Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Global Environmental and Toxicological Data of Emerging Plasticizers: Current Knowledge, Regrettable Substitution Dilemma, Green Solution and Future Perspectives

Abdul Qadeer^{a,h,i*1}, Muhammad Anis^{a,h1}, Genoa R. Warner^b, Courtney Potts^b, Georgios Giovanoulis^c, Samia Nasr^d, Denisse Archundia^e, Qinghuan Zhang^a, Zeeshan Ajmal^{f,h*}, Anthony C. Tweedale^g, Wang Kun^a, Pengfei Wang^a, Ren Haoyu^a, Xia Jiang^{a*}, Wang Shuhang^{a*}

^aState Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China

^bDepartment of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA

cIVL Swedish Environmental Research Institute, SE-100 31, Stockholm, Sweden

^dChemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia

eInstitute of Geology, Universidad Nacional Autonoma de Mexico

^fCollege of Chemistry and Material Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

gR.I.S.K. Consultancy (Rebutting Industry Science with Knowledge), Brussels, Belgium

^hAlpha Planet Institute, Global Environmental and Climate Lab, Beijing, China

¹O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States

*For correspondence: <u>Dr.AQ.Geographer@gmail.com</u> (A.Q); <u>zeeshan@nwpu.edu.cn</u> (Z.A); <u>jiangxia@craes.org.cn</u> (J.X); <u>wangsh@craes.org.cn</u> (W.S) ¹Abdul Qadeer and Muhammad Anis share the first authorship.

Name	Abbreviation	Molecular formula	Molecular weight	log Kow (at 25 °C)
Phthalate plasticizers				
Bis-2-ethylhexyl phthalate	DEHP	$C_{24}H_{38}O_4$	390.6	7.5
Diisononyl phthalate	DINP	$C_{26}H_{42}O_4$	418.6	9.5
Diisodecyl phthalate	DIDP	$C_{28}H_{46}O_4$	446.7	9.5
Bis(2-propylheptyl) phthalate	DPHP	$C_{28}H_{46}O_4$	446.7	10.4
Alternative Plasticizers				
(a) Adipates				
Dibutyl adipate	DBA	$\mathrm{C_{14}H_{26}O_{4}}$	258.3	4.3
Bis 2-ethylhexyl adipate	DEHA	$\mathrm{C}_{22}\mathrm{H}_{42}\mathrm{O}_{4}$	370.6	8.9
Diisononyl adipate	DINA	$C_{24}H_{46}O_4$	398.6	9.2
Diisodecyl adipate	DIDA	$C_{26}H_{50}O_4$	426.67	10.1
(b) Benzoates				
Diethylene glycol dibenzoate	DEGDB	$\mathrm{C}_{18}\mathrm{H}_{18}\mathrm{O}_{5}$	314.3	3.0
Dipropylene Glycol Dibenzoate	DPGDB	$C_{20}H_{22}O_5$	342.4	4.3
(c) Citrates				
Acetyl tributyl citrate	ATBC	$C_{20}H_{34}O_8$	402.5	4.3
(d) Cyclohexane dicarboxylic acids				
Diisononyl cyclohexane-1,2 dicarboxylate	DINCH	$C_{26}H_{48}O_{4}$	424.7	10
		20114804	.2,	

Table S1. Names	, abbreviations.	, and basic pr	operties of	phthalates and a	alternative/em	lerging plasticizers
		/ I				

(e) Phosphate esters

Bis 2-ethylhexyl phosphate	HDEHP	C ₁₆ H ₃₅ O ₄ P	322.42	2.7
Tris-2-ethylhexyl phosphate	TEHP		434.63	9.5
		$C_{24}H_{51}O_4P$		
Tricresyl phosphate	ТСР	$C_{21}H_{21}O_4P$	368.4	5.1
Triphenyl phosphate	TPHP (TPP)	$C_{18}H_{15}O_4P$	326.3	4.59
(f) Sebacates				
Dibutyl sebacate	DBS	$C_{18}H_{34}O_4$	314.5	6.3
Bis-2-ethylhexyl sebacate	DOS	$C_{26}H_{50}O_4$	426.7	10.1
(g) Terephthalates				
Bis- 2-ethylhexyl terephthalate	DEHT	$C_{24}H_{38}O_4$	390.56	8.4
(h) Trimellitates				
Tris-2-ethylhexyl trimellitate	TOTM	$C_{33}H_{54}O_{6}$	546.78	8
f) Vegetable oil derivatives				
Castor-oil-mono-hydrogenated acetate	COMGHA		500.5	6.4
Epoxidized soybean oil	ESBO	$C_{57}H_{98}O_{12}$	1000.00	14.8
(i) Others				
Alkylsulfonic phenyl ester	ASE	N.F	368.6	3.9
Glycerin triacetate	GTA	$C_9H_{14}O_6$	218.2	0.3
Trimethyl pentanyl diisobutyrate	TXIB	$C_{16}H_{30}O_4$	286.4	4.9

Data was acquired from TOXNET-chemistry database (<u>https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm</u>)

Names	Structures	Names	Structures
	Phthalat	e plasticizer	*S
DEHP	$\begin{array}{c} O \\ O \\ O \\ O \\ O \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \end{array}$	DIDP	$\begin{array}{c} O \\ C \\ H_3 \end{array}$
DINP	$ \begin{array}{c} $	DPHP	
	Alternati	ve Plasticize	ers
Adipates		Phosphate e	esters
DBA	H ₃ C O CH ₃	DEHPA	H ₃ C CH ₃ H ₃ C CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃

Table S2. Structures of the phthalate and alternative plasticizers

DEHA	H_3C CH_3	TEHPA	H_3C CH_3 CH_3 CH_3 H_3C H_3C CH_3 H_3C CH_3
DINA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TCP	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
DIDA	Jan governe	TPHP	
Benzoates		Sebacates	
DEGDB		DBS	
DPGDB	$O = C_3 H_6 O = C_2 H_6 O = $	DOS	H ₃ C H ₃ C C H ₃ C C H ₃ C C H ₃ C C H ₃ C C H ₃ C
Citrates		Terephthala	ites

Structures were taken from chemistry database TOXNET

Table S3. Data of toxicity, exposure, and environment monitoring of plasticizers

Name	Abbreviati ons	Toxicological information	Environmental monitoring/exposure	General status of toxicity, exposure and environmental monitoring
Phthalate plasticizers				Generally, data is available
Alternative plasticizers				Generally, lacking data
(a) Adipates				
Dibutyl adipate	DBA	No data	Concentration (104-839 ug/g) detected in the dust of children's homes [17].	No data available -No toxicological studies -No ecological studies -One study of environmental monitoring
Bis 2-ethylhexyl adipate	DEHA	Endocrine disruption potential in fish [18]. DNA damage in fish [19]. Impairment of the sex steroid homeostasis [20]. Metabolite of DEHA was found to be cytotoxic [21]. Potential carcinogenic and very toxic to aquatic organisms (<u>https://www.cdc.gov/</u> <u>niosh/index.htm</u>). DEHA exposure can lead to fetal death and reduced pregnancies [22].	Traces found in food and breast milk.[23–25]. Daily DEHA intake was 12.5 μ g/day in diet [26]. Traces were found in dust samples of China (max 1520 ng/g) [1]. Kuwait Marine water were found to have 0.06– 0.13 μ g/L concentration [27]. Swedish preschool dust concentrations were 8.5 μ g/g [28].	Limited data available -Limited toxicological studies -No ecological studies -Limited Environmental monitoring studies
Diisononyl adipate	DINA	Potential embryotoxic and disrupts thyroid hormone activity in fish [29]. But according to the Danish Environmental Protection Agency's (DEPA) old report, it is readily biodegradable, no reproductive and developmental toxicity is noticed [30].	Hospital meals with an estimated daily intake of up to 4.7 µg/day[26]. Concentrations were not detected in retail food.[31]	No data available -One toxicological study (also, Danish Environmental Agency report is available) -No ecological studies

				-One environmental monitoring studies
Diisodecyl adipate	DIDA	No Data	Residues (20 ug/l) of DIDA were found in breast milk [25]	No data available
				-No toxicological studies -No ecological risks studies -No environmental monitoring study (one break milk concentrations available)
(b) Benzoates				
Diethylene glycol dibenzoate	DEGDB	Possible impairment of lipid metabolism.[32]	No Data	No data available
		Potential impact on reproductive health.[30]		-Limited toxicological studies (old reports) -No Ecological studies -No environmental monitoring studies
Dipropylene Glycol Dibenzoate	DPGDB	Low toxicity and no mutagenic effect, according to one old report [33]	No Data	No data available
	Potential in	Potential impact on reproductive health [30]		-Limited toxicological studies (old reports) -No ecological studies -No environmental monitoring
(c) Citrates				studies
Acetyl tributyl citrate	ATBC	Abnormal embryo development and	In global water bodies concentrations	Limited data available
		disrupted thyroid hormone activity in fish[34]. Potential thyroid hormone disruption in thyroid hormone receptor test [35]. Potential impairment of sex steroid homeostasis [20] Potential detrimental to normal ovarian function in mice.[36,37]	were $0.05\mu g/L$ in the marine environment of Kuwait [27], <loq to<br="">96 ng/L in Nakdong River of Korea [38], 154 $\mu g/L$ in groundwater of England [39], and ≤ 0.54 in Rur River of Germany[40].Dermal bioaccessibility of ATBC was 75.02 \pm 2.12% in house dust [37].</loq>	 -Few toxicological studies -No ecological studies -Few environmental monitoring studies (few reports indicating their high levels in water bodies around the world)

			Concentrations were found in retail food [31]. High concentrations were found in the home dust of China (max 37,270 ng/g) [1].	
(d) Cyclohexane dicarboxylic acids				
Diisononyl cyclohexane- 1,2 dicarboxylate	DINCH	Potential physiological and metabolic toxicity in fish [41]. Potential for thyroid hormone disruption in thyroid hormone receptor test [35]. DINCH exposure could impact testosterone levels in humans [42,43]. In vitro study revealed that DINCH can cause cytotoxicity in kidney cells and DNA damage to liver cells [44]. Impairment of metabolic function reduced testosterone levels and damage of the testis in rats [45]. Potential endocrine disrupter in silico study [46]. Cytotoxic properties in vitro study.[21] Although considered as non/least toxic by ECHA (2014).	DINCH metabolites (OH-MINCH, cx- MINCH, oxo-MINCH)were found in US population [47], Norway population [48], and German population [49]. Residues of DINCH were found in German house dust upto110 mg/kg [50]. High levels of residues (ranging 1,060 to 11,550 ng/g) were found in dust samples of China [1].	Limited data available -Few toxicological studies -No ecological studies -Few environmental monitoring studies
E) Phosphate esters		Generally, data is available on toxicity. Conflicting studies on bioaccumulation and biomagnification [51–56]. phosphate esters could cause carcinogenicity, teratogenicity, reproductive issues, and developmental toxicity [53,57–62].	Environmental monitoring worldwide [62–70].	
Bis 2-ethylhexyl phosphate	HDEHP	Potentially can cause irritation and headache. Ecosystem toxicity data indicated it has potential harms to algae, fish, and crustaceans.[71] Potential bioaccumulative substance [71].	Median concentrations were 654 ng/g and 867 ng/g for China and mid- western US dust, respectively [65]. The average concentrations in China were 75 and 31.9 ng/g dw, for Indoor and outdoor dust respectively [72].	Limited data available -Limited toxicological studies -No ecological studies -Few environmental monitoring studies

