, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 172.5, 145.4 (d, *J* = 246.2 Hz), 140.9, 131.7 (d, *J* = 2.4 Hz), 129.0, 128.53, 128.46, 127.8, 126.2, 126.0, 123.0 (d, *J* = 5.8 Hz), 122.3, 119.7, 116.7 (d, *J* = 4.7 Hz), 111.1, 103.8 (d, *J* = 25.5 Hz), 98.5 (d, *J* = 10.4 Hz), 36.6, 30.9.

¹⁹F NMR (**376** MHz, DMSO-*d*₆): δ -163.72.

HRMS (ESI) calculated for C₂₃H₂₀FN₂O ([M+H]⁺): 359.1555; found: 359.1560.

N-(2-fluoro-1-phenylindolizin-3-yl)-3,3-dimethylbutanamide (9j)

This compound was obtained in 76% yield (49.2 mg, in 0.2 mmol scale) as light yellow solid, m.p.: 153-155 °C, Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR** (400 MHz, **DMSO**-*d*₆): δ 9.80 (s, 1H), 7.81 (dt, *J* = 7.0, 1.1 Hz, 1H), 7.68 (dt, *J* = 9.1, 1.2 Hz, 1H), 7.56 (d, *J* = 8.2 Hz, 2H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.33-7.26 (m, 1H), 6.99-6.92 (m, 1H), 6.80 (td, *J* = 6.8, 1.2 Hz, 1H), 2.32 (s, 2H), 1.09 (s, 9H). ¹³**C NMR** (100 MHz, **DMSO**-*d*₆): δ 171.8, 145.3 (d, *J* = 246.6 Hz), 131.7 (d, *J* = 2.5 Hz), 129.0, 127.8, 126.0, 122.9 (d, *J* = 5.6 Hz), 122.2, 119.6, 116.8 (d, *J* = 4.5 Hz), 111.4, 104.3 (d, *J* = 25.6 Hz), 98.6 (d, *J* = 10.2 Hz), 48.4, 30.7, 29.7.

¹⁹F NMR (**376** MHz, DMSO-*d*₆): δ -163.44.

HRMS (ESI) calculated for $C_{20}H_{22}FN_2O$ ([M+H]⁺): 325.1711; found: 325.1705.

N-(2-fluoro-11-methyl-1-phenyl-11H-indolizino[8,7-*b*]indol-3-yl)propionamide (9k)

This compound was obtained in 80% yield (61.6 mg, in 0.2 mmol scale) as light yellow solid, m.p.: 192-193 °C, Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 9.88 (s, 1H), 8.01 (d, *J* = 7.6 Hz, 1H), 7.72 (d, *J* = 7.1 Hz, 1H), 7.54-7.48 (m, 5H), 7.47-7.41 (m, 2H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.22 (t, *J* = 7.4 Hz, 1H), 3.18 (s, 3H), 2.61-2.52 (m, 2H), 1.19 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 174.1, 145.1 (d, *J* = 241.9 Hz), 140.7, 133.4 (d, *J* = 1.5 Hz), 131.2 (d, *J* = 3.4 Hz), 130.7, 128.9, 127.5, 124.0, 123.1, 120.2, 119.0, 115.8, 114.5 (d, *J* = 5.0 Hz), 112.3, 110.5, 105.2 (d, *J* = 24.4 Hz), 104.7, 100.2 (d, *J* = 13.7 Hz), 34.7, 28.3, 9.6.

¹⁹F NMR (376 MHz, DMSO-d₆): δ -165.25.

HRMS (ESI) calculated for C₂₄H₂₁FN₃O ([M+H]⁺): 386.1664; found: 386.1660.

4-(4-(bis(2-chloroethyl)amino)phenyl)-*N*-(2-fluoro-1-phenylindolizin-3-yl) butanamide (9l)

This compound was obtained in 63% yield (64.4 mg, in 0.2 mmol scale) as light yellow solid, m.p.: 156-157 °C, Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 9.84 (s, 1H), 7.82 (d, *J* = 7.0 Hz, 1H), 7.67 (d, *J* = 9.1 Hz, 1H), 7.56 (d, *J* = 7.6 Hz, 2H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.29 (t, *J* = 7.3 Hz, 1H), 7.09 (d, *J* = 8.5 Hz, 2H), 6.98-6.90 (m, 1H), 6.77 (td, *J* = 6.8, 1.0 Hz, 1H), 6.70 (d, *J* = 8.6 Hz, 2H), 3.73-3.70 (m, 8H), 2.57 (t, *J* = 7.4 Hz, 2H), 2.47 (t, *J* = 7.5 Hz, 2H), 1.91 (p, *J* = 7.2 Hz, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 173.1, 145.3 (d, *J* = 246.0 Hz), 144.5, 131.7 (d, *J* = 2.9 Hz), 129.7, 129.4, 129.0, 127.8 (d, *J* = 1.8 Hz), 125.9, 122.9 (d, *J* = 6.0 Hz), 122.4, 119.6, 116.7 (d, *J* = 4.5 Hz), 112.0, 111.2 (d, *J* = 1.8 Hz), 104.1 (d, *J* = 25.4 Hz), 98.5 (d, *J* = 10.6 Hz), 52.3, 41.2, 34.5, 33.6, 27.1.

¹⁹F NMR (**376** MHz, DMSO-*d*₆): δ -163.62.

HRMS (ESI) calculated for C₂₈H₂₉Cl₂FN₃O ([M+H]⁺): 512.1667; found: 512.1663.

N-(2-fluoro-3-phenylpyrrolo[1,2-*a*]quinolin-1-yl)propionamide (9m)

This compound was obtained in 42% yield (27.9 mg, in 0.2 mmol scale) as light yellow solid, m.p.: 208-209 °C, Eluent: PE/EA = 2/1. $R_f = 0.5$.

