Supporting Information for

Aliphatic C–H arylation with heteroarenes without photocatalyst

Rui-Nan Ci,^{a,b} Jia Qiao,^{a,b} Qi-Chao Gan,^{a,b} Bin Chen,^{a,b} Chen-Ho Tung^{a,b} and Li-Zhu Wu^{*a,b}

^aKey Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China. E-mail: lzwu@mail.ipc.ac.cn.

^bSchool of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

* Corresponding Author(s): Li-Zhu Wu: lizwu@mail.ipc.ac.cn

1. General information	S1
2. Substrates preparation	S1
2.1 General procedure for the synthesis of 4-Phenylisoquinoline and 5-Phenylisoquinolin	ne.S1
2.2 General procedure for the synthesis of 5-Benzyloxyisoquinoline	S2
2.3 General procedure for the synthesis of Isoquinolin-5-yl benzoate	S2
3. General experimental procedure.	S2
4. Mechanism study	S3
4.1 UV-vis absorption and luminescence quenching experiments.	S3
4.2 Electron paramagnetic resonance (EPR) spectroscopy experiments	S3
4.3 UV-vis absorption experiments.	S4
4.4 Radical-trapping experiments.	S4
5. Electrochemical and optical spectroscopic data	S5
6. Scale-up experiment	S6
7. Characterization data for compounds	S6
8. ¹ H NMR and ¹³ C NMR spectra of all products	S19
9. References	S49

1. General information

¹H NMR spectra were recorded using a Bruker Avance DPX 400 MHz or 600 MHz instrument with tetramethylsilane (TMS) as an internal standard. ¹³C NMR spectra were obtained at 101 MHz or 151 MHz and referenced to the internal solvent signals. HRMS (ESI) spectra were recorded on Fourier Transform Ion Cyclotron Resonance Mass Spectrometer by Technical Institute of Physics and Chemistry. EPR spectra were recorded by X Band on a Brucker ESR 300E spectrometer. UV-vis absorption spectra were recorded with a U-3900 UV-vis spectrophotometer. Blue LEDs (3 W, λ =415 ± 10 nm, 145Im @ 700 mA) were used as the irradiation light. All reagents were purchased from commercial suppliers and used without further purification. Flash chromatography was carried out with silica gel (200-300 mesh). Analytical TLC was performed with silica gel GF254 plates, and the products visualized by UV detection.

2. Substrates preparation

2.1 General procedure for the synthesis of 4-Phenylisoquinoline and 5-Phenylisoquinoline.

Prepared according to literature methods¹. In an oven-dried round-bottom flask, 4bromoisoquinoline (500 mg, 2.403 mmol, 1.0 equiv.) was taken in a mixture of 2.5 mL of EtOH, 5 mL of water, and 10 mL of toluene and degassed for 20 min. To the resulting mixture were successively added phenylboronic acid (440 mg, 3.605 mmol, 1.5 equiv.), K_2CO_3 (1.328 g, 9.612 mmol, 4.0 equiv.), and Pd(PPh₃)₄ (139 mg, 0.120 mmol, 0.05 equiv.) at room temperature. The resulting mixture was stirred at 95 °C (oil bath) under positive argon pressure for 36 h. The reaction mixture was cooled to room temperature, quenched with saturated NH₄Cl solution, and extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo to obtain a black oil which was purified by column chromatography on silica gel (petroleum ether/ ethyl acetate = 5:1–2:1) to obtain 4-phenylisoquinoline as a yellow oil. 5-Phenylisoquinoline was prepared according to the aforementioned procedures and obtained as a yellow oil.

2.2 General procedure for the synthesis of 5-Benzyloxyisoquinoline.

Prepared according to the literature methods². A solution of 5-hydroxyisoquinoline (10 g, 69 mmol) in 150 mL of *N*,*N*-dimethylformamide (DMF) was cooled to 0–5 °C and treated with 60% sodium hydride (2.60 g) over 5 min. After 30 min, benzyl bromide (10.1 g, 59 mmol) was added dropwise over 5 min. After a further 1.5 h, the reaction was quenched with brine and extracted with AcOEt. The combined organic layers were washed with 1 N sodium hydroxide solution and brine, dried over magnesium sulfate, and evaporated under reduced pressure. The resulting brown oil was purfied by column chromatography on silica gel (petroleum ether/ethyl acetate = 1:1) to give the desired product as a purple colored solid.

2.3 General procedure for the synthesis of Isoquinolin-5-yl benzoate.

Prepared according to the literature methods³. To a solution of isoquinolin-5-ol (10 mmol) in pyridine (10 mL) cooled in an ice bath was added benzoyl chloride (12 mmol) dropwise over 10 min with stirring. Subsequently, the reaction mixture was kept under stirring for 60 min. After total consumption of the starting material was confirmed by TLC, the reaction mixture was extracted with dichloromethane (10 mL) and washed with a solution of diluted HCI (10 mL). The organic phase was then washed with water, dried on Na₂SO₄, filtrated, and evaporated under pressure. The phenyl benzoates were purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give the desired product as white solid.