Tris-2-ethylhexyl phosphate	ТЕНР	Potential endocrine disrupter [25,73]. Potential toxicity for <i>Daphnia magna</i> [74].	Concentrations in Portugal house dust ranged from 250 to 23,000 ng/g [63]. Levels in Swedish preschools dust were $0.44\mu g/g[28]$.	Data available -limited toxicological studies -No ecological studies -Few environmental monitoring
Tricresyl phosphate	ТСР	Exposure of TCP is associated with increased levels of cholesterol and plasma of triglyceride of humans [75]. Potential reproductive toxicant [25]. Potential neurotoxicity, intestinal damage, and DNA damage in earthworms [58].	High concentrations ranging from 110 to 5200 ng/g were found in house dust [63]. Levels were 0.98 μ g/g in Swedish house dust [28].	Data available -Few toxicological studies -Few ecological studies -Few environmental monitoring studies
Triphenyl phosphate	TPHP	Exposure to TPHP is associated with increase cholesterol and plasma levels of triglyceride in humans [75]. Acute toxicity was found to be increased due to the joint effect of TPHP and tributyl phosphate [74]. Potential endocrine disruptor in aquatic organisms and humans [61,76–81]. Only recently, TPHP has been identified as an endocrine disruptor [61,76–81].	Concentrations were ranged from 110 to 5200 ng/g with 100 percent detection frequency in 28 dust samples of Portugal houses [63]. Average concentrations were 206 and 69.5 ng/g for Indoor and outdoor dust of China, respectively [72].	Data available -Limited toxicological studies -Few ecological studies -Few environmental monitoring studies
(e) Sebacates				
Dibutyl sebacate	DBS	No Data	In an old study, concentrations were not detected in Japanese retail food [31].Traces found in polyvinylidene chloride (PVDC) wrapping films [82]. high concentrations of DBS (median 3390 ng/g) in face masks [83]. Likely to found in medicine coating [84].	No data available -No toxicological studies -No ecological studies - limited environmental monitoring studies

Bis-2-ethylhexyl sebacate (f) Terephthalates	DOS	Potentially disrupt thyroid hormone metabolism in fish [85].	DOS (median 352 ng/g) were found in single-use face masks [83].	Limited data available -One toxicological study -No ecological studies -No environmental monitoring studies
Bis- 2-ethylhexyl terephthalate	DEHT	Bioaccumulation and toxicity in mussels DEHT [86]. Disruptions of post-delivery metabolic health [87]. Potential oxidative stress in an exposed Sertoli cell line [88]. Metabolites were found in adults, nail technicians of USA [89,90], and Portuguese children [91]. Old reports indicated there are no carcinogenic, mutagenic, and developmental defects associated with DEHT.[25,92,93] However, latest investigation is indicating otherwise [93]. Potential endocrine disrupter according to in silico study [46].	Metabolites of DEHT were quantified in 2970 urine samples of USA adults from 2015 to 2016 [90]. DEHT concentrations were detected in Portuguese children [91]. Concentrations of DEHT (440 mg/kg) were found in dust samples collected from German indoor environments [50].	Data available - Few toxicological studies - Few ecological studies - Few environmental monitoring studies
(g) Trimellitates				
Tris-2-ethylhexyl trimellitate	TOTM	Human biomonitoring (2014-2017) indicated that children and adolescents had exposure to TOTM.[94] TOTM can cause a low resorption rate and slow metabolism.[95] TOTM exposure can cause estrogen activity and cells[96]. In	High levels of concentrations were found in the dust sample of China, ranging from 404-101,250 ng/g [1]. TOTM was a dominant compound in the sediments of industrialized bays of Korea [100].	Limited data available - Few toxicological studies - No ecological studies - Few environmental monitoring studies

Alkylsulfonic phenyl ester	ASE	Danish Environment Protection Agency reports that ASE exposure was linked to	Elbe river and its tributaries were found to have concentrations from 15	Limited data available
(h) Others			Survy Automy [107,100].	
Epoxidized soybean oil	ESBO	British Industrial Biological Research Association (BBIRA) announced ESBO as a low acute toxicant to rats and rabbits [102]. European Chemicals Agency deems ESBO a safe option due to the absence of hazardous properties [101,103,104].	ESBO ranging from 6 to 100 mg/kg were found in the seven Danish food samples [105]. According to Swiss market survey, ESBO was dominant plasticizer with concentration reached 1,170 mg/g in 158 samples [106]. These values were much higher than migration limit (60mg/kg) set by the European Food Safety Authority [107.108].	Limited data available - Limited toxicological studies (Old reports) - No ecological studies - Few environmental monitoring studies
Castor-oil-mono-, hydrogenated, acetate	COMGHA	According to ECHA, it is non-hazardous [101].	No Data	No data available - No toxicological studies (one old report) - No ecological studies - No environmental monitoring studies
Vegetable oil derivatives		 TOTM lead to alternation in cell cycle, oxidative toxicity, and lipid metabolism.[97] Potential endocrine disrupter according to in silico study[46]. changes in estrogen activity and cell toxicity in human leukemia and cell assays [96]. Disruption in cell cycle, oxidative stress, and metabolism of lipids in mice [97]. European chemical regulations identify TOTM as the first non-phthalate plasticizer for its potential endocrine disruption, bioaccumulation, and toxic (PBT) properties [98,99]. 		

		low acute toxicity [109]	ug/kg to 33000 ug/kg in sediments.[110] Traces were found in multiple samples of dust and sediments [111,112].	 No toxicological studies (old report) No ecological studies Few environmental monitoring studies
Glycerin triacetate	GTA	According to US-FDA guidelines, it is generally accepted as safe (GRAS) [113]. No developmental toxicity, carcinogenic effects, and reproductive toxicity effects were found despite lack of quality information [30,113,114].	No Data	Limited data available - Limited toxicological studies - No ecological studies - No environmental monitoring studies
Trimethyl pentanyl diisobutyrate	TXIB	There are only limited studies (especially peer-reviewed) but also contradictory. In a study involving 203 the repeated application of TXIB did not result in skin sensitization [115]. May cause minor irritation of the eye and nasal mucosa [116]. DEPA states that a 13-week dosing of TXIB in dogs did not lead to harmful effects [30]. When administered orally to rats and rabbits, TXIB demonstrated low acute toxicity, and slight skin irritation in guinea pigs, with no such irritation observed in rabbits [30]. These findings suggest either no toxicity or relatively minimal toxicity. The European Chemical Agency has expressed concerns regarding the potential impact of TXIB on fertility, the developing fetus, and aquatic life with long-lasting effects [117] There are some chances that this compound can be a risk factor of asthma and sick building syndrome [118,119]. Adaptive changes in liver due to exposure of TXIB which	Sweden schools' indoor and outdoor concentrations were 1.64 µg/m3 and 0.41 µg/m ³ , respectively [121].	 Limited data available Limited toxicological studies (old and contradictory reports) No ecological studies One environmental monitoring study

were reversible [120]. Further studies needed.

*Please note due to limited space in the table, it is recommended to read whole article for complete and updated information.

Table S4. Urinary excretion factors (Fue) as DEHTP dose equivalents in %; mean values of three volunteers, ranges in brackets. Data is from[122]

	50Н-МЕНТР	50xo-MEHTP	5cx-MEPTP	2cx-MMHTP	Σ all four
0–24 h (%)	1.72 (1.22–2.28)	0.95 (0.54–1.55)	12.24 (6.34–19.72)	0.27 (0.16–0.41)	15.18 (8.26–23.96)
24-48 h (%)	0.10 (0.08–0.12)	0.06 (0.03–0.07)	0.71 (0.62–0.87)	0.01 (0.01–0.02)	0.88 (0.74–1.08)
Total (%)	1.82 (1.34–2.36)	1.01 (0.57–1.63)	12.95 (6.96–20.37)	0.28 (0.17–0.42)	16.06 (9.04–24.77)

Time	CHDA	MINCH	OH-MINCH	cx-MINCH	oxo-MINCH	Oxidized metabolites	Over all Σ
0–24 h	22.24 (18.83–25.57)	0.65 (0.26–1.19)	9.55 (6.64–11.42)	1.67 (1.38–2.00)	1.85 (1.39–2.31)	13.06 (9.41–14.51)	35.96 (31.99–40.19)
24–48 h	1.46 (0.97–2.25)	0.07 (0.06-0.09)	1.18 (0.88–1.49)	0.36 (0.29-0.42)	0.18 (0.14–0.23)	1.72 (1.16–2.15)	3.25 (2.20-3.98)
0–48 h	23.70 (19.98-26.54)	0.72 (0.31-1.26)	10.73 (7.70–12.91)	2.03 (1.75-2.29)	2.03 (1.52-2.56)	14.79 (11.29–16.67)	39.21 (35.86–42.39)

Table S5 The mean values and ranges of urinary excretion factors, as percentages of the dose on a molar basis, for Hexamoll® DINCH metabolites are provided. Data is from ref [123].

