Electronic Supplementary Information (ESI)

For

Guanidine-Based Protic Ionic Liquids as High-Efficient Intermolecular Scissors for Dissolving Natural Cellulose

Shi-Peng Chen,¹ Jin-Long Zhu,¹ Xing-Ru Chen,¹ Zhi-Hao Wang,¹ Yong-Jie

Dan,¹ Jing Wang,¹ Sheng-Yang Zhou,² Gan-Ji Zhong,¹ Hua-Dong Huang,^{1,*}

Zhong-Ming Li^{1,*}

¹College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China

²Nanotechnology and Functional Materials, Department of Materials Science and Engineering, The Ångström Laboratory, Uppsala University, 75103 Uppsala, Sweden;

* Corresponding to Huang, H. (<u>hdhuang@scu.edu.cn</u>); Li, Z. (<u>zmli@scu.edu.cn</u>)

Fig. S1 a The digital photograph of cotton linters. b Relationship between $[\eta]$ and concentration of cotton linters in CED (0.5M; 25 °C).

Fig. S2 a The digital photograph of bark pulp. b Relationship between $[\eta]$ and concentration of bark pulp in CED (0.5M; 25 °C). c The POM image and digital photograph of 10% (w/w) bark pulp solution with [TMGH][MAA].

Fig. S3 a The digital photograph of treated bark. **b** Relationship between $[\eta]$ and concentration of treated bark in CED (0.5M; 25 °C). **c** The POM image and digital photograph of 8% (w/w) treated bark solution with [TMGH][MAA].

POM is used to identify the dissolution state of cellulose in solvent through the observation of cellulose fibrils and crystals. **Fig. S4a** exhibits the undissolved state of cellulose in water. Obviously, the cellulose fibrils and crystals retain the intact morphology, suggesting that water can hardly break the strong hydrogen-bonding interaction of cellulose chains. The dissolution state of 14% (w/w) cellulose in [TMGH][MAA] solvent is shown in **Fig. S4b**, it is observed clearly via the POM that part of the cellulose fibrils remains in solvent, and the diameter of residual cellulose fibrils becomes larger than that of undissolved state, indicating a greater swelling state of residual cellulose. Therefore, 14% (w/w) cellulose is able to be dissolved partially in [TMGH][MAA] solvent, beyond its limit of dissolving capacity.

Fig. S4 The POM photographs of the cellulose dissolved in water at room temperature (**a**) and 14% (w/w) cellulose dissolved in [TMGH][MAA] solvent with the molar ratio of 6:4 at 100 °C (**b**).

Fig. S5 a The digital photograph of cotton fibers. **b** The POM image and digital photograph of 3% (w/w) cotton fibers solution with [TMGH][MAA].

Raw material	Solvent ^a	Temperature	Solubility ^b	Ref.	
		(°C)	(wt%)		
Disintegrated					
Cotton Linters	NMMO	140	25.9	1	
(DP=600)					
Cotton Linters		150	12.0	2	
(DP=1130)	LICI/DMAC	150	13.0	2	
Cotton Linter					
Pulp	NaOH/Urea/H ₂ O	-12	4.0-5.0	3	
$(M_{\eta}=11.4x10^4)$					
Cotton Linter	D-Et NOU/IL O	24	10.5	4	
Pulps (DP=667)	BZET3NOH/H2O	-24	10.5	4	
MCC (DP=145)	ChOH/Urea	70	9.51	5	
Dissolved Pulp		00	14.5	6	
(DP=650)	AmimCl	80	14.5		
Dissolving Pulp	D 1 61	100	10.0	_	
(DP=1000)	BmimCl	100	10.0	7	
	[DBUH][CH ₃ CH ₂ O	00	10.1	0	
MCC (DP=156)	CH ₂ COO]	80	18.1	8	

 Table S1 The cellulose solubility of different solvents.