¹H NMR (400 MHz, DMSO- d_6): δ 10.16 (s, 1H), 8.52 (d, J = 8.6 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.62-7.49 (m, 6H), 7.45-7.28 (m, 3H), 2.56 (q, J = 7.6 Hz, 2H), 1.19 (t, J = 7.5 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 174.4, 145.9 (d, *J* = 243.5 Hz), 133.5, 130.8 (d, *J* = 2.8 Hz), 129.0, 128.8, 128.6 (d, *J* = 1.0 Hz), 128.1, 126.7, 124.3 (d, *J* = 1.3 Hz), 124.1, 121.9 (d, *J* = 5.4 Hz), 121.0, 116.4 (d, *J* = 3.8 Hz), 115.3, 108.7 (d, *J* = 25.9 Hz), 102.8 (d, *J* = 10.8 Hz), 28.5, 9.4.

¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -163.75.

HRMS (ESI) calculated for $C_{21}H_{18}FN_2O$ ([M+H]⁺): 333.1403; found: 333.1393.

N-(2-fluoro-1-phenylpyrrolo[2,1-*a*]isoquinolin-3-yl)propionamide (9n)

This compound was obtained in 55% yield (36.5 mg, in 0.2 mmol scale) as light yellow solid, m.p.: 168-169 °C, Eluent: PE/EA = 2/1. $R_f = 0.5$.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 9.81 (s, 1H), 7.77 (d, *J* = 7.4 Hz, 1H), 7.71 (d, *J* = 7.3 Hz, 1H), 7.66 (d, *J* = 8.2 Hz, 1H), 7.59-7.44 (m, 5H), 7.41-7.32 (m, 1H), 7.29-7.21 (m, 1H), 7.05 (d, *J* = 7.4 Hz, 1H), 2.53-2.46 (m, 2H), 1.17 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 174.2, 144.6 (d, *J* = 242.7 Hz), 132.1 (d, *J* = 1.7 Hz), 130.5, 129.0, 127.7, 127.5, 127.3, 127.0, 126.0, 125.1 (d, *J* = 3.6 Hz), 121.4, 121.1, 117.9 (d, *J* = 4.7 Hz), 110.6 (d, *J* = 1.9 Hz), 105.3 (d, *J* = 24.4 Hz), 104.2 (d, *J* = 13.5 Hz), 28.2, 9.5.

¹⁹F NMR (**376** MHz, DMSO-*d*₆): δ -166.06.

HRMS (ESI) calculated for $C_{21}H_{18}FN_2O$ ([M+H]⁺): 333.1403; found: 333.1396.

Derivatizations of product 9:

To a solution of indoleazines **9a** (0.2 mmol, 1.0 equiv) in DCM (1 mL) was added 4methylbenzenesulfonyl chloride (0.4 mmol, 2.0 equiv) and K₂CO₃ (0.5 mmol, 2.5 equiv), the mixture was allowed to stir at room temperature for 36 h. Afterwards, the reaction mixture was concentrated and purified by preparative TLC (Eluent: PE/EA =8/1, R_f = 0.6) to afford the desired product **10** in 32% (27.9 mg) isolated yield as a reddish brown solid, m.p.: 147-148 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 8.10-7.96 (m,3H), 7.74 (d, *J* = 9.1 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.40-7.28 (m, 1H), 7.08-6.96 (m, 1H), 6.83 (td, *J* = 6.9, 1.2 Hz, 1H), 2.46 (s, 3H), 2.31-2.15 (m, 1H), 2.08-1.81 (m, 1H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 174.2, 147.9 (d, *J* = 252.8 Hz), 145.5, 135.7, 131.3 (d, *J* = 2.8 Hz), 129.6, 129.4 (d, *J* = 1.3 Hz), 129.0, 128.5 (d, *J* = 1.8 Hz), 126.9 (d, *J* = 5.8 Hz), 126.7, 121.7, 121.4, 117.9 (d, *J* = 5.0 Hz), 113.0 (d, *J* = 2.6 Hz), 101.4 (d, *J* = 25.9 Hz), 100.9 (d, *J* = 10.1 Hz), 28.5, 21.9, 8.2.

¹⁹F NMR (376 MHz, CDCl₃): δ -158.50.

HRMS (ESI) calculated for $C_{24}H_{22}FN_2O_3S$ ([M+H]⁺): 437.1330; found: 437.1223.

To a solution of indoleazines 9 (0.2 mmol, 1.0 equiv) in DCM (1 mL) was added *m*-CPBA (0.24 mmol, 1.2 equiv), the mixture was allowed to stir at 0 °C for 12 h. Afterwards, the reaction mixture was concentrated and purified by preparative TLC to afford the corresponding Chalcone derivatives 11a-11e.

Et∖	H N F 9a	m-CPBA (1.2 equiv) solvent, 0 °C, 12 h	et N H H H H F
	Entry	Solvent	Yield (%)
	1	DCM	52
	2	EtOH	61
	3	2-Me THF	69
	4	GVL	50

Table S2. Comparison of different solvents for the oxidation of compound 9a.

(E)-2-fluoro-3-phenyl-N-propionyl-3-(pyridin-2-yl)acrylamide (11a)

This compound was obtained in 52% yield (15.5 mg, in 0.1 mmol scale) as light yellow solid, m.p.: 110-112 °C, Eluent: PE/EA = 2/1. $R_f = 0.3$.

¹**H NMR (400 MHz, CDCl₃):** δ 9.39 (s, 1H), 8.88-8.54 (m, 1H), 7.78-7.67 (m, 1H), 7.40-7.34 (m, 3H), 7.34-7.30 (m, 3H), 7.21 (d, *J* = 7.9 Hz, 1H), 2.77 (q, *J* = 7.3 Hz, 1H), 1.10 (t, *J* = 7.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 175.9, 158.6 (d, *J* = 31.1 Hz), 155.1 (d, *J* = 8.3 Hz), 149.4, 146.8 (d, *J* = 268.7 Hz), 136.8, 134.6, 132.2 (d, *J* = 12.9 Hz), 129.83, 129.78, 129.5, 128.6, 123.4, 31.5, 8.1.