Table S6. Concentrations (average± standard deviation, ng/g ww) of PFRs and plasticizers in black-spotted frog tissues. Data is from [124]

	Female Black-Spotted Frogs						Male Black-Spotted Frogs			
Tissue	Liver	Heart	Kidney	Intestine	Lung	Liver	Heart	Kidney	Intestine	Lung
N	3	3	3	3	3	3	3	3	3	3
ТЕР	$0.18\pm\!0.17$	0.070 ± 0.030	$0.16\pm\!0.070$	0.08 ± 0.040	$0.14\pm\!0.060$	0.040 ± 0.010	0.020 ± 0.010	$0.10\pm\!0.010$	0.030 ± 0.010	0.030 ± 0.020
TCEP	$2.8\pm\!0.55$	1.0 ± 0.44	1.4 ± 0.73	0.64 ± 0.25	2.1 ± 1.1	$0.89\pm\!0.25$	0.82 ± 0.18	0.81 ± 0.32	0.58 ± 0.19	$0.56\pm\!0.20$
TCIPP	$6.0\pm\!0.50$	0.030 ± 0.050	0.67 ± 0.38	0.30 ± 0.44	1.6 ± 0.83	$0.76\pm\!0.78$	$0.72\pm\!0.83$	$1.3\pm\!1.0$	$0.32\pm\!0.070$	$0.29\pm\!0.030$
TNBP	$0.68\pm\!0.32$	$0.40\pm\!0.33$	$0.56\pm\!0.73$	$0.16\pm\!0.11$	$0.28\pm\!0.15$	$0.30\pm\!0.12$	0.070 ± 0.070	0.040 ± 0.070	0.020 ± 0.020	0.040 ± 0.030
TDCIPP	$1.0\pm\!0.99$	$0.61\pm\!0.38$	1.0 ± 0.82	0.22 ± 0.090	$0.62\pm\!0.59$	0.010 ± 0.020	$0.31\pm\!0.16$	$0.10\pm\!0.11$	0.040 ± 0.030	0.10 ± 0.090
TPHP	$0.62\pm\!0.45$	0.90 ± 0.75	3.4 ± 3.9	$0.62\pm\!0.54$	$0.84\pm\!0.43$	$0.14\pm\!0.13$	$0.23\pm\!0.17$	0.33 ± 0.060	$0.27\pm\!0.11$	$0.12\pm\!0.12$
TBOEP	$0.29\pm\!0.41$	0.050 ± 0.080	2.8 ± 1.7	1.2 ± 2.0	$0.42\pm\!0.66$	ND	0.020 ± 0.030	1.5 ± 1.2	$0.20\pm\!0.15$	0.050 ± 0.050
EHDPHP	0.99 ± 1.0	$0.35\pm\!0.39$	0.22 ± 0.12	$0.13\pm\!0.11$	$0.060\pm\!0.10$	$0.14\pm\!0.13$	0.090 ± 0.070	0.36 ± 0.24	$0.14\pm\!0.060$	$0.12\pm\!0.11$
ТрТР	0.050 ± 0.010	$0.28\pm\!0.29$	$0.18\pm\!0.10$	0.060 ± 0.060	0.090 ± 0.070	0.020 ± 0.020	0.060 ± 0.060	0.070 ± 0.030	0.030 ± 0.010	0.020 ± 0.010
TEHP	$0.15\pm\!0.070$	$0.33\pm\!0.31$	0.080 ± 0.070	0.070 ± 0.060	0.060 ± 0.060	0.070 ± 0.080	0.080 ± 0.040	0.19 ± 0.040	$0.10\pm\!0.010$	0.060 ± 0.050
iDDPHP	0.14 ± 0.040	$0.31\pm\!0.25$	$0.46\pm\!0.13$	$0.18\pm\!0.18$	$0.22\pm\!0.11$	0.050 ± 0.070	0.070 ± 0.030	0.12 ± 0.050	0.040 ± 0.020	0.050 ± 0.050
RDP	ND	0.010 ± 0.010	0.020 ± 0.020	0.010 ± 0.010	ND	ND	ND	ND	ND	0.010 ± 0.010
BDP	0.15 ± 0.040	$0.18\pm\!0.20$	$0.44\pm\!0.36$	$0.12\pm\!0.10$	0.070 ± 0.060	0.040 ± 0.060	0.010 ± 0.010	0.040 ± 0.020	0.090 ± 0.15	0.010 ± 0.010
∑PFRs	13 ± 4.6	4.50 ± 3.5	11 ± 9.1	$3.8\pm\!4.0$	6.5 ± 4.2	$2.5\pm\!1.7$	$2.5\pm\!1.7$	5.0 ± 3.1	$1.9\pm\!0.82$	$1.4\pm\!0.78$
DMP	$2.3\pm\!2.5$	$20\pm\!33$	$83\pm\!91$	$25\pm\!19$	16 ± 24	$52\pm\!30$	$33\pm\!18$	$61{\pm}20$	$105\pm\!82$	$55\pm\!29$
DEP	5.7 ± 3.0	$57\pm\!82$	90 ± 156	$39\!\pm\!21$	6.8 ± 8.3	60 ± 55	$31\pm\!11$	14 ± 13	77 ± 44	$52\pm\!45$

DiBP	44 ± 33	$49\pm\!29$	354 ± 472	182 ± 77	238 ±213	278 ± 180	139 ± 51	202 ± 59	196 ±47	164 ± 73
DnBP	2066 ± 1816	858 ± 1190	$691\pm\!378$	481 ± 226	842 ± 79	$514\pm\!165$	477 ± 88	717 ± 125	$626\pm\!137$	499 ± 181
BBzP	1.2 ± 0.77	$29\pm\!49$	0.62 ± 1.1	2.5 ± 4.4	1.1 ± 1.5	2.2 ± 3.9	$3.9\pm\!3.5$	$1.3\pm\!1.6$	$0.15\pm\!0.26$	$0.74\pm\!1.3$
DEHP	3081 ± 220	$1443\ \pm 1311$	1773 ± 1186	884 ± 724	$1142\ \pm400$	$551\pm\!362$	$160\pm\!11$	503 ± 229	$515\pm\!366$	251 ± 100
DEHT	$45\pm\!24$	$10\pm\!8.0$	$36\pm\!49$	$14\pm\!6.0$	$26\pm\!17$	$4.6\pm\!4.2$	12 ± 12	12 ± 9.5	$24\pm\!13$	$26\pm\!28$
DIDP	16 ± 2.5	28 ± 24	64 ± 20	$84\pm\!48$	88 ± 104	4.8 ± 7.0	ND	ND	$40\pm\!17$	$30\pm\!22$
DINCH	$229\pm\!190$	$86\pm\!112$	ND	58 ± 42	$82\pm\!117$	7.2 ± 7.7	ND	45 ± 79	$81\pm\!61$	$40\pm\!38$
∑Plasticizers	$5503\ \pm 2181$	2584 ± 1601	$3103\ \pm 444$	$1772\ \pm 846$	2448 ± 822	1478 ± 739	$858\pm\!116$	1561 ± 38	1666 ± 701	1120 ± 317

Tissues	Liver	Heart	Female Bullfrogs Kidney	Intestine	Lung	Liver	Heart	Male Bullfrogs Kidney	Intestine	Lung
N	5	5	5	5	5	5	5	5	5	5
TEP	1.9 ± 1.8	0.070 ± 0.10	0.55 ± 0.67	0.30 ± 0.23	0.060 ± 0.050	$0.70\pm\!0.45$	$0.14\pm\!0.20$	0.53 ± 0.40	$0.18\pm\!0.15$	0.040 ± 0.050
TCEP	19 ± 16	$4.0\pm\!2.1$	6.7 ± 7.2	$1.6\pm\!1.7$	1.5 ± 1.1	$9.5\pm\!6.6$	$5.3\pm\!2.3$	4.1 ± 5.1	1.8 ± 1.7	1.1 ± 1.0
TCIPP	$0.62\pm\!0.22$	0.77 ± 0.40	$0.25\pm\!0.21$	$0.16\pm\!0.15$	$0.16\pm\!0.23$	$0.48\pm\!0.17$	$0.83\pm\!0.25$	0.25 ± 0.28	ND	0.030 ± 0.060
TNBP	$0.56\pm\!0.20$	0.11 ± 0.050	$0.10\pm\!0.030$	0.070 ± 0.030	ND	$0.31\pm\!0.21$	0.090 ± 0.030	$0.10\pm\!0.060$	$0.010\pm\!0.030$	ND
TDCIPP	$0.59\pm\!0.33$	ND	$0.030\pm\!0.030$	0.070 ± 0.040	0.050 ± 0.070	$0.26\pm\!0.20$	ND	0.080 ± 0.070	0.050 ± 0.060	$0.020\pm\!0.030$
TPHP	17 ± 25	0.010 ± 0.020	$1.3\pm\!1.2$	$1.2\pm\!1.1$	$0.56\pm\!0.39$	$1.9\pm\!1.4$	$0.11\pm\!0.12$	0.79 ± 0.35	$0.49\pm\!0.42$	$0.47\pm\!0.30$
TBOEP	2.0 ± 1.6	ND	2.1 ± 1.7	$0.75\pm\!0.49$	0.49 ± 0.49	$0.52\pm\!0.46$	0.030 ± 0.040	$1.8\pm\!2.2$	$1.7\pm\!3.0$	$0.89\pm\!1.6$
EHDPHP	$0.49\pm\!0.55$	0.020 ± 0.030	0.86 ± 0.72	0.69 ± 0.33	$0.23\pm\!0.31$	0.29 ± 0.35	0.010 ± 0.030	$1.9\pm\!1.9$	$0.27\pm\!0.23$	$0.17\pm\!0.24$
ТрТР	1.1 ± 0.43	0.56 ± 0.22	$0.57\pm\!0.65$	0.090 ± 0.030	0.26 ± 0.21	$0.84\pm\!0.60$	0.63 ± 0.15	0.080 ± 0.10	0.11 ± 0.070	$0.22\pm\!0.28$
TEHP	$0.54\pm\!0.45$	0.050 ± 0.040	$0.16\pm\!0.080$	$0.17\pm\!0.040$	$0.16\pm\!0.11$	$0.23\pm\!0.17$	0.050 ± 0.060	$0.26\pm\!0.21$	$0.18\pm\!0.16$	$0.33\pm\!0.23$
iDDPHP	$0.26\pm\!0.45$	ND	0.040 ± 0.050	0.10 ± 0.090	$0.080\pm\!0.12$	0.080 ± 0.080	ND	$0.080\pm\!0.080$	0.020 ± 0.030	0.040 ± 0.040
RDP	$0.49\pm\!0.46$	ND	0.070 ± 0.060	0.13 ± 0.080	0.030 ± 0.040	$0.17\pm\!0.16$	ND	0.18 ± 0.25	0.020 ± 0.040	$0.12\pm\!0.24$
BDP	$0.76\pm\!0.77$	$0.32\pm\!0.70$	$0.13\pm\!0.070$	$2.3\pm\!4.5$	0.060 ± 0.060	$0.19\pm\!0.19$	ND	0.37 ± 0.66	0.050 ± 0.060	$0.18\pm\!0.23$
∑PFRs	$46\pm\!29$	$5.9\pm\!2.5$	13 ± 6.8	7.6 ± 4.1	3.6 ± 1.2	16 ± 4.4	7.2 ± 2.2	10 ± 3.7	$4.9\pm\!2.8$	3.6 ± 1.3
_ DMP	$23\pm\!12$	5.5 ± 4.5	45 ± 34	$9.7\pm\!4.5$	$14\pm\!12$	$39\pm\!45$	5.5 ± 5.5	$32\pm\!24$	$7.55\pm\!6.2$	13 ± 9.6
DEP	$29\pm\!28$	$4.9\pm\!4.7$	$36\pm\!28$	$9.1\pm\!3.8$	$13\pm\!11$	48.33 ± 57.39	3.1 ± 3.2	$29\pm\!26$	$5.36\pm\!3.6$	12 ± 7.8
DiBP	$252\pm\!132$	77 ± 33	$731\pm\!624$	$120\pm\!54$	$34\pm\!28$	435 ± 748	53 ± 53	$485\pm\!560$	97 ± 73	$29\pm\!25$
DnBP	$1146~\pm751$	514 ± 223	609 ± 161	861 ± 459	$174\pm\!148$	$766\pm\!821$	$430\pm\!264$	412 ± 297	$412\pm\!339$	155 ± 117
BBzP	8.0 ± 8.9	$0.42\pm\!0.57$	0.51 ± 0.74	$1.1\pm\!1.0$	0.11 ± 0.14	$0.85\pm\!0.84$	$0.18\pm\!0.34$	0.37 ± 0.59	$0.13\pm\!0.14$	0.060 ± 0.020
DEHP	$1542\ \pm 1430$	74 ± 96	$286\pm\!102$	321 ±225	96 ± 101	969 ± 859	$146\pm\!165$	707 ± 352	378 ± 415	$217\pm\!128$
DEHT	64 ± 48	$72\pm\!158$	18 ± 8.3	25 ± 20	$9.6\pm\!8.0$	30 ± 32	$20\pm\!23$	$29\pm\!22$	20 ± 16	$13\pm\!18$
DIDP	$128\pm\!109$	4.3 ± 5.9	$56\pm\!45$	65 ± 28	9.8 ± 5.9	$49\pm\!48$	11 ± 18	$53\pm\!40$	31 ± 26	7.9 ± 5.8
DINCH	$312\pm\!376$	$0.54\pm\!1.2$	5.2 ± 5.6	11 ± 18	$3.0\pm\!2.4$	6.3 ± 7.6	$3.2\pm\!2.9$	10 ± 8.3	11 ± 7.4	$18\pm\!34$
∑Plasticizers	3504 ± 1067	753 ± 487	1787 ± 645	$1423\ \pm712$	$355\pm\!184$	2344 ± 1399	$672\pm\!487$	$1758\ \pm992$	961 ± 819	$465\pm\!148$