3. General experimental procedure.

A 10 mL Pyrex tube equipped with a magnetic stir bar was charged with heteroarenes (0.1 mmol, 1 equiv.), alkanes (5.0 mmol, 50.0 equiv.), TFA (0.12 mmol, 1.2 equiv.), and 2.5 mL of CH₃CN. The mixture was irradiated by blue LEDs (λ = 415 nm) for 6-24 h in the air at room temperature. After reaction, the mixture was diluted with 1.0 mL of aqueous 1 M NaOH solution

and extracted with ethyl acetate. Then the organic phase was combined together and washed with brine and dried over anhydrous sodium sulfate. Upon removal of solvent under vacuum, the residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1–5:1) to give the desired product.

4. Mechanism study

4.1 UV-vis absorption and luminescence quenching experiments.

Figure S1. UV-vis absorption and Luminescence quenching experiments. (a) UV-vis absorption spectrum of isoquinoline **2a** (0.1 M) by TFA in CH₃CN. (b) Fluorescence quenching of isoquinoline **2a** (0.1 M) by TFA in CH₃CN. (c) Fluorescence quenching of isoquinoline **2a** (0.1 M) by cyclohexane **1a** in CH₃CN under acidic condition (0.1 M). (d) Fluorescence quenching of isoquinoline **2a** (0.1 M) by cyclohexane **1a** in CH₃COCH₃ under acidic condition (0.1 M).

4.2 Electron paramagnetic resonance (EPR) spectroscopy experiments.

Figure S2. Electron paramagnetic resonance (EPR) spectroscopy experiments: i: the CH₃CN

solution of DMPO, **2a** and TFA in air atmosphere with blue light irradiation; **ii**: the CH₃CN solution of DMPO, **1a**, **2a** and TFA in air atmosphere with blue light irradiation; **iii**: standard $O_2^{\bullet-}$ and carbon radical signal peak; **iv**: the CH₃CN solution of DMPO in air atmosphere with blue light irradiation.

4.3 UV-vis absorption experiments.

Figure S3. UV–vis absorption spectra: (a) a CH_3CN solution of KI (labeled by green line); standard reaction solution (labeled by orange line); a standard reaction solution containing I_2 (labeled by purple line).

4.4 Radical-trapping experiments.

Scheme S1. Radical-trapping experiments

Figure S4. HRMS of 5a.

Figure S5. HRMS of 6a.

5. Electrochemical and optical spectroscopic data

The cross-over point of isoquinoline was 341 nm, and $E_{00} = 3.82$ eV. According to the reduction potential of isoquinoline/isoquinoline⁻⁻ ($E_{1/2} = -1.23$ V vs. SCE) and the E_{00} transition energy, the photoexcited protonated isoquinoline (I*) is estimated to display an oxidation potential of +2.59 V vs. SCE. CF₃COO⁻ (+2.40 V vs SCE) enable electron transfer to I* (+2.59 V vs SCE).

Figure S6 (a) The UV-Vis absorption spectrum (organe line) and fluorescence spectrum (blue line) of protonated isoquinoline by TFA (2.0×10^{-5} M) in CH₃CN. (b) The cyclic voltammetry experiment of isoquinoline (10 mM) and protonated isoquinoline by TFA (10 mM) in CH₃CN under argon atmosphere. 0.1 M n-Bu₄NPF₆ as electrolyte. (c) The cyclic voltammetry experiment of

CF_3COONH_4 (0.1 M) in CH_3CN .

6. Scale-up experiment

A 150 mL reaction tube (inner diameter: 5.0 cm, length: 18 cm) equipped with a magnetic stir bar was charged with isoquinoline (900 μ L, 7.5 mmol), cyclohexane (20 mL, 25 equiv.), TFA (900 μ L, 1.2 equiv.) in CH₃CN (70 mL). The mixture was irradiated by blue LEDs (λ = 415 nm) for 26 h at room temperature. After reaction, the mixture was diluted with aqueous 1 M NaOH solution and extracted with ethyl acetate. Then the organic phase was combined together and washed with brine and dried over anhydrous sodium sulfate. Upon removal of solvent under vacuum, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the desired product **3a** in 60% yield (0.95 g).

7. Characterization data for compounds

1-Cyclohexylisoquinoline (3a)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 20.1 mg, yield 95%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 5.8 Hz, 1H), 8.21 (d, J = 8.3 Hz, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.56 (t, J = 7.7 Hz, 1H), 7.46 (d, J = 5.7 Hz, 1H), 3.56 (t, J = 11.8 Hz, 1H), 1.96 (t, J = 17.7 Hz, 4H), 1.84 (q, J = 11.7, 10.2 Hz, 3H), 1.53 (q, J = 13.2 Hz, 2H), 1.40 (t, J = 12.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 141.9, 136.4, 129.5, 127.6, 126.8, 126.3, 124.7, 118.9, 41.6, 32.6, 26.9, 26.3. HRMS (ESI) Calcd. for C₁₅H₁₈N [M+H]⁺: 212.1434. Found: 212.1439.