¹⁹F NMR (**376** MHz, CDCl₃): δ -122.24.

HRMS (ESI) calculated for C₁₇H₁₆FN₂O₂ ([M+H]⁺): 299.1191; found: 299.1191.

(E)-3-(4-bromophenyl)-2-fluoro-N-propionyl-3-(pyridin-2-yl)acrylamide (11b)

This compound was obtained in 53% yield (19.9 mg, in 0.1 mmol scale) as light yellow solid, m.p.: 95-97 °C, Eluent: PE/EA = 2/1. $R_f = 0.3$.

¹**H NMR (400 MHz, CDCl₃):** δ 9.25 (s, 1H), 8.68 (d, *J* = 4.9 Hz, 1H), 7.74 (td, *J* = 7.7, 1.7 Hz, 1H), 7.50 (d, *J* = 8.6 Hz, 2H), 7.34 (dd, *J* = 7.6, 4.9 Hz, 1H), 7.20 (t, *J* = 7.3 Hz, 3H), 2.76 (q, *J* = 7.3 Hz, 2H), 1.10 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 175.7, 158.3 (d, *J* = 32.3 Hz), 154.6 (d, *J* = 8.3 Hz), 149.6, 147.0 (d, *J* = 270.6 Hz), 136.9, 133.5, 131.9, 131.4, 131.3, 125.1 (d, *J* = 3.8 Hz), 124.1 (d, *J* = 1.8 Hz), 123.6, 31.5, 8.0.

¹⁹F NMR (**376** MHz, CDCl₃): δ -121.05.

HRMS (ESI) calculated for C₁₇H₁₅BrFN₂O₂ ([M+H]⁺): 377.0296; found: 377.0310.

(E)-3-(4-chlorophenyl)-2-fluoro-N-propionyl-3-(pyridin-2-yl)acrylamide (11c)

This compound was obtained in 59% yield (19.6 mg, in 0.1 mmol scale) as light yellow solid, m.p.: 101-103 °C, Eluent: PE/EA = 2/1. $R_f = 0.3$.

¹**H NMR (400 MHz, CDCl₃):** δ 9.26 (s, 1H), 8.68 (d, *J* = 4.9 Hz, 1H), 7.74 (td, *J* = 7.7, 1.8 Hz, 1H), 7.37-7.31 (m, 3H), 7.25 (d, *J* = 8.9 Hz, 3H), 7.21 (d, *J* = 7.8 Hz, 1H), 2.76 (q, *J* = 7.3 Hz, 2H), 1.10 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 175.8, 158.4 (d, J = 32.4 Hz), 154.7 (d, J = 8.5 Hz), 149.6, 147.0 (d, J = 270.4 Hz), 136.9, 135.7, 133.0, 131.2, 131.1, 128.9, 125.0 (d, J = 3.6 Hz), 123.6, 31.5, 8.0.

¹⁹F NMR (**376** MHz, CDCl₃): δ -121.32.

HRMS (ESI) calculated for C₁₇H₁₅ClFN₂O₂ ([M+H]⁺): 333.0801; found: 333.0800.

(E)-2-fluoro-3-(9-methyl-9H-pyrido[3,4-b]indol-1-yl)-3-phenyl-N-

propionylacrylamide (11d)

This compound was obtained in 43% yield (17.2. mg, in 0.1 mmol scale) as light yellow solid, m.p.: 119-121 °C, Eluent: PE/EA = 2/1. $R_f = 0.3$.

¹**H NMR (400 MHz, CDCl₃):** δ 8.80 (s, 1H), 8.52 (d, *J* = 5.2 Hz, 1H), 8.17 (d, *J* = 7.9 Hz, 1H), 8.05 (d, *J* = 5.2 Hz, 1H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.44-7.37 (m, 3H), 7.35-7.27 (m, 4H), 3.79 (s, 3H), 2.62 (q, *J* = 6.7 Hz, 2H), 1.00 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 175.6, 158.3 (d, *J* = 31.7 Hz), 147.2 (d, *J* = 274.5 Hz), 142.3, 138.5, 138.0 (d, *J* = 9.6 Hz), 135.6 (d, *J* = 2.7 Hz), 134.7 (d, *J* = 2.9 Hz), 130.1, 129.99, 129.96, 129.89, 128.9, 128.8, 121.8, 121.2, 120.1, 115.0, 109.6, 31.4, 31.3, 7.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -122.69.

HRMS (ESI) calculated for C₂₄H₂₁FN₃O₂ ([M+H]⁺): 402.1613; found: 402.1609.

(*E*)-4-(4-(bis(2-chloroethyl)amino)phenyl)-*N*-(2-fluoro-3-phenyl-3-(pyridin-2yl)acryloyl)butanamide (11e)

This compound was obtained in 53% yield (19.0 mg, in 0.1 mmol scale) as light yellow solid, m.p.: 107-109 °C, Eluent: PE/EA = 2/1. $R_f = 0.3$.

¹**H NMR (400 MHz, CDCl₃):** δ 9.31 (s, 1H), 8.68-8.64 (m, 1H), 7.74 (td, *J* = 7.7, 1.6 Hz, 1H), 7.43-7.36 (m, 3H), 7.34-7.29 (m, 2H), 7.21 (d, *J* = 7.9 Hz, 1H), 7.05 (d, *J* = 8.5 Hz, 2H), 6.60 (d, *J* = 8.6 Hz, 2H), 3.73-3.66 (m, 4H), 3.65-3.58 (m, 4H), 2.77 (t, *J* = 7.3 Hz, 2H), 2.58-2.50 (m, 2H), 1.90 (p, *J* = 7.3 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 174.8, 158.5 (d, *J* = 32.3 Hz), 155.1 (d, *J* = 8.3 Hz), 149.4, 146.8 (d, *J* = 268.0 Hz), 144.4, 136.9, 134.6, 130.9 (d, *J* = 0.8 Hz), 129.83, 129.81, 129.79, 129.6, 128.7, 125.2 (d, *J* = 3.7 Hz), 123.4, 112.2 (d, *J* = 1.6 Hz), 53.7, 40.6, 37.2, 33.9, 25.7.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.45.