Table S7. Concentrations (average ± standard deviation, ng/g ww) of PFRs and plasticizers in bullfrog tissues. Data is from [124]

Species	Detection frequency (%)	Water snake	Snake egg	Common carp
		(n= 7)	(n=3)	(n= 6)
Length (cm)		44-65	0.5–0.8	3–5
Weight (g)		30–224	27–38	0.5–1
Lipid (%, ww)		0.75 ± 0.22	14 ± 2.3	1.2 ± 0.22
Organophosphorus flame				
retardants				
TEP				
	93	0.24 ± 0.21	1.0 ± 0.57	0.96 ± 0.40
TCEP	93	0.046 ± 0.032	0.16 ± 0.045	0.21 ± 0.10
ТСІРР	100	0.31 ± 0.17	0.96 ± 0.18	3.1 ± 0.48
TNBP	100	0.79 ± 0.81	7.7 ± 1.4	3.0 ± 1.4
TDCIPP	47	0.32 ± 0.78	0.29 ± 0.51	0.24 ± 0.21
TPHP	100	0.23 ± 0.11	1.6 ± 1.7	6.2 ± 1.8
EHDPHP	47	ND	0.61 ± 0.80	0.24 ± 0.32
ТРТР	53	ND	0.011 ± 0.0070	0.21 ± 0.087
ТЕНР	100	0.014 ± 0.011	0.11 ± 0.088	0.13 ± 0.045
$\sum_{9} PFRs$		1.9 ± 1.2	12 ± 2.3	14 ± 2.4
iDDPHP	47	0.049 ± 0.13	0.82 ± 1.0	0.30 ± 0.36
RDP	60	ND	0.075 ± 0.088	0.45 ± 0.36
BDP	93	0.16 ± 0.094	0.26 ± 0.32	1.3 ± 1.1
$\sum_{3} ePFRs$		0.22 ± 0.13	1.2 ± 0.93	2.0 ± 1.2
Plasticizers				
DMP				
222	87	0.23 ± 0.18	1.6 ± 0.55	0.25 ± 0.26
DEP	53	2.2 ± 3.3	20 ± 14	2.7 ± 4.2
DnBP	93	4.3 ± 3.2	15 ± 13	42 ± 53
DiBP	87	14 ± 18	35 ± 13	56 ± 74
DPP	100	0.19 ± 0.20	0.61 ± 0.36	0.24 ± 0.13
BBzP	73	0.54 ± 0.59	4.2 ± 1.3	0.12 ± 0.11
DEHP	100	111 ± 80	1191 ± 327	250 ± 188
\sum_{7} LPs		132 ± 76	1268 ± 349	351 ± 169
Alternative Plasticizers	-			
ATEC	87	ND	0.12 ± 0.047	0.32 ± 0.65
DIBA	80	0.066 ± 0.11	0.61 ± 0.41	1.4 ± 1.4
CDPHP	100	0.50 ± 0.23	3.1 ± 1.5	4.1 ± 1.2
ATBC	20	0.37 ± 0.97	ND	13 ± 19

Table S8. Biological parameters and PFR, PFR metabolites and plasticizer concentrations (ng/g ww, mean ± standard deviation) for the analyzed organisms. Data is from [125]

DBS	13	0.68 ± 1.8	5.6 ± 9.8	ND
DEHA	93	3.4 ± 2.9	9.2 ± 4.9	3.6 ± 1.9
BTHC	33	ND	0.48 ± 0.20	0.55 ± 0.77
THTM	53	0.026 ± 0.064	1.9 ± 1.2	0.42 ± 0.56
TOTM	93	3.6 ± 4.1	1.4 ± 1.8	9.6 ± 3.1
DEHT	87	3.2 ± 2.7	3.4 ± 5.5	12 ± 10
DINP	80	3.8 ± 3.0	15 ± 26	5.8 ± 7.0
DINCH	73	0.27 ± 0.29	0.76 ± 1.3	2.8 ± 3.2
DIDP	100	1.1 ± 0.77	9.6 ± 9.7	3.8 ± 2.0
$\sum_{13} APs$		19 ± 7.5	52 ± 62	59 ± 28
PFR metabolites BCIPP				
	69	0.17 ± 0.13	0.073 ± 0.13	0.54 ± 0.11
DNBP	92	0.47 ± 0.30	0.39 ± 0.29	0.51 ± 0.32
DPHP	100	0.39 ± 0.37	0.50 ± 0.15	0.61 ± 0.37
BBOEP	61	0.076 ± 0.12	0.29 ± 0.37	0.41 ± 0.24
BCIPHIPP	100	0.029 ± 0.013	0.037 ± 0.013	0.19 ± 0.16
EHPHP	100	0.11 ± 0.033	0.32 ± 0.10	0.24 ± 0.24
BBOEHEP	85	ND	0.022 ± 0.038	0.019 ± 0.010
HO-TBOEP	100	ND	0.031 ± 0.033	0.019 ± 0.0090
HO-TPHP	92	0.061 ± 0.057	0.28 ± 0.22	1.3 ± 1.9
5-HO-EHDPHP	31	ND	0.046 ± 0.080	0.059 ± 0.045
\sum Total metabolites		1.3 ± 0.49	2.0 ± 0.41	2.8 ± 0.41

Compound	Muscle	Liver	Kidney	Gill
ТМР	nd-2.8 (0.9 ± 0.9)	nd-6.0 (2.6 ± 1.5)	nd-7.4 (2.5 ± 1.7)	nd-3.3 (1.6 ± 0.9)
TEP	nd-4.8 (1.9 ± 1.3)	nd-6.1 (3.4 ± 1.5)	nd-10.0 (3.5 ± 2.3)	nd-4.6 (2.6 ± 1.0)
TPrP	nd-2.2 (0.6 ± 0.5)	nd-4.2 (1.7 ± 1.2)	nd-3.1 (1.5 ± 0.8)	nd-3.2 (0.8 ± 0.7)
TiBP	nd-2.9 (0.8 ± 0.7)	nd-5.2 (1.7 ± 1.3)	nd-2.8 (1.4 ± 0.8)	nd-2.9 (0.9 ± 0.8)
TBP	nd-13.1 (4.8 ± 2.9)	nd-12.9 (5.4 ± 3.1)	nd-14.6 (6.2 ± 3.8)	nd-7.6 (4.6 ± 1.7)
TCEP	nd-5.8 (1.8 ± 1.7)	nd-8.6 (3.1 ± 2.6)	nd-10.0 (2.9 ± 2.4)	nd-3.3 (1.7 ± 0.9)
ТСРР	nd-6.1 (1.9 ± 1.8)	nd-9.0 (3.4 ± 3.0)	nd-14.0 (3.6 ± 3.5)	nd-4.0 (2.1 ± 1.2)
TPeP	nd-1.9 (0.6 ± 0.6)	nd-6.6 (1.7 ± 1.5)	nd-9.3 (2.2 ± 2.4)	nd-2.7 (0.9 ± 0.6)
THP	nd-6.2 (1.2 ± 1.5)	nd-9.0 (2.6 ± 2.5)	nd-7.1 (2.7 ± 1.9)	nd-4.1 (1.2 ± 1.0)
TDCIPP	nd-2.5 (0.4 ± 0.5)	nd-6.8 (1.8 ± 1.7)	nd-4.2 (1.6 ± 1.3)	nd-2.2 (0.8 ± 0.6)
TBOEP	nd-10.1 (2.3 ± 2.9)	nd-24.7 (4.6 ± 6.0)	nd-17.0 (4.5 ± 4.9)	nd-9.0 (2.9 ± 2.5)
TPhP	nd-8.4 (1.6 ± 2.3)	nd-17.3 (4.0 ± 4.2)	nd-14.7 (4.1 ± 4.1)	nd-6.0 (2.7 ± 2.0)
EHDP	nd-7.7 (2.7 ± 2.4)	nd-15.2 (4.6 ± 3.7)	nd-11.4 (4.2 ± 3.6)	nd-8.7 (2.9 ± 2.1)
TEHP	nd-12.3 (2.6 ± 3.3)	nd-18.4 (4.9 ± 4.6)	nd-16.5 (5.2 ± 5.1)	nd-7.3 (2.1 ± 1.7)
CDPP	nd-6.0 (1.2 ± 1.6)	nd-9.3 (2.6 ± 2.0)	nd-6.6 (3.1 ± 2.1)	nd-3.3 (1.4 ± 0.8)
ТРРО	nd-1.5 (0.5 ± 0.5)	nd-7.2 (1.9 ± 1.6)	nd-4.7 (1.9 ± 1.1)	nd-1.1 (0.7 ± 0.3)
ТСР	nd-6.0 (1.1 ± 1.4)	nd-9.3 (3.5 ± 2.5)	nd-6.7 (3.1 ± 1.8)	nd-4.2 (1.7 ± 1.1)

Table S9. Ranges, mean, and standard deviations of OPE concentrations (ng/g dw) detected in fish tissues collected from Laizhou Bay, China. Data is from [126]