S6

1-(Pentan-2-yl)isoquinoline and 1-(Pentan-3-yl)isoquinoline (3b)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 10.1 mg, yield 51%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.52 (dd, J = 11.8, 5.7 Hz, 1H), 8.24 (t, J = 8.2 Hz, 1H), 7.87 – 7.54 (m, 3H), 7.48 (dd, J = 5.7, 1.1 Hz, 1H), 3.88 – 3.48 (m, 1H), 2.11 – 1.91 (m, 1H), 1.90 – 1.64 (m, 1H), 1.43 – 1.17 (m, 4H), 0.85 (dt, J = 44.0, 7.4 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 142.1, 142.0, 136.4, 129.5(4), 129.5(1), 127.6, 127.5, 126.8(3), 126.8(9), 126.8(6), 124.9, 124.7, 118.8, 118.6, 39.0, 35.8, 28.2, 21.0, 20.5, 14.3, 12.3. HRMS (ESI) Calcd. for C₁₄H₁₈N [M+H]⁺: 200.1434. Found: 200.1437.

1-(Heptan-2-yl)isoquinoline, 1-(Heptan-3-yl)isoquinoline and 1-(Heptan-4-yl)isoquinoline (3c)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 12.7 mg, yield 56%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, $R_f = 0.5$). ¹H NMR (600 MHz, CDCl₃) δ 8.52 (dd, J = 17.1, 5.6 Hz, 1H), 8.23 (dd, J = 13.4, 8.6 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.65 (t, J = 7.7 Hz, 1H), 7.58 (d, J = 8.1 Hz, 1H), 7.48 (d, J = 5.6 Hz, 1H), 3.86 – 3.47 (m, 1H), 1.98 (dp, J = 15.5, 7.4 Hz, 1H), 1.89 – 1.66 (m, 2H), 1.41 (d, J = 6.8 Hz, 1H), 1.25 (p, J = 10.4, 9.2 Hz, 5H), 0.81 (dt, J = 28.2, 6.7 Hz, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 166.1, 165.5, 165.3, 142.1, 142.0, 136.4, 136.3, 129.6, 128.0, 127.9, 127.6, 127.5, 126.8(4), 126.8(9), 124.9, 124.8, 124.8, 118.8, 118.6(3), 118.6(0), 38.1, 36.8, 36.1, 35.2, 32.1, 30.1, 29.7, 28.6, 27.6, 23.0, 22.6, 21.0, 20.5, 14.3, 14.1, 14.0, 12.3. HRMS (ESI) Calcd. for C₁₆H₂₂N [M+H]⁺: 228.1747. Found: 228.1753.

1-(Octan-2-yl)isoquinoline, 1-(octan-3-yl)isoquinoline and 1-(octan-4-yl)isoquinoline (3d)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 13.0 mg, yield 54%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.5). ¹H NMR (600 MHz, CDCl₃) δ 8.52 (dd, J = 16.3, 5.7 Hz, 1H), 8.31 – 8.16 (m, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.65 (t, J = 7.9 Hz, 1H), 7.58 (d, J = 8.1 Hz, 1H), 7.48 (d, J = 5.5 Hz, 1H), 3.84 – 3.43 (m, 1H), 1.97 (tt, J = 16.1, 8.6 Hz, 1H), 1.88 – 1.68 (m, 2H), 1.41 (d, J = 6.8 Hz, 1H), 1.36

-1.15 (m, 6H), 1.14 - 1.04 (m, 1H), 0.82 (dt, J = 27.3, 7.6 Hz, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 166.2, 165.6, 165.3, 142.1(0), 142.1(6), 142.0, 136.4, 136.3, 129.6(6), 129.6(5), 128.0, 127.9, 127.5(5), 127.5(1), 126.8(4), 126.8(0), 126.8(8), 124.9(1), 124.9(5), 124.8, 118.8, 118.6(4), 118.6(1), 38.1, 36.8, 36.1, 35.5, 35.4, 32.1, 31.8, 30.1, 29.5, 28.6, 27.9, 27.5, 23.0, 22.6, 22.5, 21.0, 20.5, 14.6, 14.1, 14.0, 12.4. HRMS (ESI) Calcd. for C₁₇H₂₄N [M+H]⁺: 242.1903. Found: 242.1906.