HRMS (ESI) calculated for $C_{28}H_{29}Cl_2FN_3O_2$ ([M+H]⁺): 528.1616; found: 528.1630.

1-(1,1-difluoro-7b-phenyl-1,1a,4,5,7a,7b-hexahydro-2*H*-cyclopropa[3,4]pyrazolo [1,5-*a*]pyridin-2-yl)propan-1-one (12)

The mixture of **3aa** (0.2 mmol, 60.4 mg), Et₃SiH (0.5 mmol, 2.5 equiv) in CF₃CO₂H (0.4 mL) was stirred at room temperature for 12 h without exclusion of air or moisture. Afterwards, the reaction was quenched with H₂O and extracted with EA. The combined organic layers were washed with water and dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulted mixture was purified by preparative TLC (Eluent: PE/EA = 5/1, R_f = 0.2) to afford the desired product **12** in 80% (24.3 mg, dr = 7:1) as light yellow solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.38-7.30 (m, 3H), 7.28-7.24 (m, 2H), 5.73-5.64 (m, 1H), 5.22 (dt, *J* = 10.1, 3.4 Hz, 1H), 4.28 (dt, *J* = 4.2, 2.7 Hz, 1H), 4.22 (dd, *J* = 7.0, 1.2 Hz, 1H), 3.07-3.02 (m, 2H), 2.67 (dq, *J* = 15.2, 7.5 Hz, 1H), 2.49-2.41 (m, 1H), 2.39-2.31 (m, 1H), 2.12-2.03 (m, 1H), 1.16 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 175.9, 129.83, 129.81, 128.9, 128.3, 126.7, 122.9, 112.0 (dd, J = 298.0, 290.1 Hz), 63.2 (dd, J = 4.5, 1.4 Hz), 49.7 (dd, J = 11.2, 6.6 Hz), 48.8, 47.2 (dd, J = 13.6, 12.2 Hz), 27.0, 25.2, 9.2.

¹⁹F NMR (376 MHz, CDCl₃): δ -126.17 (dd, J = 148.4, 7.7 Hz), -148.88 (d, J = 147.4 Hz).

HRMS (ESI) calculated for $C_{24}H_{22}F_2N_3O$ ([M+H]⁺): 305.1460; found: 305.1456.

¹H-¹H NOESY of 12:

1-(1-bromo-9,9-difluoro-9a-phenyl-5,6,8a,9,9a,9b-hexahydro-8*H*-cyclopropa[3,4] pyrazolo[5,1-*a*]isoquinolin-8-yl)propan-1-one (13)

The mixture of **4ba** (0.1 mmol, 43 mg), Et₃SiH (0.25 mmol, 2.5 equiv) in CF₃CO₂H (0.2 mL) was stirred at room temperature for 12 h without exclusion of air or moisture. Afterwards, the reaction was quenched with H₂O and extracted with EA. The combined organic layers were washed with water and dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulted mixture was purified by preparative TLC (Eluent: PE/EA = 5/1, R_f = 0.2) to afford the desired product **13** in 88% (38.0 mg, dr = 7:1) as light yellow solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.41-7.36 (m, 2H), 7.16 (d, *J* = 7.9 Hz, 1H), 7.13-7.09 (m, 3H), 6.98 (d, *J* = 7.6 Hz, 1H), 6.89 (t, *J* = 7.7 Hz, 1H), 5.08 (s, 1H), 4.17 (d, *J* = 7.4 Hz, 1H), 3.57 (td, *J* = 12.1, 4.2 Hz, 1H), 3.33-3.25 (m, 1H), 3.20-3.10 (m, 1H), 2.95 (dd, *J* = 16.9, 2.9 Hz, 1H), 2.70 (dq, *J* = 15.1, 7.5 Hz, 1H), 2.50 (dq, *J* = 15.3, 7.5 Hz, 1H), 1.19 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 175.5, 135.2, 130.95, 130.93, 130.6, 130.2, 129.0, 128.0, 127.9, 127.2, 123.6, 112.4 (dd, *J* = 298.4, 291.8 Hz), 67.4 (dd, *J* = 6.0, 1.7 Hz), 50.4 (dd, *J* = 11.4, 6.1 Hz), 48.8, 48.7 (dd, *J* = 14.1, 12.2 Hz), 28.9, 27.2, 9.2.

¹⁹F NMR (376 MHz, CDCl₃): δ -122.36 (dd, J = 148.0, 7.0 Hz), -148.54 (d, J = 147.5 Hz).

HRMS (ESI) calculated for $C_{21}H_{19}BrF_2N_2O$ ([M+H]⁺): 433.0722; found: 433.0720.

Scale-up synthesis of 3aa :

The mixture of propionyl(pyridin-1-ium-1-yl)amide **1a** (5 mmol, 1 equiv), *gem*difluorocyclopropene **2a** (5 mmol, 1 equiv) was sonicated for 6 h without exclusion of air or moisture. Afterwards, the spectral pure 1, 2-dihydropyridine derivatives **3aa** could be obtained directly via filtration without further purification in 70% yield (1.06 g).