Compound ^a	Muscle	Liver	Kidney	Gill
TMP	nd ^b -147.1 $(46.7 \pm 39.9)^{c}$	nd-333.7 (183.4 ± 84.8)	nd-449.5 (192.5 ± 95.6)	nd-212.0 (109.9 ± 58.1)
TEP	nd-203.3 (110.3 ± 45.0)	nd-448.0 (246.2 \pm 97.6)	nd-603.3 (278.6 \pm 130.1)	nd-277.7 (177.4 ± 59.8)
TPrP	nd-90.0 (34.2 ± 18.3)	nd-292.4 (118.3 \pm 63.8)	nd-205.1 (120.5 \pm 51.8)	nd-194.6 (55.1 ± 42.7)
TiBP	nd-133.2 (44.3 ± 24.2)	nd-189.7 (111.6 ± 40.2)	nd-198.0 (114.4 \pm 51.9)	nd-178.4 (58.9 ± 44.0)
ТВР	nd-540.1 (295.9 \pm 158.8)	nd-706.9 (385.5 ± 159.3)	nd-885.1 (484.7 \pm 230.2)	nd-505.4 (317.7 ± 115.1)
TCEP	nd-478.7 (114.7 ± 125.4)	nd-734.0 (229.0 \pm 199.2)	nd-604.3 (225.8 \pm 154.1)	nd-351.7 (133.9 ± 97.3)
ТСРР	nd-369.2 (116.9 ± 116.2)	nd-739.5 (240.0 \pm 206.0)	nd-846.5 (280.6 \pm 216.4)	nd-334.7 (159.6 ± 105.3)
TPeP	$nd-110.1(35.4 \pm 34.2)$	nd-198.8 (114.5 ± 53.0)	nd-560.5 (175.9 \pm 145.2)	nd-150.9 (59.6 ± 34.9)
THP	nd-268.5 (62.3 ± 58.1)	nd-497.9 (172.4 ± 116.4)	nd-430.9 (210.7 \pm 117.8)	nd-230.3 (77.4 \pm 55.5)
TDCIPP	nd-221.7 (31.2 ± 51.5)	nd-587.5 (135.1 ± 145.3)	nd-298.7 (119.6 \pm 82.9)	nd-230.9 (58.0 ± 54.7)
TBOEP	nd-571.4 (145.6 ± 187.2)	nd-742.8 (300.6 ± 232.4)	nd-1026.2 (350.8 \pm 309.2)	nd-507.6 (196.8 ± 146.5)
TPhP	nd-511.2 (96.6 ± 141.3)	nd-544.6 (266.1 ± 181.2)	nd-888.9 (324.9 \pm 287.5)	nd-363.5 (174.6 ± 117.0)
EHDP	nd-426.5 (151.1 ± 120.4)	nd-554.0 (298.2 \pm 144.1)	nd-689.9 (312.4 ± 205.3)	nd-491.1 (186.2 ± 117.1)
TEHP	nd-504.2 (134.6 ± 149.7)	nd-715.0 (324.9 ± 199.6)	nd-999.7 (391.7 \pm 303.0)	nd-411.8 (140.0 ± 98.1)
CDPP	nd-346.5 (69.4 ± 86.5)	nd-281.4 (180.7 ± 67.1)	nd-474.9 (248.1 \pm 142.7)	nd-268.0 (99.7 \pm 64.8)
TPPO	nd-106.4 (31.2 ± 33.3)	nd-257.6 (124.9 ± 56.8)	nd-284.2 (156.2 ± 68.6)	nd-112.3 (48.7 ± 24.7)
ТСР	nd-216.3 (59.4 ± 60.0)	nd-487.7 (241.2 \pm 97.3)	nd-448.9 (250.5 \pm 131.5)	nd-255.3 (114.4 ± 66.1)

Table S10. Ranges, mean, and standard deviations of OPE concentrations (ng/g lw) detected in fish tissues collected from Laizhou Bay, China. Data is from [126]

nd= not detected

Table S11. Tissue concentration (ng/g dw) of $\Sigma OPEs$, $\Sigma Non-Cl$ alkyl OPEs, ΣCl alkyl OPEs, and $\Sigma Aryl-OPEs$ in 5 benthic fish and 5 pelagic fish species
collected from Laizhou Bay. Data is from [126].

			Pelagic fish				Benthic Fish				
Tissue	Chinese sea	Dotted gizzard			Silvery						
	perch	shad	Halfbeak	Mullet	pomfret	Eelgoby	Fat greenling	Flathead	Javeline goby	Tongue sole	
					ΣNon-Cl alky	l OPEs					
Muscle	22.4 ± 2.1	11.8 ± 1.3	3.8 ± 0.5	9.6 ± 1.2	29.3 ± 6.2	9.5 ± 3.1	19.6 ± 4.0	28.4 ± 3.3	13.6 ± 3.2	12.9 ± 1.9	
Liver	25.7 ± 3.1	19.2 ± 2.6	7.9 ± 0.9	19.1 ± 2.6	39.9 ± 3.5	22.6 ± 3.7	29.6 ± 5.3	59.2 ± 10.2	48.8 ± 4.8	21.9 ± 3.4	
Kidney	19.4 ± 2.0	15.8 ± 1.9	10.5 ± 1.6	15.9 ± 2.3	31.9 ± 3.0	17.0 ± 2.6	35.2 ± 4.1	64.6 ± 9.8	22.6 ± 2.7	26.7 ± 3.7	
Gills	20.4 ± 2.0	10.0 ± 2.0	9.1 ± 1.2	11.6 ± 2.2	25.3 ± 2.2	15.0 ± 2.9	15.4 ± 2.7	36.3 ± 6.3	17.4 ± 3.6	12.8 ± 3.1	
p value	0.805	0.255	0.121	0.245	0.218	0.249	0.281	0.146	< 0.001	0.175	
ΣCl alkyl OPEs											
Muscle	1.1 ± 0.2	4.8 ± 4.3	0.7 ± 0.3	2.4 ± 0.3	1.2 ± 0.1	13.3 ± 2.6	8.2 ± 3.2	2.4 ± 0.4	2.8 ± 4.3	5.7 ± 1.2	
Liver	2.7 ± 0.1	8.8 ± 2.8	1.7 ± 0.4	7.6 ± 2.5	3.5 ± 0.6	20.7 ± 2.2	13.9 ± 6.3	7.5 ± 2.7	15.9 ± 3.9	7.4 ± 1.8	
Kidney	2.7 ± 0.4	5.6 ± 1.9	2.7 ± 1.1	5.9 ± 2.1	2.8 ± 0.7	14.7 ± 1.8	17.0 ± 4.5	9.6 ± 2.1	8.6 ± 3.6	8.9 ± 2.4	
Gills	2.3 ± 0.1	4.4 ± 2.6	2.0 ± 0.9	3.5 ± 1.0	4.1 ± 1.1	8.7 ± 1.2	7.3 ± 3.4	5.3 ± 2.5	5.5 ± 2.2	6.6 ± 2.4	
<i>p</i> value	< 0.001	0.593	0.244	0.176	0.007	0.044	0.440	0.114	0.032	0.717	
					ΣAryl-OP	PEs					
Muscle	7.8 ± 1.7	1.7 ± 1.2	2.1 ± 0.8	5.2 ± 0.6	13.9 ± 4.4	2.6 ± 0.9	8.4 ± 2.6	15.2 ± 4.0	12.8 ± 5.8	4.7 ± 1.0	
Liver	15.2 ± 3.2	8.5 ± 0.4	4.3 ± 0.7	12.7 ± 1.5	18.3 ± 5.6	17.3 ± 2.4	15.0 ± 4.0	39.1 ± 5.7	35.5 ± 4.9	10.0 ± 1.3	
Kidney	13.9 ± 2.0	5.7 ± 0.1	5.1 ± 0.4	9.8 ± 1.3	15.2 ± 3.9	12.3 ± 2.0	21.7 ± 2.3	32.9 ± 4.8	18.2 ± 3.6	13.8 ± 2.1	
Gills p value	$\begin{array}{c} 12.3\pm1.1\\ 0.368\end{array}$	$\begin{array}{c} 2.5 \pm 0.3 \\ <\!0.001 \end{array}$	$\begin{array}{c} 4.3\pm0.5\\ 0.013\end{array}$	$\begin{array}{c} 6.2\pm1.6\\ 0.013\end{array}$	$\begin{array}{c} 10.5\pm2.1\\ 0.760\end{array}$	$\begin{array}{c} 9.1 \pm 1.1 \\ 0.003 \end{array}$	$\begin{array}{c} 7.4\pm2.1\\ 0.076\end{array}$	$\begin{array}{c} 21.9\pm5.8\\ 0.080\end{array}$	$\begin{array}{c} 11.7\pm2.9\\ 0.003\end{array}$	$\begin{array}{c} 4.5\pm0.8\\ 0.001\end{array}$	

Compound	Cs		log BAF (L/kg wet wei	ght)	
compound	(116/2)	Muscle	Liver	Kidney	Gill
ТМР	6.0	$1.1-3.2 \ (2.4 \pm 0.6)^C$	$2.7\text{-}3.5\;(3.2\pm0.2)$	$2.9\text{-}3.5~(3.2\pm0.2)$	$2.2-3.2 \ (2.7\pm0.3)$
TEP	3.9	$2.8\text{-}3.6~(3.2\pm0.2)$	$3.1\text{-}3.7~(3.6\pm0.2)$	$3.4\text{-}3.8~(3.6\pm0.2)$	$2.9\text{-}3.5~(3.2\pm0.2)$
TPrP	1.8	$2.7\text{-}3.5~(3.0\pm0.3)$	$3.0-4.0~(3.5\pm0.2)$	$3.3-3.9~(3.5\pm0.2)$	$2.3-3.2 (3.0 \pm 0.3)$
TIBP	3.5	$2.2\text{-}3.3\;(2.8\pm0.3)$	2.8-3.7 (3.3 ±0.2)	$2.8\text{-}3.5\;(3.2\pm0.2)$	$2.7\text{-}3.8~(3.2\pm0.3)$
TBP	15.2	$2.5\text{-}3.3\;(3.0\pm0.2)$	$2.7\text{-}3.4~(3.1\pm0.2)$	$2.9\text{-}3.4~(3.2\pm0.2)$	$2.6\text{-}3.8\;(3.0\pm0.3)$
TCEP	5.5	$2.1\text{-}3.6~(2.9\pm0.5)$	$2.6\text{-}3.8~(3.3\pm0.4)$	$2.8\text{-}3.7~(3.3\pm0.3)$	$2.9\text{-}4.0~(3.3\pm0.3)$
TCPP	18.8	$1.8\text{-}3.1\;(2.4\pm0.4)$	$2.2\text{-}3.3\;(2.8\pm0.4)$	$2.5\text{-}3.2~(2.8\pm0.3)$	$2.0-3.4~(2.7\pm0.4)$
TPeP	1.3	$1.9\text{-}3.7~(3.0\pm0.7)$	$3.3\text{-}4.0~(3.7\pm0.3)$	$3.3-3.3 (3.7 \pm 0.3)$	3.2-4.3 (3.6 ± 0.4)
THP	1.2	$2.7-4.1 \ (3.2\pm0.4)$	$3.3\text{-}4.4~(3.8\pm0.3)$	$3.4\text{-}4.3\;(3.8\pm0.3)$	$2.2-3.4~(2.8\pm0.4)$
TDCIPP	1.6	$1.5\text{-}3.6~(2.7\pm0.6)$	$3.0-4.2~(3.6\pm0.4)$	$3.2\text{-}3.0~(3.5\pm0.3)$	$2.5-3.3 (2.9 \pm 0.3)$
TBOEP	11.7	$1.3\text{-}3.4~(2.6\pm0.7)$	$2.2-3.6 (3.1 \pm 0.5)$	$2.3\text{-}3.7~(3.0\pm0.4)$	$2.0-2.7~(2.5\pm0.3)$
TPhP	6.0	1.1-3.7 (2.3 ± 1.1)	$2.6\text{-}3.7~(3.3\pm0.4)$	$2.8\text{-}3.9~(3.3\pm0.3)$	2.4-3.6 (3.1 ± 0.4)
EHDP	4.5	$2.3\text{-}3.7~(3.2\pm0.4)$	$2.9\text{-}3.8~(3.5\pm0.3)$	$3.0\text{-}3.8~(3.5\pm0.3)$	$2.4\text{-}3.4~(2.9\pm0.4)$
TEHP	1.0	$3.0\text{-}4.6~(3.8\pm0.5)$	$3.6\text{-}4.6~(4.2\pm0.3)$	$3.9-4.7~(4.2\pm0.3)$	2.7-3.8 (3.1 ± 0.4)
CDPP	0.5	$2.8\text{-}4.4~(3.8\pm0.6)$	$3.9-4.7~(4.4\pm0.2)$	$4.0\text{-}4.7~(4.4\pm0.2)$	$3.5-4.3 (3.9 \pm 0.3)$
TPPO	5.2	$1.5\text{-}3.0\;(2.4\pm0.4)$	$2.7\text{-}3.5~(3.1\pm0.2)$	$3.0-3.3 (3.2 \pm 0.1)$	$3.3-4.3 (3.8 \pm 0.3)$