1-((1S)-2-Methylcyclohexyl)isoquinoline, 1-(1-Methylcyclohexyl)isoquinoline, 1-((1S)-3-Methylcyclohexyl)isoquinoline and 1-(4-Methylcyclohexyl)isoquinoline (3e)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 20.0 mg, yield 89%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.56 – 8.45 (m, 1H), 8.25 (dd, J = 16.3, 8.1 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.66 (t, J = 6.9 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.49 (d, J = 4.3 Hz, 1H), 4.09 – 2.96 (m, 1H), 2.30 – 1.47 (m, 8H), 1.46 – 0.90 (m, 3H), 0.67 (d, J = 6.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 165.6, 142.2, 142.1(0), 142.1(5), 142.0, 136.6(3), 136.6(7), 129.7, 129.6, 127.7(0), 127.7(5), 127.6, 126.9(2), 126.9(8), 126.6, 126.5, 124.9(4), 124.9(6), 119.0, 118.7, 41.6, 41.5, 41.1, 38.7, 36.6, 35.9, 35.8, 35.4, 35.1, 34.1, 33.3, 32.6, 32.4, 32.3, 32.1, 29.8, 28.2, 27.9, 27.3, 27.0, 26.8, 26.6, 22.9(4), 22.9(0), 21.3, 20.9, 18.9, 18.5. HRMS (ESI) Calcd. for C₁₆H₂₀N [M+H]⁺: 226.1590. Found: 226.1593.

1-Cyclopentylisoquinoline (3f)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 12.0 mg, yield 61%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, J = 5.6 Hz, 1H), 8.29 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 7.9 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 7.52 (d, J = 5.7 Hz, 1H),

4.06 (p, J = 8.4 Hz, 1H), 2.25 – 2.07 (m, 4H), 2.03 – 1.89 (m, 2H), 1.86 – 1.74 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 164.8, 141.7, 136.3, 129.6, 127.4, 127.2, 126.8, 125.3, 119.0, 43.0, 32.8, 26.1. HRMS (ESI) Calcd. for C₁₄H₁₆N [M+H]⁺: 198.1277. Found: 198.1281.

1-Cycloheptylisoquinoline (3g)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 22.1 mg, yield 98%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.3). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 5.8 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.61 (dt, J = 26.0, 7.4 Hz, 2H), 7.46 (d, J = 5.8 Hz, 1H), 3.73 (td, J = 9.7, 4.5 Hz, 1H), 2.12 – 1.85 (m, 6H), 1.83 – 1.58 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 141.8, 136.5, 129.5, 127.6, 126.8, 126.0, 124.8, 118.8, 43.3, 34.6, 28.1, 27.6. HRMS (ESI) Calcd. for C₁₆H₂₀N [M+H]⁺: 226.1590. Found: 226.1590.

1-((1R,2S,4S)-Bicyclo[2.2.1]heptan-2-yl)isoquinoline (3h)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 10.9 mg, yield 49%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 5.7 Hz, 1H), 8.18 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.58 (dt, J = 24.8, 7.3 Hz, 2H), 7.43 (d, J = 5.7 Hz, 1H), 3.56 (dd, J = 9.1, 4.9 Hz, 1H), 2.58 (d, J = 3.6 Hz, 1H), 2.40 (dd, J = 15.7, 3.7 Hz, 2H), 1.68 (tt, J = 13.4, 7.3 Hz, 4H), 1.56 (t, J = 9.7 Hz, 1H), 1.40 (t, J = 9.7 Hz, 1H), 1.18 (d, J = 9.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.2, 141.3, 136.3, 129.4, 127.4, 127.0, 126.7, 125.4, 118.8, 45.5, 43.0, 36.8, 36.1, 35.9, 30.3, 29.6. HRMS (ESI) Calcd. for C₁₆H₁₈N [M+H]⁺: 224.1434. Found: 224.1433.

1-Cyclooctylisoquinoline (3i)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 23.4 mg, yield 98%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, $R_f = 0.4$). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 5.7 Hz, 1H), 8.21 (d, J = 8.3 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.62 (dt, J = 25.1, 7.4 Hz, 2H), 7.46 (d, J = 5.8 Hz, 1H), 3.84 (td, J = 9.0, 4.2 Hz, 1H), 2.13 – 1.95 (m, 4H), 1.94 – 1.82 (m, 2H), 1.82 – 1.60 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 141.7, 136.6, 129.6, 127.6, 126.9, 126.0, 124.9, 118.8, 41.1, 33.1, 26.8, 26.8, 26.3. HRMS (ESI) Calcd. for C₁₇H₂₂N [M+H]⁺: 240.1747. Found: 240.1744.

1-Cyclododecylisoquinoline (3j)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 14.9 mg, yield 51%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 5.7 Hz, 1H), 8.25 (d, J = 8.4 Hz, 1H), 7.82 (dd, J = 8.1, 1.4 Hz, 1H), 7.67 (t, J = 7.5 Hz, 1H), 7.61 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.50 (d, J = 5.7 Hz, 1H), 3.89 (t, J = 6.3 Hz, 1H), 1.94 (dp, J = 27.6, 7.0 Hz, 4H), 1.64 – 1.46 (m, 9H), 1.45 – 1.33 (m, 7H), 1.30 – 1.19 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 141.6, 136.5, 129.7, 127.6, 127.1, 127.0, 124.8, 119.0, 36.7, 29.8, 23.9(3), 23.9(7), 23.8, 23.6, 23.0. HRMS (ESI) Calcd. for C₂₁H₃₀N [M+H]⁺: 296.2373. Found: 296.2394.