MCC (DP=292)	DBN-PyO-4	70	14.1	9
Cotton Linters (DP=741)	[TMGH][MAA]	80	11.5	This work
Bark pulp (DP=1295)	[TMGH][MAA]	80	9.1	This work
Treated bark (DP=1743)	[TMGH][MAA]	80	7.4	This work
Cotton fibers (DP=10,000- 15,000)	[TMGH][MAA]	80	2.9	This work

^a The solvents of BzEt₃NOH/H₂O, ChOH/Urea, [DBUH][CH₃CH₂OCH₂COO] and DBN-PyO-4 represent Benzyltriethyl ammonium aqueous solution, choline hydroxide/urea deep eutectic solvent, 1,5-diazabicyclo[4.3.0]non-5-enium ethoxyacetate and 1,5-diazabicyclo[4.3.0]non-5-enium pyridine N-oxide, respectively. ^b The cellulose solubility of solvents is expressed by the ratio of dissolved cellulose mass to the total mass of dissolved cellulose and solvents.

Table S2 The ¹³C-NMR Chemical Shifts of Pure [TMGH][MAA] Solvent and Cellulose Solution (5:5, TMG/MAA molar ratio) at Room

Temperature.

Samula	δ(ppm)								
Sample	I-C	II-C	III-C	IV-C	V-C				
[TMGH][MAA]	39.72	162.14	57.87	72.91	172.76				
Cellulose-[TMGH][MAA]	39.73	161.86	57.94	72.66	173.10				
Δδ	+0.01	-0.28	+0.07	-0.25	+0.34				

Table S3 The ¹³C-NMR Chemical Shifts of Pure [TMGH][MAA] Solvent and Cellobiose Solution (5:5, TMG/MAA molar ratio) at Room

Temperature.

Sample			δ(ppm)		
Sample	I-C	II-C	III-C	IV-C	V-C
[TMGH][MAA]	39.73	162.14	57.87	72.92	172.73
Cellobiose-[TMGH][MAA]	39.74	161.92	57.95	72.71	173.44
Δδ	+0.01	-0.22	+0.08	-0.21	+0.71

Table S4 The ¹³C-NMR Chemical Shifts of Pure Cellobiose and Cellobiose Solution (5:5, TMG/MAA molar ratio) at Room Temperature.

Sample C1									δ	(ppm))								
	C1	C1'a	C1′β	C2	C2′α	С2′β	C3	C3'a	С3′β	C4	C4'a	C4′β	C5	C5′α	С5′β	C6a	Сбβ	C6'a	С6′β
Cellobiose	103.61	92.47	97.09	75.49	72.51	71.86	76.91	74.94	73.75	70.27	81.43	81.17	77.21	70.48	75.17	61.47	61.45	60.99	60.93
Cellobiose- [TMGH][MAA]	103.83	92.63	97.83	75.32	71.99	71.91	76.86	73.96	72.93	70.18	81.35	81.35	77.65	70.31	74.62	61.22	61.19	61.12	61.10
Δδ	+0.22	+0.16	+0.74	-0.17	-0.52	+0.05	-0.05	-0.98	-0.82	-0.09	-0.08	+0.18	+0.44	-0.17	-0.55	-0.25	-0.26	+0.13	+0.17

The ¹H-NMR spectroscopy of [TMGH][MAA] solvent and cellulose solution in [TMGH][MAA] at the TMG/MAA molar ratio of 5:5 is shown in **Fig. S6**. As the cellulose is dissolved in [TMGH][MAA] solvent, the proton signal of =NH becomes broader, which deduces that [TMGH][MAA] solvent has strong interaction with cellulose via hydrogen bonds. Moreover, this signal shifts downfield from 8.39 ppm to 8.45 ppm. It indicates that the proton in =NH of [TMGH] forms hydrogen bonds with the oxygen atoms in -OH of cellulose, causing the decrease of electron cloud density.

Fig. S6¹H-NMR spectrum of the cellulose solution in [TMGH][MAA] solvent and the corresponding pure [TMGH][MAA] solvent with TMG/MAA molar ratio of 5:5.