Table S12. Mean concentration of OPEs (Cs) measured in seawater, and ranges of Log BAFs in different fish tissues from Laizhou Bay, China. Data is from [126].

Figure S1. Image indicating that production volumes of few alternative plasticizers is increasing in Nordic Countries. For a clearer view of this image, it is advisable to open it as a whole on separate page. This is from SPIN database (http://www.spin2000.net/spinmyphp/)

Figure S2. The proposed metabolic pathway of TPRP and TNBP, in zebrafish. I, III, IV, and V are the reaction of scission of the ester bond (or hydrolysis), oxidative hydroxylation, glucuronic acid conjugation, and dechlorination. Contribution of the metabolites was calculated based on the relative peak area of individual metabolite to the total area. Metabolites not detected in liver were framed with dotted boxes. Reprinted with permission from reference ²²² Copyright 2009 Elsevier.

Figure S3. The proposed metabolic pathway of TCEP and TDCIPP, in zebrafish. I, III, IV, and V are the reaction of scission of the ester bond (or hydrolysis), oxidative hydroxylation, glucuronic acid conjugation, and dechlorination. Contribution of the metabolites was calculated based on the relative peak area of individual metabolite to the total area. Metabolites not detected in liver were framed with dotted boxes. Reprinted with permission from reference ²²² Copyright 2009 Elsevier.

Figure S4. The proposed metabolic pathway of p-TCP, in zebrafish. I, III, IV, and V are the reaction of scission of the ester bond (or hydrolysis), oxidative hydroxylation, glucuronic acid conjugation, and dechlorination. Contribution of the metabolites was calculated based on the relative peak area of individual metabolite to the total area. Metabolites not detected in liver were framed with dotted boxes. Reprinted with permission from reference ²²² Copyright 2009 Elsevier.

References

- B. Tang, C. Christia, G. Malarvannan, Y.E. Liu, X.J. Luo, A. Covaci, B.X. Mai, G. Poma, Legacy and emerging organophosphorus flame retardants and plasticizers in indoor microenvironments from Guangzhou, South China, Environ. Int. 143 (2020) 105972. https://doi.org/10.1016/j.envint.2020.105972.
- [2] M.Z. Jeddi, L. Janani, A.H. Memari, S. Akhondzadeh, M. yunesian, The role of phthalate esters in autism development: A systematic review, Environ. Res. 151 (2016) 493–504. https://doi.org/10.1016/j.envres.2016.08.021.
- [3] P. Zuccarello, G. Oliveri Conti, F. Cavallaro, C. Copat, A. Cristaldi, M. Fiore, M. Ferrante, Implication of dietary phthalates in breast cancer. A systematic review, Food Chem. Toxicol. 118 (2018) 667–674. https://doi.org/10.1016/j.fct.2018.06.011.
- [4] M. Mariana, J. Feiteiro, I. Verde, E. Cairrao, The effects of phthalates in the cardiovascular and reproductive systems: A review, Environ. Int. 94 (2016) 758–776. https://doi.org/10.1016/j.envint.2016.07.004.
- H. Lü, C.H. Mo, H.M. Zhao, L. Xiang, A. Katsoyiannis, Y.W. Li, Q.Y. Cai, M.H. Wong, Soil contamination and sources of phthalates and its health risk in China: A review, Environ. Res. 164 (2018) 417–429. https://doi.org/10.1016/j.envres.2018.03.013.
- [6] N. Fréry, T. Santonen, S.P. Porras, A. Fucic, V. Leso, R. Bousoumah, R.C. Duca, M. El Yamani, M. Kolossa-Gehring, S. Ndaw, S. Viegas, I. Iavicoli, Biomonitoring of occupational exposure to phthalates: A systematic review, Int. J. Hyg. Environ. Health. 229 (2020) 113548. https://doi.org/10.1016/j.ijheh.2020.113548.

- [7] E.G. Radke, B.S. Glenn, J.M. Braun, G.S. Cooper, Phthalate exposure and female reproductive and developmental outcomes: a systematic review of the human epidemiological evidence, Environ. Int. 130 (2019) 104580. https://doi.org/10.1016/j.envint.2019.02.003.
- [8] S. Net, A. Delmont, R. Sempéré, A. Paluselli, B. Ouddane, Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): A review, Sci. Total Environ. 515–516 (2015) 162–180. https://doi.org/10.1016/j.scitotenv.2015.02.013.
- [9] J. Jurewicz, W. Hanke, Exposure to phthalates: Reproductive outcome and children health. A review of epidemiological studies, Int. J. Occup. Med. Environ. Health. 24 (2011) 115–141. https://doi.org/10.2478/s13382-011-0022-2.
- [10] M. Goodman, J.S. Lakind, D.R. Mattison, Do phthalates act as obesogens in humans? A systematic review of the epidemiological literature, Crit. Rev. Toxicol. 44 (2014) 151–175. https://doi.org/10.3109/10408444.2013.860076.
- J.M. Reyes, P.S. Price, Temporal Trends in Exposures to Six Phthalates from Biomonitoring Data: Implications for Cumulative Risk, Environ. Sci. Technol. 52 (2018) 12475–12483. https://doi.org/10.1021/acs.est.8b03338.
- [12] Y. Guo, Z. Zhang, L. Liu, Y. Li, N. Ren, K. Kannan, Occurrence and profiles of phthalates in foodstuffs from China and their implications for human exposure, J. Agric. Food Chem. 60 (2012) 6913–6919. https://doi.org/10.1021/jf3021128.
- [13] P.C. Huang, S.H. Liou, I.K. Ho, H.C. Chiang, H.I. Huang, S.L. Wang, Phthalates exposure and endocrinal effects: An epidemiological review, J. Food Drug Anal. 20 (2012) 719–733. https://doi.org/10.6227/jfda.2012200401.
- [14] R. Mankidy, S. Wiseman, H. Ma, J.P. Giesy, Biological impact of phthalates, Toxicol. Lett. 217 (2013) 50–58. https://doi.org/10.1016/j.toxlet.2012.11.025.
- [15] M.A. Kamrin, Phthalate risks, phthalate regulation, and public health: A review, J. Toxicol. Environ. Heal. Part B Crit. Rev.

12 (2009) 157–174. https://doi.org/10.1080/10937400902729226.

- C. Yang, S.A. Harris, L.M. Jantunen, J. Kvasnicka, L. V. Nguyen, M.L. Diamond, Phthalates: Relationships between Air, Dust, Electronic Devices, and Hands with Implications for Exposure, Environ. Sci. Technol. 54 (2020) 8186–8197. https://doi.org/10.1021/acs.est.0c00229.
- [17] J. Hu, N. Li, H. Yoshino, U. Yanagi, K. Hasegawa, N. Kagi, Y. He, X. Wei, Field study on indoor health risk factors in households with schoolchildren in south-central China, Build. Environ. 117 (2017) 260–273. https://doi.org/10.1016/j.buildenv.2017.03.014.
- [18] Y. Horie, M. Nomura, B.R. Ramaswamy, H. Harino, C.K. Yap, H. Okamura, Thyroid hormone disruption by bis-(2-ethylhexyl) phthalate (DEHP) and bis-(2-ethylhexyl) adipate (DEHA) in Japanese medaka Oryzias latipes, Aquat. Toxicol. 252 (2022) 106312. https://doi.org/10.1016/J.AQUATOX.2022.106312.
- [19] H. Boran, S. Terzi, Stress-Induced Transcriptional Changes and DNA Damage Associated with Bis(2-ethylhexyl) Adipate Exposure in Zebrafish (Danio rerio) Larvae, Bull. Environ. Contam. Toxicol. 99 (2017) 308–314. https://doi.org/10.1007/S00128-017-2116-4/FIGURES/5.
- [20] I.A. Sheikh, M.A. Beg, Structural characterization of potential endocrine disrupting activity of alternate plasticizers di-(2ethylhexyl) adipate (DEHA), acetyl tributyl citrate (ATBC) and 2,2,4-trimethyl 1,3-pentanediol diisobutyrate (TPIB) with human sex hormone-binding globu, Reprod. Toxicol. 83 (2019) 46–53. https://doi.org/10.1016/j.reprotox.2018.11.003.
- [21] T. Eljezi, P. Pinta, D. Richard, J. Pinguet, J.M. Chezal, M.C. Chagnon, V. Sautou, G. Grimandi, E. Moreau, In vitro cytotoxic effects of DEHP-alternative plasticizers and their primary metabolites on a L929 cell line, Chemosphere. 173 (2017) 452–459. https://doi.org/10.1016/j.chemosphere.2017.01.026.
- [22] A.R. Singh, W.H. Lawrence, J. Autian, M. Science, T. Laboratories, D.L. Mutations, A. R. SINGH, W. H. LAWRENCE AND

J. AUTIAN Materials Science Toxicology Laboratories, College of Dentistry and College of Pharmacy, University, 6 (1975) 566–576.