4-Chloro-1-cyclohexylisoquinoline (3k)

The compound was prepared according to the General Experimental Procedure. White solid; 9.6 mg, yield 39%. Purified by column chromatography on silica gel (eluting with hexane/ethyl

acteate = 10:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 8.15 (t, J = 6.5 Hz, 2H), 7.69 (t, J = 7.8 Hz, 1H), 7.57 (t, J = 7.9 Hz, 1H), 3.44 (t, J = 11.9 Hz, 1H), 1.85 (d, J = 12.6 Hz, 4H), 1.74 (t, J = 11.5 Hz, 3H), 1.45 (td, J = 15.4, 7.8 Hz, 2H), 1.31 (t, J = 12.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.7, 140.7, 133.8, 130.6, 127.6, 127.2, 126.2, 125.1, 124.2, 41.5, 32.6, 26.8, 26.2. HRMS (ESI) Calcd. for C₁₅H₁₇CIN [M+H]⁺: 246.1044. Found: 246.1045.

5-Chloro-1-cyclohexylisoquinoline (3I)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 11.3 mg, yield 46%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, J = 6.0 Hz, 1H), 8.15 (d, J = 8.7 Hz, 1H), 7.88 (d, J = 6.0 Hz, 1H), 7.72 (d, J = 7.4 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 3.54 (t, J = 11.9 Hz, 1H), 2.01 – 1.89 (m, 4H), 1.83 (q, J = 12.5, 11.0 Hz, 3H), 1.52 (q, J = 12.3 Hz, 2H), 1.40 (t, J = 13.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 143.0, 134.3, 131.9, 129.6, 127.3, 126.5, 123.8, 115.1, 41.8, 32.7, 26.8, 26.2. HRMS (ESI) Calcd. for C₁₅H₁₇ClN [M+H]⁺: 246.1044. Found: 246.1042.

6-Chloro-1-cyclohexylisoquinoline (3m)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 15.5 mg, yield 63%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 5.8 Hz, 1H), 8.14 (d, J = 9.0 Hz, 1H), 7.76 (s, 1H), 7.49 (d, J = 9.0 Hz, 1H), 7.37 (d, J = 5.7 Hz, 1H), 3.49 (t, J = 11.7 Hz, 1H), 1.96 (d, J = 11.4 Hz, 4H), 1.83 (q, J = 12.4 Hz, 3H), 1.60 – 1.46 (m, 2H), 1.41 (t, J = 13.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 143.0, 137.2, 135.7, 127.7, 126.6, 126.2, 124.4, 118.0, 41.7, 32.6, 26.8, 26.2. HRMS (ESI) Calcd. for C₁₅H₁₇CIN [M+H]⁺: 246.1044. Found: 246.1043.

4-Bromo-1-cyclohexylisoquinoline (3n)

The compound was prepared according to the General Experimental Procedure. White solid; 19.3 mg, yield 67%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 8.16 (dd, J = 16.3, 8.5 Hz, 2H), 7.72 (t, J = 7.6 Hz, 1H), 7.60 (t, J = 7.7 Hz, 1H), 3.50 (t, J = 12.0 Hz, 1H), 2.00 – 1.88 (m, 4H), 1.81 (t, J = 11.8 Hz, 3H), 1.58 – 1.45 (m, 2H), 1.43 – 1.33 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 143.6, 134.9, 130.8, 127.7, 127.6, 126.8, 125.1, 117.6, 41.5, 32.6, 26.8, 26.2. HRMS (ESI) Calcd. for C₁₅H₁₇BrN [M+H]⁺: 290.0539. Found: 290.0547.

5-Bromo-1-cyclohexylisoquinoline (3o)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 13.0 mg, yield 45%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.6). ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 6.0 Hz, 1H), 8.24 (d, J = 8.5 Hz, 1H), 7.97 (d, J = 7.4 Hz, 1H), 7.90 (d, J = 6.1 Hz, 1H), 7.46 (t, J = 7.9 Hz, 1H), 3.58 (t, J = 12.0 Hz, 1H), 1.97 (d, J = 14.0 Hz, 4H), 1.86 (d, J = 12.8 Hz, 3H), 1.56 (td, J = 15.0, 7.6 Hz, 2H), 1.48 – 1.37 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 143.2, 135.5, 133.5, 127.4, 127.1, 124.5, 122.6, 117.8, 41.8, 32.7, 26.8, 26.2. HRMS (ESI) Calcd. for C₁₅H₁₇BrN [M+H]⁺: 290.0539. Found: 290.0547.