Scale-up synthesis of 4ba :

The mixture of (8-bromoisoquinolin-2-ium-2-yl)(propionyl)amide 1r (1 mmol, 1 equiv), *gem*-difluorocyclopropene 2a (1 mmol, 1 equiv) was sonicated for 6 h without exclusion of air or moisture. Afterwards, the spectral pure 1, 2-dihydropyridine derivatives **3ab** could be obtained directly via filtration without further purification in 95% yield (0.41 g).

Scale-up synthesis of 9a :

In a 25 mL Schlenk tube with a magnetic stirring bar was added 1,2-dihydropyridine derivative **3aa** (1 mmol) and MeOH (10 mL) under an atmosphere of N₂. Then, the tube was placed at a reaction bath equipped with Kessil PR 450 nm blue LEDs (24W, 1 cm distance) and allowed to stir at room temperature for 24 h. Afterwards, the resulted mixture was purified by preparative TLC to afford the corresponding *N*-(2-fluoro-1-phenylindolizin-3-yl)propionamide derivatives **9a** in 64% yield (0.18 g).

Control experiment with nonfluorinated cyclopropene substrate:

The mixture of propionyl(pyridin-1-ium-1-yl)amide **1a** (0.2 mmol, 1 equiv), dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (0.2 mmol, 1 equiv) was sonicated for 6 h without exclusion of air or moisture. Afterwards, the reaction mixture was diluted

with EA and monitored by TLC/¹H-NMR analysis. The result revealed that no reaction occurred while the raw materials were recovered.

One-pot synthesis of 9a:

In a 10 mL Schlenk tube with a magnetic stirring bar was added propionyl(pyridin-1ium-1-yl)amide **1a** (0.2 mmol, 1 equiv) and *gem*-difluorocyclopropene **2a** (0.2 mmol, 1 equiv). The resulted mixture was sonicated for 6 h without exclusion of air or moisture (Fig. S1a and S1b). Afterwards, the reaction was quenched by adding MeOH (1.0 mL) under an atmosphere of N₂, and the tube was placed at a reaction bath equipped with Kessil PR 450 nm blue LEDs (24W, 1 cm distance) and allowed to stir at room temperature for 24 h (Fig. S1c and S1d). Finally, the resulted mixture was purified by preparative TLC to afford the corresponding *N*-(2-fluoro-3-phenyl-3-(pyridin-2-yl)cycloprop-1-en-1-yl)propionamide **9a** in 58% isolated yield as light yellow solid.

Fig. S1. One-pot synthesis of 9a via cascade 1,3-dipolar cycloaddition/photo-mediated ringopening rearrangement.

IV. X-Ray Crystallographic Data Compound 3aa (CCDC 2279973):

Identification code	3aa
Empirical formula	$C_{17}H_{16}F_2N_2O$
Formula weight	302.32
Temperature/K	294.60(10)
Crystal system	orthorhombic
Space group	Fdd2
a/Å	37.7194(4)
b/Å	16.9142(2)
c/Å	9.49011(12)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	6054.64(13)
Z	16
$ ho_{calc}g/cm^3$	1.327
µ/mm ⁻¹	0.842
F(000)	2528.0
Crystal size/mm ³	0.13 imes 0.11 imes 0.09
Radiation	$Cu K\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	9.378 to 151.012
Index ranges	$-46 \le h \le 35, -20 \le k \le 20, -11 \le l \le 11$
Reflections collected	10107
Independent reflections	2875 [$R_{int} = 0.0253$, $R_{sigma} = 0.0226$]
Data/restraints/parameters	2875/1/200
Goodness-of-fit on F ²	1.051
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0323, wR_2 = 0.0859$
Final R indexes [all data]	$R_1 = 0.0335, wR_2 = 0.0871$
	I Contraction of the second

Table S3.	Crystal	data a	nd struct	ure refine	ement for	3aa.
	•/					

Compound 4ba (CCDC 2279970):

Table S4. Crystal data and structure refinement for 4ba.

Identification code	4ba
Empirical formula	$C_{21}H_{17}BrF_2N_2O$
Formula weight	431.27
Temperature/K	220.03(10)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	9.5594(7)
b/Å	19.9216(15)
c/Å	10.3113(8)
α/°	90
β/°	110.294(9)
$\gamma^{/\circ}$	90
Volume/Å ³	1841.8(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.555
µ/mm ⁻¹	2.265
F(000)	872.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$
Radiation	Mo Kα (λ = 0.71073)
2Θ range for data collection/°	4.09 to 49.994
Index ranges	$-11 \le h \le 8, -23 \le k \le 22, -12 \le l \le 11$
Reflections collected	8451
Independent reflections	3249 [$R_{int} = 0.0368, R_{sigma} = 0.0500$]
	1

Data/restraints/parameters	3249/0/245
Goodness-of-fit on F ²	1.034
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0372, wR_2 = 0.0795$
Final R indexes [all data]	$R_1 = 0.0546, wR_2 = 0.0874$
Largest diff. peak/hole / e Å ⁻³	0.62/-0.59

Compound 10 (CCDC 2279972):

Identification code	10
Empirical formula	$C_{24}H_{21}FN_2O_3S$
Formula weight	436.49
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	11.0253(12)
b/Å	19.0234(19)
c/Å	11.0800(13)
a/°	90
β/°	117.375(15)
$\gamma/^{\circ}$	90
Volume/Å ³	2063.7(5)
Z	4
$\rho_{calc}g/cm^3$	1.405
µ/mm ⁻¹	0.196
F(000)	912.0
Crystal size/mm ³	0.15 imes 0.12 imes 0.1
Radiation	Mo Kα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.16 to 49.994

Index ranges	$-12 \le h \le 13, -21 \le k \le 22, -13 \le l \le 10$
Reflections collected	11871
Independent reflections	$3564 [R_{int} = 0.0391, R_{sigma} = 0.0427]$
Data/restraints/parameters	3564/0/282
Goodness-of-fit on F ²	1.073
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0422, wR_2 = 0.0986$
Final R indexes [all data]	$R_1 = 0.0518, wR_2 = 0.1036$
Largest diff. peak/hole / e Å-3	0.31/-0.44

Compound 11a (CCDC 2279971):

Identification code	11a
Empirical formula	C ₁₇ H ₁₅ FN ₂ O ₂
Formula weight	298.31
Temperature/K	149.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	8.8203(5)
b/Å	9.1068(6)
c/Å	10.6468(6)
α/°	67.050(6)
β/°	88.220(4)
$\gamma/^{\circ}$	71.172(5)
Volume/Å ³	740.95(9)
Z	2
$\rho_{calc}g/cm^3$	1.337
μ/mm^{-1}	0.807
F(000)	312.0
Crystal size/mm ³	0.14 imes 0.13 imes 0.1
Radiation	$Cu K\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	9.074 to 147.556
	1

Table S6. Crystal data and structure refinement for 11a.