- [23] H. Fromme, L. Gruber, R. Schuster, M. Schlummer, M. Kiranoglu, G. Bolte, W. Völkel, Phthalate and di-(2-ethylhexyl) adipate (DEHA) intake by German infants based on the results of a duplicate diet study and biomonitoring data (INES 2), Food Chem. Toxicol. 53 (2013) 272–280. https://doi.org/10.1016/j.fct.2012.12.004.
- [24] A.P. Cousins, M. Remberger, L. Kaj, Y. Ekheden, B. Dusan, E. Brorström-Lundén, Results from the Swedish National Screening Programme 2006 — subreport 1: phthalates. IVL — Swedish Environmental Research Institute, (2007).
- [25] T.T. Bui, G. Giovanoulis, A. Palm, J. Magnér, I.T. Cousins, C.A. De Wit, Human exposure, hazard and risk of alternative plasticizers to phthalate esters, Sci. Total Environ. 541 (2016) 451–467. https://doi.org/10.1016/j.scitotenv.2015.09.036.
- [26] Y. Tsumura, S. Ishimitsu, I. Saito, H. Sakai, Y. Tsuchida, Y. Tonogai, Estimated daily intake of plasticizers in 1-week duplicate diet samples following regulation of DEHP-containing PVC gloves in Japan, Food Addit. Contam. 20 (2003) 317–324. https://doi.org/10.1080/0265203031000122021.
- [27] A.J. Smith, T. McGowan, M.J. Devlin, M.S. Massoud, M. Al-Enezi, A.S. Al-Zaidan, H.A. Al-Sarawi, B.P. Lyons, Screening for contaminant hotspots in the marine environment of Kuwait using ecotoxicological and chemical screening techniques, Mar. Pollut. Bull. 100 (2015) 681–688. https://doi.org/10.1016/J.MARPOLBUL.2015.08.043.
- [28] G. Giovanoulis, M.A. Nguyen, M. Arwidsson, S. Langer, R. Vestergren, A. Lagerqvist, Reduction of hazardous chemicals in Swedish preschool dust through article substitution actions, Environ. Int. 130 (2019) 104921. https://doi.org/10.1016/J.ENVINT.2019.104921.
- [29] Y. Horie, B.R. Ramaswamy, J.M. Ríos, C.K. Yap, H. Okamura, Effects of plasticizer diisobutyl adipate on the Japanese medaka (Oryzias latipes) endocrine system, J. Appl. Toxicol. 43 (2023) 982–992. https://doi.org/10.1002/JAT.4437.

- [30] J. Maag, C. Lassen, U.K. Brandt, J. Kjølholt, L. Molander, H. Mikkelsen, A.S. Cowi, Identification and assessment of alternatives to selected phthalates, Environmental Project No. 1341, Danish Environ. Prot. Agency. (2010).
- [31] Y. Tsumura, S. Ishimitsu, A. Kaihara, K. Yoshii, Y. Tonogai, Phthalates, adipates, citrate and some of the other plasticizers detected in Japanese retail foods: A survey, J. Heal. Sci. 48 (2002) 493–502. https://doi.org/10.1248/jhs.48.493.
- [32] S. Santangeli, V. Notarstefano, F. Maradonna, E. Giorgini, G. Gioacchini, I. Forner-Piquer, H.R. Habibi, O. Carnevali, Effects of diethylene glycol dibenzoate and Bisphenol A on the lipid metabolism of Danio rerio, Sci. Total Environ. 636 (2018) 641– 655. https://doi.org/10.1016/j.scitotenv.2018.04.291.
- [33] R.G. Butz, Y.H. Atallah, C.C. Yu, C.J. Calo, Environmental safety assessment of dipropylene glycol dibenzoate, Environ. Toxicol. Chem. 1 (1982) 337–346. https://doi.org/10.1002/etc.5620010409.
- [34] Y. Horie, C.K. Yap, H. Okamura, Developmental toxicity and thyroid hormone-disrupting effects of acetyl tributyl citrate in zebrafish and Japanese medaka, J. Hazard. Mater. Adv. 8 (2022) 100199. https://doi.org/10.1016/J.HAZADV.2022.100199.
- [35] T.A. Zughaibi, I.A. Sheikh, M.A. Beg, Insights into the Endocrine Disrupting Activity of Emerging Non-Phthalate Alternate Plasticizers against Thyroid Hormone Receptor: A Structural Perspective, Toxics 2022, Vol. 10, Page 263. 10 (2022) 263. https://doi.org/10.3390/TOXICS10050263.
- [36] L.M. Rasmussen, N. Sen, X. Liu, Z.R. Craig, Effects of oral exposure to the phthalate substitute acetyl tributyl citrate on female reproduction in mice, J. Appl. Toxicol. 37 (2017) 668–675. https://doi.org/10.1002/jat.3413.
- [37] L.M. Rasmussen, N. Sen, J.C. Vera, X. Liu, Z.R. Craig, Effects of in vitro exposure to dibutyl phthalate, mono-butyl phthalate, and acetyl tributyl citrate on ovarian antral follicle growth and viability, Biol. Reprod. 96 (2017) 1105–1117. https://doi.org/10.1095/biolreprod.116.144691.

- [38] N. Park, J. Jeon, Emerging pharmaceuticals and industrial chemicals in Nakdong River, Korea: Identification, quantitative monitoring, and prioritization, Chemosphere. 263 (2021) 128014. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128014.
- [39] D. Spurgeon, H. Wilkinson, W. Civil, L. Hutt, E. Armenise, N. Kieboom, K. Sims, T. Besien, Worst-case ranking of organic chemicals detected in groundwaters and surface waters in England, Sci. Total Environ. 835 (2022) 155101. https://doi.org/10.1016/J.SCITOTENV.2022.155101.
- [40] C.A. Schwanen, J. Schwarzbauer, Structural Diversity of Organic Contaminants in a meso-scaled River System, Water. Air. Soil Pollut. 233 (2022) 1–24. https://doi.org/10.1007/S11270-022-05503-1/FIGURES/4.
- [41] N. Saad, C. Bereketoglu, A. Pradhan, Di(Isononyl) Cyclohexane-1,2-Dicarboxylate (Dinch) Alters Transcriptional Profiles, Lipid Metabolism And Behavior In Zebrafish Larvae, Heliyon. 7 (2021). https://doi.org/10.1016/J.HELIYON.2021.E07951/ATTACHMENT/9BE29E58-20C6-4105-82E4-D16C3840A799/MMC1.
- [42] S.E. Long, L.G. Kahn, L. Trasande, M.H. Jacobson, Urinary phthalate metabolites and alternatives and serum sex steroid hormones among pre- and postmenopausal women from NHANES, 2013–16, Sci. Total Environ. 769 (2021) 144560. https://doi.org/10.1016/J.SCITOTENV.2020.144560.
- [43] Y. duo Zhu, X. Han, X. qi Wang, T. xi Ge, H. Liu, L. Fan, L. Li, L. qin Su, X. liang Wang, Effect of the phthalates exposure on sex steroid hormones in the US population, Ecotoxicol. Environ. Saf. 231 (2022) 113203. https://doi.org/10.1016/J.ECOENV.2022.113203.
- [44] A.L. Vasconcelos, M.J. Silva, H. Louro, In vitro exposure to the next-generation plasticizer diisononyl cyclohexane-1,2dicarboxylate (DINCH): cytotoxicity and genotoxicity assessment in human cells, J. Toxicol. Environ. Heal. - Part A Curr. Issues. 82 (2019) 526–536. https://doi.org/10.1080/15287394.2019.1634376.
- [45] E. Campioli, S. Lee, M. Lau, L. Marques, V. Papadopoulos, Effect of prenatal DINCH plasticizer exposure on rat offspring

testicular function and metabolism, Sci. Rep. 7 (2017) 1–14. https://doi.org/10.1038/s41598-017-11325-7.

- [46] I.A. Sheikh, M. Yasir, M. Abu-Elmagd, T.A. Dar, A.M. Abuzenadah, G.A. Damanhouri, M. Al-Qahtani, M.A. Beg, Human sex hormone-binding globulin as a potential target of alternate plasticizers: an in silico study, BMC Struct. Biol. 16 (2016) 11–20. https://doi.org/10.1186/s12900-016-0067-3.
- [47] M.J. Silva, T. Jia, E. Samandar, J.L. Preau, A.M. Calafat, Environmental exposure to the plasticizer 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) in US adults (2000-2012), Environ. Res. 126 (2013) 159–163. https://doi.org/10.1016/j.envres.2013.05.007.
- [48] G. Giovanoulis, A. Alves, E. Papadopoulou, A.P. Cousins, A. Schütze, H.M. Koch, L.S. Haug, A. Covaci, J. Magnér, S. Voorspoels, Evaluation of exposure to phthalate esters and DINCH in urine and nails from a Norwegian study population, Environ. Res. 151 (2016) 80–90. https://doi.org/10.1016/J.ENVRES.2016.07.025.
- [49] A. Schütze, M. Kolossa-Gehring, P. Apel, T. Brüning, H.M. Koch, Entering markets and bodies: Increasing levels of the novel plasticizer Hexamoll® DINCH® in 24 h urine samples from the German Environmental Specimen Bank, Int. J. Hyg. Environ. Health. 217 (2014) 421–426. https://doi.org/10.1016/J.IJHEH.2013.08.004.
- [50] R. Nagorka, A. Conrad, C. Scheller, B. Süßenbach, H.J. Moriske, Diisononyl 1,2-cyclohexanedicarboxylic acid (DINCH) and Di(2-ethylhexyl) terephthalate (DEHT) in indoor dust samples: Concentration and analytical problems, Int. J. Hyg. Environ. Health. 214 (2011) 26–35. https://doi.org/10.1016/j.ijheh.2010.08.005.
- [51] T.G. Bekele, H. Zhao, Q. Wang, J. Chen, Bioaccumulation and Trophic Transfer of Emerging Organophosphate Flame Retardants in the Marine Food Webs of Laizhou Bay, North China, Environ. Sci. Technol. 53 (2019) 13417–13426. https://doi.org/10.1021/acs.est.9b03687.
- [52] S.H. Brandsma, P.E.G. Leonards, H.A. Leslie, J. de Boer, Tracing organophosphorus and brominated flame retardants and

plasticizers in an estuarine food web, Sci. Total Environ. 505 (2015) 22-31. https://doi.org/10.1016/j.scitotenv.2014.08.072.