The ¹H-NMR spectroscopy of cellobiose and cellobiose/[TMGH][MAA] solution with 5:5 TMG/MAA molar ratio is shown in **Fig. S7**. The signals in the range of 2.9 ppm– 4.0 ppm belong to the backbone hydrogen atoms of cellobiose. With cellobiose dissolved in [TMGH][MAA] solvent, the peaks of 2β -H, $2'\beta$ -H, 3β -H, $3'\beta$ -H, 6β -H and $6'\beta$ -H shift upfield, indicating that the formation of hydrogen bonds between [TMGH][MAA] solvent and -OH of C2, C2', C3, C3', C6 and C6' in cellobiose increases the electron cloud density of the corresponding cellobiose backbone hydrogen

atoms.

Fig. S7 ¹H-NMR spectrum of pure cellobiose and the cellobiose solution in [TMGH][MAA] solvent with 5:5 TMG/MAA molar ratio.

Fig. S8 Initial structure A (**a**) and structure B (**b**) of [TMGH][MAA] and cellobiose for DFT calculation.

Table S5 Electron Density (ρ_{BCP}) and its Laplacian $(\nabla^2\rho_{BCP})$ at the BCPs of Bonds,

Obtained by AIM Theory.

Structure	Sort	Bond	ρ(bcp)	∇²ρ(bcp)
	[MAA]-Cellobiose	О-Н…О	0.03829	0.1155
	[MAA]- Cellobiose	С…О	0.00917	0.03727
	[MAA]- Cellobiose	С-Н…О	0.00184	0.006069
	[TMGH]- Cellobiose	№-Н…О	0.02510	0.09788
А	[TMGH]-[MAA]	№-Н…О	0.03342	0.1166
	[TMGH]-[MAA]	С-Н…О	0.009072	0.03857
	[TMGH]-[MAA]	С-Н…О	0.006193	0.02189
	[TMGH]-[MAA]	С-Н…О	0.007324	0.02604
	[TMGH]- Cellobiose	N-H…O	0.005183	0.02204
	[TMGH]- Cellobiose	№-Н…О	0.03177	0.1133
Ð	[TMGH]- Cellobiose	С-Н…О	0.005516	0.02183
В	[TMGH]-[MAA]	С-Н…О	0.01027	0.03770
	[TMGH]-[MAA]	С-Н…О	0.005873	0.01955
	[TMGH]-[MAA]	С-Н…О	0.01138	0.04159

The conductivity of the mixture of [TMGH][MAA] solvent and 1 wt% water is shown in **Fig. S9a**, and the shape of curve surface is consistent with that of pure solvent in **Fig. S3a**. The conductivity increases with the increase of temperature. In addition, as the TMG/MAA molar ratio increases, the conductivity first increases and then decreases beyond the TMG/MAA molar ratio of 7:3. **Fig. S9b** presents the viscosity of the mixture of [TMGH][MAA] solvent and 1 wt% water from 30 °C to 100 °C. As expected, the viscosity decreases with the increased temperature.

Fig. S9 a The effect of temperature on electrical conductivity of the mixture of the [TMGH][MAA] solvent and 1 wt% water. **b** Viscosity of the mixture of [TMGH][MAA] solvent with various TMG/MAA molar ratios and 1 wt% water as a function of temperature from 30 °C to 100 °C. The inset shows the partial enlarged viscosity curves of the mixture with the TMG/MAA molar ratios from 6:4 to 9:1.