6-Bromo-1-cyclohexylisoquinoline (3p)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 17.0 mg, yield 59%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, $R_{\rm f}$ = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 5.8 Hz, 1H), 8.05 (d, J = 9.1 Hz,

1H), 7.94 (s, 1H), 7.62 (d, J = 9.1 Hz, 1H), 7.36 (t, J = 4.2 Hz, 1H), 3.48 (dt, J = 15.0, 7.5 Hz, 1H), 2.00 – 1.89 (m, 4H), 1.81 (q, J = 12.4 Hz, 3H), 1.51 (tt, J = 12.6, 6.3 Hz, 2H), 1.39 (td, J = 12.7, 3.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 143.0, 137.6, 130.3, 129.6, 126.6, 124.7, 124.3, 117.9, 41.6, 32.6, 26.8, 26.2. HRMS (ESI) Calcd. for C₁₅H₁₇BrN [M+H]⁺: 290.0539. Found: 290.0547.

1-Cyclohexyl-4-phenylisoquinoline (3q)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 8.3 mg, yield 29%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.30 (d, J = 7.5 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.66 – 7.56 (m, 2H), 7.54 – 7.42 (m, 5H), 3.76 – 3.41 (m, 1H), 2.1 – 1.79 (m, 7H), 1.64 – 1.49 (m, 2H), 1.48 – 1.38 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 141.6, 137.5, 134.8, 131.5, 130.3, 129.7, 128.5, 127.7, 126.7, 125.9, 125.8, 124.9, 41.6, 32.7, 26.9, 26.3. HRMS (ESI) Calcd. for C₂₁H₂₂N [M+H]⁺: 288.1747. Found: 288.1750.

1-Cyclohexyl-5-phenylisoquinoline (3r)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 13.9 mg, yield 48%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 6.0 Hz, 1H), 8.26 (d, J = 7.7 Hz, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.55 (d, J = 6.0 Hz, 2H), 7.46 (h, J = 7.5, 7.0 Hz, 5H), 3.63 (t, J = 11.8 Hz, 1H), 1.94 (ddd, J = 46.9, 29.1, 13.3 Hz, 7H), 1.56 (q, J = 13.3 Hz, 2H), 1.48 – 1.36 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 141.9, 140.2, 139.6, 134.9, 130.4, 130.0, 128.5, 127.7, 126.5, 126.3, 124.2, 117.0, 41.8, 32.7, 26.9, 26.3. HRMS (ESI) Calcd. for C₂₁H₂₂N [M+H]⁺: 288.1747. Found: 288.1754.

1-Cyclohexyl-5-nitroisoquinoline (3s)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 7.5 mg, yield 29%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 5:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 6.1 Hz, 1H), 8.59 (d, J = 8.4 Hz, 1H), 8.43 (d, J = 7.7 Hz, 1H), 8.22 (d, J = 6.3 Hz, 1H), 7.70 (td, J = 8.2, 2.8 Hz, 1H), 3.59 (dt, J = 13.7, 6.8 Hz, 1H), 1.97 (q, J = 9.0, 7.8 Hz, 4H), 1.86 (q, J = 11.8, 10.8 Hz, 3H), 1.55 (qd, J = 13.1, 12.6, 3.5 Hz, 2H), 1.41 (td, J = 12.7, 3.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 146.0, 145.2, 131.4, 128.8, 127.2, 126.8, 125.1, 113.4, 42.2, 32.7, 26.7, 26.1. HRMS (ESI) Calcd. for C₁₅H₁₇N₂O₂ [M+H]⁺: 257.1285. Found: 257.1284.

1-Cyclohexylisoquinoline-6-carbonitrile (3t)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 10.8 mg, yield 46%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.2). ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 5.8 Hz, 1H), 8.32 (d, J = 8.7 Hz, 1H), 8.20 (s, 1H), 7.72 (d, J = 8.7 Hz, 1H), 7.53 (d, J = 5.7 Hz, 1H), 3.53 (t, J = 11.8 Hz, 1H), 1.99 – 1.89 (m, 4H), 1.82 (d, J = 12.6 Hz, 3H), 1.53 (q, J = 13.2 Hz, 2H), 1.39 (t, J = 13.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 143.7, 135.5, 133.6, 127.5, 126.9, 126.3, 118.6, 118.3, 113.4, 41.8, 32.6, 26.7, 26.1. HRMS (ESI) Calcd. for C₁₆H₁₇N₂ [M+H]⁺: 237.1386. Found: 237.1386.

Ethyl 1-cyclohexylisoquinoline-3-carboxylate (3u)

The compound was prepared according to the General Experimental Procedure. White solid; 3.8

mg, yield 14%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, $R_{\rm f}$ = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.30 (d, J = 7.4 Hz, 1H), 7.96 (d, J = 7.1 Hz, 1H), 7.74 (d, J = 5.3 Hz, 2H), 4.52 (q, J = 7.2 Hz, 2H), 3.60 (s, 1H), 2.11 – 1.92 (m, 6H), 1.84 (d, J = 12.7 Hz, 1H), 1.64– 1.38 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 166.1, 140.9, 136.0, 130.0, 129.0, 128.9, 127.7, 124.9, 122.1, 61.4, 42.0, 32.2, 26.8, 26.1, 14.4. HRMS (ESI) Calcd. for C₁₈H₂₂NO₂ [M+H]⁺: 284.1645. Found: 284.1659.