Index ranges	$-9 \le h \le 10, -7 \le k \le 11, -13 \le l \le 13$
Reflections collected	4658
Independent reflections	2887 [$R_{int} = 0.0341, R_{sigma} = 0.0311$]
Data/restraints/parameters	2887/0/205
Goodness-of-fit on F ²	1.082
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0581, wR_2 = 0.1552$
Final R indexes [all data]	$R_1 = 0.0611, wR_2 = 0.1585$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.37

V. References

- [1] T. Nihei, T. Hoshino and T. Konno, Org. Biomol. Chem., 2015, 13, 3721.
- [2] X.-Y. Deng, J.-H. Lin, J. Zheng and J.-C. Xiao, Chem. Commun., 2015, 51, 8805.
- [3] H. Xu, W. Chen, M. Bian, H. Xu, H. Gao, T. Wang, Z. Zhou and W. Yi, *ACS Catalysis*, 2021, **11**, 14694.
- [4] F. Wang, T. Luo, J. Hu, Y. Wang, H. S. Krishnan, P. V. Jog, S. K. Ganesh, G. K. Surya Prakash and G. A. Olah, *Angew. Chem. Int. Ed.*, 2011, **50**, 7153.
- [5] K. K. A. Le, H. Nguyen and O. Daugulis, J. Am. Chem. Soc., 2019, 141, 14728.
- [6] Y.-K. Li, M.-X. Cui, F. Sha, Q. Li and X.-Y. Wu, Org. Biomol. Chem., 2019, 17, 8963.
- [7] X. Liu, W. Li, W. Jiang, H. Lu, J. Liu, Y. Lin and H. Cao, *Org. Lett.*, 2022, 24, 613.
- [8] A. D. Gillie, R. J. Reddy and P. W. Davies, Adv. Synth. Catal., 2016, 358, 226.
- [9] P. W. Davies, A. Cremonesi and L. Dumitrescu, *Angew. Chem. Int. Ed.*, 2011, 50, 8931.
- [10] W. Dai, C. Li, Y. Liu, X. Han, X. Li, K. Chen and H. Liu, Org. Chem. Front., 2022, 7, 2612.

VI. Copies of NMR Spectra

1aj-¹H NMR (400 MHz, CDCl₃)

f1 (ppm) 1ak-¹H NMR (400 MHz, CDCl₃)

8.796 8.622 8.606	7.926 7.711 7.711 7.695 7.692 7.675	2.565 2.565	3.357	2.364 2.345 2.326 2.307	1.255 1.249 1.249 1.211 1.174 1.174	-0.000
		23	1 P	4444		Ī

110 100 f1 (ppm)

1al-¹H NMR (400 MHz, CDCl₃)

1am-¹H NMR (400 MHz, CDCl₃)

1an-¹H NMR (400 MHz, CDCl₃)

88823 88604 88604 88604 88604 7,7384 7,748 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,749 7,249 ---0.000

3aa-¹⁹F NMR (376 MHz, CDCl₃)

3aa-1H-1H NOESY (400 MHz, CDCl₃)

3aa-1H-1H COSY (400 MHz, CDCl₃)

3ab-¹⁹F NMR (376 MHz, CDCl₃)

3ac-¹H NMR (400 MHz, CDCl₃)

3ac-19F NMR (376 MHz, CDCl₃)

3ad-1H NMR (400 MHz, CDCl₃)

3ad-19F NMR (376 MHz, CDCl₃)

3ae-¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} & -0.000 \\ \hline & -0.000 \\$

3ae-19F NMR (376 MHz, CDCl₃)

3af-¹H NMR (400 MHz, CDCl₃)

$-0.000 \qquad -0.000 \qquad -0.0000 \qquad -0.000 \qquad$

3af-¹⁹F NMR (376 MHz, CDCl₃)

7119.313 7119.332 7119.332 7119.713 7119.729 7120.626 7120.626 7121.008 7121.008 7121.008 7121.029 7147.299 7147.299 7148.497

3ag-¹H NMR (400 MHz, CDCl₃)

-1,1460 -1,1278 -1,1278 -1,1466 -1,1466 -1,146 -1,146 -1,146 -1,147 -1,147 -1,147 -1,147 -1,147 -1,147 -1,147 -1,147 -1,142 -2,465 -2,475 -2,4

3ag-¹⁹F NMR (376 MHz, CDCl₃)

7119.290 7119.309 7119.309 7119.706 7119.706 7119.706 7119.706 7120.570 7120.570 7120.570 7120.570 7147.300 7147.300 7148.482 7148.482

1,7,588 1,7,581 1,7,581 1,7,581 1,7,581 1,7,581 1,7,581 1,7,481 1,7,284 1,7,742 1,4,7,742 1,5,7,

---0.000

3ah-¹⁹F NMR (376 MHz, CDCl₃)

7-119.393 7-119.791 7-119.809 7-120.619 7-120.619 7-121.022 1-121.022 1-121.022 1-121.022 1-121.028 1-121.028 1-121.0400 1-121.0400 1-121.0400 1-121.0400 1-