The viscosity-shearing rate curves of [TMGH][MAA] solvent and 5% (w/w) cellulose solution with various TMG/MAA molar ratios are shown in **Fig. S10**. As shown in **Fig. S10a**, the viscosity of [TMGH][MAA] solvent remains constant with the increase of shearing rate, exhibiting a characteristic of Newtonian fluids. When the TMG/MAA molar ratio increases to 7:3, the viscosity of [TMGH][MAA] solvent is obtained to be a particularly lower value of 67.3 mPa·s compared to imidazolium-based ILs (AmimCl: 685 mPa·s at 30 °C;⁶ BmimCl: 11000 mPa·s at 30 °C¹⁰), which shows better fluidity and is more favor of cellulose dissolution. In **Fig. S10b**, the viscosity of cellulose solution decreases with increased shearing rate, exhibiting a feature of non-Newtonian

fluids. It suggests that cellulose is dissolved effectively into [TMGH][MAA] solvent. With the same tendency as that of solvent, the viscosity of cellulose solution decreases with the increase of TMG/MAA molar ratio. Due to the weak cellulose dissolution capacity of [TMGH][MAA] solvent with 9:1 molar ratio, the viscosity of corresponding 5% (w/w) cellulose solution could not be measured. In addition, at a low shear rate, the viscosity of 5% (w/w) cellulose solution with the TMG/MAA molar ratio of 7:3 is in the range of medium viscosity fluids (5 \sim 50 Pa \cdot s), which exhibits a good processability.

Fig. S10 a Viscosity as a function of shearing rate for [TMGH][MAA] solvent. **b** Viscosity as a function of shearing rate for 5% (w/w) cellulose solution with various TMG/MAA molar ratios at room temperature, and the inset is the flowing state of cellulose solution with various TMG/MAA molar ratios after tilting at 90° for 10 s.

Fig. S11 a Dependencies of flow activation energy (E_{η}) on TMG/MAA molar ratio in [TMGH][MAA] solvent. **b** Arrhenius fitted lines of $\ln\sigma$ versus 1/T for [TMGH][MAA] solvent. **c** Dependencies of activation energy for electrical conduction (E_{σ}) on TMG/MAA molar ratio in [TMGH][MAA] solvent.

Fig. S12 Deconvolution of WAXD patterns for original cellulose (a) and regenerated cellulose film (b).

Fig. S13 The digital photograph of original [TMGH][MAA] (a) and recovered

[TMGH][MAA] (**b**). **c** Viscosity as a function of shearing rate for original [TMGH][MAA] and recovered [TMGH][MAA]. **d** ATR-FTIR spectra of original [TMGH][MAA], recovered [TMGH][MAA] and EtOH. **e** ¹H-NMR spectrum of original [TMGH][MAA] and recovered [TMGH][MAA]. **f** The POM image and digital photograph of 12% (w/w) cotton linters solution with recovered [TMGH][MAA].

Supplementary References

- 1. H. Chanzy and A. Peguy, J. Polym. Sci. Polym. Phys. Ed., 1980, 18, 1137-1144.
- C. L. McCormick, P. A. Callais and B. H. Jr. Hutchinson, *Macromolecules*, 1985, 18, 2394-2401.
- 3. J. Cai and L. Zhang, *Macromol. Biosci.*, 2005, 5, 539-548.
- Y. Wang, L. Liu, P. Chen, L. Zhang and A. Lu, *Phys. Chem. Chem. Phys.*, 2018, 20, 14223-14233.
- 5. Y. Zhong, J. Wu, H. Kang and R. Liu, *Green Chem.*, 2022, 24, 2464-2475.
- 6. H. Zhang, J. Wu, J. Zhang and J. He, *Macromolecules*, 2005, **38**, 8272-8277.
- R. P. Swatloski, S. K. Spear, J. D. Holbrey and R. D. Rogers, J. Am. Chem. Soc., 2002, 124, 4974-4975.
- X. Li, H. Li, Z. Ling, D. Xu, T. You, Y.-Y. Wu and F. Xu, *Macromolecules*, 2020, 53, 3284-3295.
- 9. Q. Liu, H. Yu, T. Mu, Z. Xue and F. Xu, *Carbohydr. Polym.*, 2021, **272**, 118454.
- K. R. Seddon, A. Stark and M.-J. Torres, in *Clean Solvents*, American Chemical Society, 2002, vol. 819, ch. 4, pp. 34-49.