1-Cyclohexyl-3-methylisoquinoline (3v)

The compound was prepared according to the General Experimental Procedure. Colorless oil; 8.6 mg, yield 38%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.6). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.5 Hz, 1H), 7.69 (d, J = 7.9 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.29 (s, 1H), 3.53 (t, J = 11.4 Hz, 1H), 2.66 (s, 3H), 2.08 – 1.72 (m, 7H), 1.63 – 1.35 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 150.4, 137.2, 129.4, 127.0, 125.7, 124.7, 124.3, 116.8, 41.7, 32.5, 26.9, 26.2, 24.5. HRMS (ESI) Calcd. for C₁₆H₂₀N [M+H]⁺: 226.1590. Found: 226.1591.

1-Cyclohexyl-6-methylisoquinoline (3w)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 12.3 mg, yield 55%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.45 – 8.39 (m, 1H), 8.09 (d, J = 8.7 Hz, 1H), 7.54 (s, 1H), 7.38 (d, J = 7.8 Hz, 2H), 3.51 (dt, J = 11.5, 7.1 Hz, 1H), 2.51 (d, J = 2.8 Hz, 3H), 2.03 – 1.88 (m, 4H), 1.83 (q, J = 11.2, 9.6 Hz, 3H), 1.52 (qd, J = 13.2, 12.5, 3.6 Hz, 2H), 1.45 – 1.33 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 142.0, 139.7, 136.7, 129.0, 126.5, 124.7, 124.6, 118.5, 41.5, 32.6, 26.9, 26.3, 21.8. HRMS (ESI) Calcd. for C₁₆H₂₀N [M+H]⁺: 226.1590. Found: 226.1590.

1-Cyclohexyl-5-methoxyisoquinoline (3x)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 5.0 mg, yield 21%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.6). ¹H NMR (400 MHz, CDCl₃) δ 9.28 – 9.06 (m, 1H), 8.57 (d, J = 5.9 Hz, 1H), 8.45 (d, J = 8.6 Hz, 1H), 8.15 (t, J = 8.2 Hz, 1H), 7.64 (d, J = 7.7 Hz, 1H), 4.65 (d, J = 2.5 Hz, 3H), 4.19 (t, J = 11.6 Hz, 1H), 2.67 – 2.40 (m, 7H), 2.30 – 1.98 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 155.1, 141.4, 129.1, 127.1, 126.8, 116.6, 113.1, 107.0, 55.7, 41.8, 32.6, 26.9, 26.3. HRMS (ESI) Calcd. for C₁₆H₂₀NO [M+H]⁺: 242.1539. Found: 242.1540.

1-Cyclohexyl-6-methoxyisoquinoline (3y)

The compound was prepared according to the General Experimental Procedure. White solid; 3.8 mg, yield 16%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.3). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 5.7 Hz, 1H), 8.15 (d, J = 9.2 Hz, 1H), 7.42 (d, J = 5.7 Hz, 1H), 7.26 – 7.19 (m, 1H), 7.09 (s, 1H), 3.97 (d, J = 2.7 Hz, 3H), 3.52 (q, J = 8.7 Hz, 1H), 2.04 – 1.92 (m, 4H), 1.85 (t, J = 11.5 Hz, 3H), 1.61 – 1.48 (m, 2H), 1.48 – 1.38 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 160.3, 142.4, 138.5, 126.7, 121.9, 119.6, 118.4, 105.1, 55.4, 41.6, 32.6, 26.9, 26.2. HRMS (ESI) Calcd. for C₁₆H₂₀NO [M+H]⁺: 242.1539. Found: 242.1539.

5-(Benzyloxy)-1-cyclohexylisoquinoline (3z)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 7.1 mg, yield 22%. Purified by column chromatography on silica gel (eluting with hexane/ethyl

acteate = 10:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 6.0 Hz, 1H), 8.01 (d, J = 5.9 Hz, 1H), 7.81 (d, J = 8.6 Hz, 1H), 7.54 – 7.32 (m, 6H), 7.06 (d, J = 7.7 Hz, 1H), 5.25 (s, 2H), 3.54 (t, J = 11.8 Hz, 1H), 2.03– 1.89 (m, 4H), 1.83 (t, J = 13.0 Hz, 3H), 1.53 (q, J = 12.9 Hz, 2H), 1.41 (t, J = 12.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 154.2, 141.1, 136.6, 129.4, 128.7, 128.2, 127.4, 127.2, 126.9, 117.0, 113.5, 108.7, 70.4, 41.8, 32.5, 26.9, 26.2. HRMS (ESI) Calcd. for C₂₂H₂₄NO [M+H]⁺: 318.1852. Found: 318.1861.