3ai-19F NMR (376 MHz, CDCl₃)

C-119.297 C-120.518 C-120.518 C-120.529 C-147.019 C-147.019 C-148.604

3aj-¹⁹F NMR (376 MHz, CDCl₃)

3ak-¹H NMR (400 MHz, CDCl₃)

7.281 7.281 7.281 7.281 6.986 6.987 6.987 6.987 6.987 6.987 5.893 5.805 5.505

3ak-19F NMR (376 MHz, CDCl₃)

-119.368 -119.764 -119.764 -119.764 -119.764 -119.782 -121.043 -121.044 -147.339 -121.044 -147.339 -121.044 -147.735 -147.735 -149.001

3ba-¹⁹F NMR (376 MHz, CDCl₃)

-0.000

3ca-¹⁹F NMR (376 MHz, CDCl₃)

119.288 119.302 119.683 119.683 119.683 119.689 119.689 112.106 121.088 147.172 147.172 147.172 148.435 148.435 148.435

3da-¹⁹F NMR (376 MHz, CDCl₃)

3ea-¹H NMR (400 MHz, CDCl₃)

-0.000 = 0.0

3ea-19F NMR (376 MHz, CDCl₃)

3fa-1H NMR (400 MHz, CDCl₃)

7.3319 7.2319 7.2321 7.2321 7.2321 7.2321 6.010 6.002 6.002 6.0100 6.0100 6.0100 6.01000 6.0100 6.0100 6.01000 6.0000 6.00000

3fa-¹⁹F NMR (376 MHz, CDCl₃)

3ga-¹H NMR (400 MHz, CDCl₃)

3ga-¹⁹F NMR (376 MHz, CDCl₃)

3ha-¹H NMR (400 MHz, CDCl₃)

3ha-¹⁹F NMR (376 MHz, CDCl₃)

-119.485 -119.501 -119.881 -119.881 -120.814 -121.235 -121.235 -121.235 -146.901 -149.487

3ia-¹⁹F NMR (376 MHz, CDCl₃)

3ja-¹H NMR (400 MHz, CDCl₃)

000000000	0400	N0400N4	<pre></pre>	- N 80 0 - 10 N 80 000	c 4 0	0
0000N-0	0089	100 - 0 00 NON	-000	00-00-00-00	501	0
0000000000	N 0 0 0	ooome	NN 99	രാഗവവവന്നത		0
ファファファファ	ດ່ດ່ດ່ວ	00044444	က်က်က်	~~~~~		-Ö
	~~//					

3ja-¹⁹F NMR (376 MHz, CDCl₃)

3ka-¹H NMR (400 MHz, CDCl₃)

3ka-¹⁹F NMR (376 MHz, CDCl₃)

3la-¹⁹F NMR (376 MHz, CDCl₃)

3ma-¹H NMR (400 MHz, CDCl₃)

3ma-¹⁹F NMR (376 MHz, CDCl₃)

3na-¹⁹F NMR (376 MHz, CDCl₃)

30a-¹⁹F NMR (376 MHz, CDCl₃)

3pa-¹H NMR (400 MHz, CDCl₃)

0000040	50 02	N 00 00	0 10 00 - 0 00	0 N N 0	4 9 6 8 0	0 0 0	9
88888888	22	2222	22222237537	62 82 72	232344	14 18	8
アファファア	0.0	ດ ດ ດ	0004444	ຕ່ຕ່ຕ່ຕ່	00000	÷ ÷ ÷	0
			1				- T

3pa-¹⁹F NMR (376 MHz, CDCl₃)

4aa-19F NMR (376 MHz, CDCl₃)

-1,235 -1,235 -1,235 -1,235 -1,235 -1,205 -1,205 -2,439 -5,623 -2,136 -2,543 -2,563 -2

4ba-¹⁹F NMR (376 MHz, CDCl₃)

4ba-1H-1H NOESY (400 MHz, CDCl₃)

4ba-¹H-¹H COSY (400 MHz, CDCl₃)

4ca-¹⁹F NMR (376 MHz, CDCl₃)

7120.138 7120.156 7120.156 7120.553 7120.552 7121.428 7121.428 7121.428 7121.428 7121.428 7121.428 7121.428 7121.428 7147.771

4da-¹H NMR (400 MHz, CDCl₃)

4da-19F NMR (376 MHz, CDCl₃)

4ea-1H NMR (400 MHz, CDCl₃)

-4.830

4ea-19F NMR (376 MHz, CDCl₃)

120.233 120.251 120.251 120.647 121.466 121.466 121.4864 121.4864 121.4864 121.4864 121.4864 147.434

4fa-¹H NMR (400 MHz, CDCl₃)

 $\begin{array}{c} & -0.000 \\ \hline & -0.000 \\$

4fa-19F NMR (376 MHz, CDCl₃)

4ga-¹H NMR (400 MHz, CDCl₃)

-0.000

4ga-¹⁹F NMR (376 MHz, CDCl₃)

119.517 -119.503 -119.503 -119.909 -119.909 -119.003 -119.0395 -1120.395 -120.415 -146.955 -146.955 -147.346

4ha-¹H NMR (400 MHz, CDCl₃)

4ha-¹⁹F NMR (376 MHz, CDCl₃)

5aa-¹H NMR (400 MHz, CDCl₃)

5aa-19F NMR (376 MHz, CDCl₃)

5ba-¹H NMR (400 MHz, CDCl₃)

-7.7.187 -7.7.187 -7.7.187 -7.7.187 -7.7.182 -7.7.162 -7.7.162 -7.7.162 -7.7.095 -7.7.005 -6.6.090 -6.6.090 -6.6.200 -7.7.005 -6.6.200 -7.7.005 -6.6.200 -7.7.005 -6.6.200 -7.7.005 -6.6.200 -7.7.005 -6.6.200 -7.7.005 -6.6.200 -7.7.005 -6.6.200 -7.7.005 -6.6.200 -7.7.005 -6.6.200 -7.7.005 -6.6.200 -7.7.005 -6.6.200 -7.7.005 -6.6.200 -7.7.005 -7.7.0

5ba-¹⁹F NMR (376 MHz, CDCl₃)

$\begin{array}{c} 7.197\\ 7.165\\ 7.165\\ 7.165\\ 7.166\\ 7.1695\\ 7.1695\\ 7.1695\\ 6.802\\ 6.803\\$

5ca-¹⁹F NMR (376 MHz, CDCl₃)

5da-19F NMR (376 MHz, CDCl₃)

S150

5ea-19F NMR (376 MHz, CDCl₃)

5fa-1H NMR (400 MHz, CDCl₃)

5fa-19F NMR (376 MHz, CDCl₃)

5ga-¹H NMR (400 MHz, CDCl₃)

5ga-¹⁹F NMR (376 MHz, CDCl₃)

f1 (ppm) 120 110

140 130

5ha-¹⁹F NMR (376 MHz, CDCl₃)

6-¹H NMR (400 MHz, CDCl₃)

6-19F NMR (376 MHz, CDCl₃)

7-¹H NMR (400 MHz, CDCl₃)

7-19F NMR (376 MHz, CDCl₃)

8a-¹H NMR (400 MHz, CDCl₃)

$-0.000 \qquad -0.000 \qquad -$

8a-19F NMR (376 MHz, CDCl₃)

8b-¹⁹F NMR (376 MHz, CDCl₃)

8c-¹H NMR (400 MHz, CDCl₃)

8c-¹⁹F NMR (376 MHz, CDCl₃)

8d-¹H NMR (400 MHz, CDCl₃)

8d-19F NMR (376 MHz, CDCl₃)

17.674 117.690 117.690 118.077 118.077 118.087 118.087 118.127 118.127 118.126 118.127 118.127 118.126 118.127 118.129 118.529 118.529 118.529 118.529 118.529 118.529 118.529 118.529 118.529 118.529 118.529 118.539 118.539 118.538 118.538 118.538 118.538 118.538 118.538 118.538 118.548 118.548 118.548 118.548 118.548 118.548 118.548 118.548 118.548 118.548 118.548

8e-¹H NMR (400 MHz, CDCl₃)

8e-19F NMR (376 MHz, CDCl₃)

⁸f-13C NMR (100 MHz, CDCl₃)

8f-¹⁹F NMR (376 MHz, CDCl₃)

9a-¹H NMR (400 MHz, DMSO- d_6)

9a-¹⁹F NMR (376 MHz, DMSO-*d*₆)

90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 f1 (ppm)

T F F

90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 f1 (ppm)

9c-¹⁹F NMR (376 MHz, DMSO-*d*₆)

90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 f1 (ppm)

9e-¹H NMR (400 MHz, DMSO-*d*₆)

9e-¹⁹F NMR (376 MHz, DMSO-*d*₆)

90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 f1 (ppm)

9f-¹H NMR (100 MHz, DMSO-*d*₆)

9f-¹³C NMR (100 MHz, DMSO-*d*₆)

9g-¹H NMR (400 MHz, DMSO-*d*₆)

9g-¹⁹F NMR (376 MHz, DMSO-*d*₆)

90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 f1 (ppm)

9h-¹H NMR (400 MHz, DMSO-*d*₆)

9h-¹⁹F NMR (376 MHz, DMSO-*d*₆)

90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 f1 (ppm)

9k-¹H NMR (400 MHz, DMSO-*d*₆)

 $\begin{bmatrix} 8.019\\ 7.7266\\ 7.7206\\ 7.7208\\ 7.7208\\ 7.7208\\ 7.7208\\ 7.7480\\ 7.7480\\ 7.7480\\ 7.7480\\ 7.7480\\ 7.7382\\ 7.7$	-3.384 -3.172 -3.172 -2.563 -2.565 -2.505 -2.496	1.187

9k-¹⁹F NMR (376 MHz, DMSO-*d*₆)

I F

9m-¹H NMR (400 MHz, DMSO-*d*₆)

9n-¹H NMR (400 MHz, DMSO-*d*₆)

9n-¹⁹F NMR (376 MHz, DMSO-*d*₆)

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 -220 -240 f1 (pm)

190 180

170 160

150 140

130 120

100 f1 (ppm) 90

110

70

60 50

40 30

20 10

80

11a-¹H NMR (400 MHz, CDCl₃)

11a-¹⁹F NMR (376 MHz, CDCl₃)

11b-¹H NMR (400 MHz, CDCl₃)

11b-¹⁹F NMR (376 MHz, CDCl₃)

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

11c-¹H NMR (400 MHz, CDCl₃)

11c-¹⁹F NMR (376 MHz, CDCl₃)

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

11d-¹H NMR (400 MHz, CDCl₃)

11d-¹⁹F NMR (376 MHz, CDCl₃)

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

11e-¹H NMR (400 MHz, CDCl₃)

-9.315 8.665 8.666 8.666 8.666 8.666 8.666 8.666 8.666 7.730 7.717 7.717 7.717 7.730 8.666 8.666 8.666 7.730 7.330 7.770 7.7700 7.7700 7.7700 7.7700 7.7700 7.7700 7.7700 7.7700

---0.000

11e-¹⁹F NMR (376 MHz, CDCl₃)

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

12-¹H NMR (400 MHz, CDCl₃)

12-19F NMR (376 MHz, CDCl₃)

-125.051 -125.068 -125.068 -125.068 -125.069 -125.979 -125.979 -147.571 -147.571 -147.571 -147.677 -148.683

12-¹H-¹H NOESY (400 MHz, CDCl₃)

13-19F NMR (376 MHz, CDCl₃)