1-Cyclohexylisoquinolin-5-yl benzoate (3aa)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 18.8 mg, yield 56%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 4:1, $R_f = 0.6$). ¹H NMR (600 MHz, CDCl₃) δ 8.50 (d, J = 5.9 Hz, 1H), 8.38 – 8.29 (m, 2H), 8.18 (d, J = 8.6 Hz, 1H), 7.70 (t, J = 7.4 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H), 7.61 – 7.55 (m, 4H), 3.58 (tt, J = 11.9, 3.5 Hz, 1H), 2.03 – 1.98 (m, 2H), 1.88 – 1.79 (m, 2H), 1.84 (qd, J = 12.7, 3.5 Hz, 3H), 1.54 (qt, J = 13.0, 3.5 Hz, 2H), 1.44 – 1.37 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 165.0, 146.5, 142.3, 134.1, 130.5, 130.4, 129.0, 128.9, 127.4, 126.5, 122.9, 122.1, 112.4, 41.9, 32.6, 26.9, 26.2. HRMS (ESI) Calcd. for C₂₂H₂₂NO₂ [M+H]⁺: 332.1645. Found: 332.1655.

4-Chloro-2-cyclohexylquinoline (3ab)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 11.3 mg, yield 46%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.71 (t, J = 7.9 Hz, 1H), 7.57 – 7.52 (m, 1H), 7.42 (s, 1H), 2.89 (td, J = 11.8, 3.2 Hz, 1H), 2.02 (d, J = 12.9 Hz, 2H), 1.93 – 1.84 (m, 2H), 1.82 – 1.74 (m, 1H), 1.60 (q, J = 12.7 Hz, 2H), 1.52 – 1.40 (m, 2H), 1.38 – 1.28 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 148.6, 142.7, 130.2, 129.3, 126.6,

125.2, 123.9, 119.8, 47.4, 32.7, 26.5, 26.0. HRMS (ESI) Calcd. for $C_{15}H_{17}CIN \ [M+H]^+$: 246.1044. Found: 246.1044.

4,7-Dichloro-2-cyclohexylquinoline (3ac)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 16.9 mg, yield 60%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 10:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.68 – 8.59 (m, 2H), 8.05 (d, *J* = 8.9 Hz, 1H), 7.98 (s, 1H), 3.46 (t, *J* = 11.5 Hz, 1H), 2.62 (d, *J* = 12.9 Hz, 2H), 2.51 (d, *J* = 13.0 Hz, 2H), 2.40 (d, *J* = 13.1 Hz, 1H), 2.21 (qd, *J* = 12.4, 3.0 Hz, 2H), 2.07 (q, *J* = 13.0 Hz, 2H), 1.94 (t, *J* = 12.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 149.3, 142.6, 136.3, 128.6, 127.6, 125.3, 123.7, 120.3, 47.4, 32.7, 26.6, 26.2. HRMS (ESI) Calcd. for C₁₅H₁₆Cl₂N [M+H]⁺: 280.0654. Found: 280.0659.

6-Cyclohexylphenanthridine (3ad)

The compound was prepared according to the General Experimental Procedure. Yellow oil; 11.3 mg, yield 43%. Purified by column chromatography on silica gel (eluting with hexane/ethyl acteate = 20:1, R_f = 0.5). ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, J = 8.3 Hz, 1H), 8.57 (d, J = 8.1 Hz, 1H), 8.36 (d, J = 8.2 Hz, 1H), 8.21 (d, J = 8.0 Hz, 1H), 7.84 (t, J = 7.6 Hz, 1H), 7.78 – 7.69 (m, 2H), 7.64 (t, J = 7.6 Hz, 1H), 3.67 (dt, J = 13.7, 6.9 Hz, 1H), 2.14 (d, J = 13.2 Hz, 2H), 2.01 (q, J = 13.1, 12.5 Hz, 4H), 1.90 (d, J = 12.7 Hz, 1H), 1.70 – 1.56 (m, 2H), 1.51 (td, J = 12.6, 3.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 143.9, 133.0, 130.0, 128.4, 127.1, 126.2, 125.6, 124.7, 123.4, 122.6, 121.8, 42.0, 32.3, 26.9, 26.4. HRMS (ESI) Calcd. for C₁₉H₂₀N [M+H]⁺: 262.1590. Found: 262.1591.

8. ¹H NMR and ¹³C NMR spectra of all products

¹³C NMR (101 MHz, CDCl₃) of **3a**

 ^{13}C NMR (101 MHz, CDCl3) of 3h

 ^{13}C NMR (101 MHz, CDCl₃) of 3q

 ^{13}C NMR (101 MHz, CDCl3) of 3s

 ^{13}C NMR (101 MHz, CDCl3) of 3v

 ^{13}C NMR (101 MHz, CDCl₃) of 3w

9. References

1. A. Ray Choudhury and S. Mukherjee, *Chem. Sci.*, 2016, **7**, 6940-6945.

2. Y. Yoshida, D. Barrett, H. Azami, C. Morinaga, S. Matsumoto, Y. Matsumoto and H. Takasugi, *Bioorg. Med. Chem.*, 1999, **7**, 2647-2666.

3. G. Siano, S. Crespi, M. Mella and S. M. Bonesi, J. Org. Chem., 2019, 84, 4338-4352.