- [53] A.K. Greaves, R.J. Letcher, D. Chen, D.J. Mcgoldrick, L.T. Gauthier, S.M. Backus, Retrospective analysis of organophosphate fl ame retardants in herring gull eggs and relation to the aquatic food web in the Laurentian Great Lakes of North America, Environ. Res. 150 (2016) 255–263. https://doi.org/10.1016/j.envres.2016.06.006.
- [54] H. Zhao, F. Zhao, J. Liu, S. Zhang, D. Mu, L. An, Y. Wan, J. Hu, Trophic transfer of organophosphorus flame retardants in a lake food web, Environ. Pollut. 242 (2018) 1887–1893. https://doi.org/10.1016/j.envpol.2018.07.077.
- [55] Y. Ding, M. Han, Z. Wu, R. Zhang, A. Li, K. Yu, Y. Wang, Bioaccumulation and trophic transfer of organophosphate esters in tropical marine food web, South China Sea, Environ. Int. 143 (2020). https://doi.org/10.1016/j.envint.2020.105919.
- [56] J. Kim, T. Isobe, K. Chang, A. Amano, R.H. Maneja, P.B. Zamora, F.P. Siringan, S. Tanabe, Levels and distribution of organophosphorus fl ame retardants and plasticizers in fi shes from Manila Bay, the Philippines, Environ. Pollut. 159 (2011) 3653–3659. https://doi.org/10.1016/j.envpol.2011.07.020.
- [57] Y. Zhao, J. Ding, L. Lv, H. Zhang, Exposure to organophosphate flame esters during early pregnancy and risk of spontaneous abortion: A case-control study, Chemosphere. 268 (2021). https://doi.org/10.1016/j.chemosphere.2020.129375.
- [58] Y. Yang, Y. Xiao, Y. Chang, Y. Cui, G. Klobučar, M. Li, Intestinal damage, neurotoxicity and biochemical responses caused by tris (2-chloroethyl) phosphate and tricresyl phosphate on earthworm, Ecotoxicol. Environ. Saf. 158 (2018) 78–86. https://doi.org/10.1016/J.ECOENV.2018.04.012.
- [59] Z. Yan, X. Jin, D. Liu, Y. Hong, W. Liao, C. Feng, Y. Bai, The potential connections of adverse outcome pathways with the hazard identifications of typical organophosphate esters based on toxicity mechanisms, Chemosphere. 266 (2021). https://doi.org/10.1016/j.chemosphere.2020.128989.

- [60] X. Wang, W. Zhong, B. Xiao, Q. Liu, L. Yang, A. Covaci, L. Zhu, Bioavailability and biomagnification of organophosphate esters in the food web of Taihu Lake, China: Impacts of chemical properties and metabolism, Environ. Int. 125 (2019) 25–32. https://doi.org/10.1016/j.envint.2019.01.018.
- [61] G.M. Isales, R.A. Hipszer, T.D. Raftery, A. Chen, H.M. Stapleton, D.C. Volz, Triphenyl phosphate-induced developmental toxicity in zebrafish : Potential role of the retinoic acid receptor, Aquat. Toxicol. 161 (2015) 221–230. https://doi.org/10.1016/j.aquatox.2015.02.009.
- [62] A.K. Greaves, A Review of Organophosphate Esters in the Environment from Biological Effects to Distribution and Fate, Bull.
 Environ. Contam. Toxicol. 98 (2016) 2–7. https://doi.org/10.1007/s00128-016-1898-0.
- [63] S.D. Coelho, A.C.A. Sousa, T. Isobe, J.W. Kim, T. Kunisue, A.J.A. Nogueira, S. Tanabe, Brominated, chlorinated and phosphate organic contaminants in house dust from Portugal, Sci. Total Environ. 569–570 (2016) 442–449. https://doi.org/10.1016/j.scitotenv.2016.06.137.
- [64] W. Meng, J. Li, J. Shen, Y. Deng, R.J. Letcher, G. Su, Functional Group-Dependent Screening of Organophosphate Esters (OPEs) and Discovery of an Abundant OPE Bis-(2-ethylhexyl)-phenyl Phosphate in Indoor Dust, Environ. Sci. Technol. 54 (2020) 4455–4464. https://doi.org/10.1021/acs.est.9b07412.
- [65] H. Tan, L. Yang, Y. Yu, Q. Guan, X. Liu, L. Li, D. Chen, Co-Existence of Organophosphate Di- and Tri-Esters in House Dust from South China and Midwestern United States: Implications for Human Exposure, Environ. Sci. Technol. 53 (2019) 4784– 4793. https://doi.org/10.1021/acs.est.9b00229.
- [66] M. Zhong, H. Wu, W. Mi, F. Li, C. Ji, R. Ebinghaus, J. Tang, Z. Xie, Occurrences and distribution characteristics of organophosphate ester flame retardants and plasticizers in the sediments of the Bohai and Yellow Seas, China, Sci. Total Environ. 615 (2018) 1305–1311. https://doi.org/10.1016/j.scitotenv.2017.09.272.

- [67] X. Wang, W. Zhong, B. Xiao, Q. Liu, L. Yang, A. Covaci, L. Zhu, Bioavailability and biomagnification of organophosphate esters in the food web of Taihu Lake, China: Impacts of chemical properties and metabolism, Environ. Int. 125 (2019) 25–32. https://doi.org/10.1016/j.envint.2019.01.018.
- [68] X. Zeng, L. Xu, Q. Hu, Y. Liu, J. Hu, W. Liao, Z. Yu, Occurrence and distribution of organophosphorus flame retardants/plasticizers in coastal sediments from the Taiwan Strait in China, Mar. Pollut. Bull. 151 (2020) 110843. https://doi.org/10.1016/j.marpolbul.2019.110843.
- [69] Y. Zhang, X. Zheng, L. Wei, R. Sun, H. Guo, X. Liu, S. Liu, The distribution and accumulation ofphosphate flame retardants (PFRs) in water environment, 630 (2018) 164–170. https://doi.org/10.1016/j.scitotenv.2018.02.215.
- [70] F. Yang, J. Ding, W. Huang, W. Xie, W. Liu, Particle Size-Specific Distributions and Preliminary Exposure Assessments of Organophosphate Flame Retardants in Office Air Particulate Matter, Enivironmental Sci. Technol. 48 (2014) 63–70.
- [71] F. Stuer-Lauridsen, S. Mikkelsen, S. Havelund, M. Birkved, L.P. Hansen, Environmental and Health Assessment of Alternatives to Phthalates and to flexible PVC, COWI Consult. Eng. Planners AS, Environ. Proj. No. 590. (2001). https://doi.org/http:// www2.mst.dk/udgiv/Publications/2001/87-7944-407-5/ pdf/87-7944-408-3.pdf.
- [72] Y. Wang, Y. Yao, X. Han, W. Li, H. Zhu, L. Wang, H. Sun, K. Kannan, Organophosphate di- and tri-esters in indoor and outdoor dust from China and its implications for human exposure, Sci. Total Environ. 700 (2020) 134502. https://doi.org/10.1016/j.scitotenv.2019.134502.
- [73] G. Pelletier, M. Rigden, G.S. Wang, D. Caldwell, S. Siddique, K. Leingartner, I. Kosarac, S. Cakmak, C. Kubwabo,
 Comparison of tris(2-ethylhexyl) phosphate and di(2-ethylhexyl) phosphoric acid toxicities in a rat 28-day oral exposure study,
 J. Appl. Toxicol. 40 (2020) 600–618. https://doi.org/10.1002/JAT.3930.
- [74] K. Lin, Joint acute toxicity of tributyl phosphate and triphenyl phosphate to Daphnia magna, Environ. Chem. Lett. (2009) 309–

312. https://doi.org/10.1007/s10311-008-0170-1.

- [75] F. Zhao, Y. Li, S. Zhang, M. Ding, J. Hu, Association of Aryl Organophosphate Flame Retardants Triphenyl Phosphate and 2-Ethylhexyl Diphenyl Phosphate with Human Blood Triglyceride and Total Cholesterol Levels, Environ. Sci. Technol. Lett. 6 (2019) 532–537. https://doi.org/10.1021/acs.estlett.9b00417.
- [76] A.S. Young, J.G. Allen, U.J. Kim, S. Seller, T.F. Webster, K. Kannan, D.M. Ceballos, Phthalate and Organophosphate Plasticizers in Nail Polish: Evaluation of Labels and Ingredients, Environ. Sci. Technol. 52 (2018) 12841–12850. https://doi.org/10.1021/acs.est.8b04495.
- [77] C.C. Carignan, L. Mínguez-Alarcón, P.L. Williams, J.D. Meeker, H.M. Stapleton, C.M. Butt, T.L. Toth, J.B. Ford, R. Hauser, Paternal urinary concentrations of organophosphate flame retardant metabolites, fertility measures, and pregnancy outcomes among couples undergoing in vitro fertilization, Environ. Int. 111 (2018) 232–238. https://doi.org/10.1016/j.envint.2017.12.005.
- [78] J.D. Meeker, E.M. Cooper, H.M. Stapleton, R. Hauser, Exploratory analysis of urinary metabolites of phosphorus-containing flame retardants in relation to markers of male reproductive health, Endocr. Disruptors. 1 (2013) e26306. https://doi.org/10.4161/endo.26306.
- [79] E. V. Preston, M.D. McClean, B. Claus Henn, H.M. Stapleton, L.E. Braverman, E.N. Pearce, C.M. Makey, T.F. Webster, Associations between urinary diphenyl phosphate and thyroid function, Environ. Int. 101 (2017) 158–164. https://doi.org/10.1016/j.envint.2017.01.020.
- [80] X. Liu, D. Jung, A. Jo, K. Ji, H.B. Moon, K. Choi, Long-term exposure to triphenylphosphate alters hormone balance and HPG, HPI, and HPT gene expression in zebrafish (Danio rerio), Environ. Toxicol. Chem. 35 (2016) 2288–2296. https://doi.org/10.1002/etc.3395.

- [81] S. Kim, J. Jung, I. Lee, D. Jung, H. Youn, K. Choi, Thyroid disruption by triphenyl phosphate, an organophosphate flame retardant, in zebrafish (Danio rerio) embryos/larvae, and in GH3 and FRTL-5 cell lines, Aquat. Toxicol. 160 (2015) 188–196. https://doi.org/10.1016/j.aquatox.2015.01.016.
- [82] Y. Kawamura, C. TAGAI, T. Maehara, Y. Takash, Additives in polyvinyl chloride and polyvinylidene chloride products, Food Hyg. Japan. 40 (1999) 274–284.
- [83] K. Vimalkumar, H. Zhu, K. Kannan, Widespread occurrence of phthalate and non-phthalate plasticizers in single-use facemasks collected in the United States, Environ. Int. 158 (2022) 106967. https://doi.org/10.1016/J.ENVINT.2021.106967.
- [84] R. Hauser, S. Duty, L. Godfrey-bailey, A.M. Calafat, Environmental Medicine Case Report Medications as a Source of Human Exposure to Phthalates, Environ. Health Perspect. 112 (2004) 751–753. https://doi.org/10.1289/ehp.6804.
- [85] Y. Horie, M. Nomura, B.R. Ramaswamy, H. Harino, C.K. Yap, H. Okamura, Effects of non-phthalate plasticizer bis(2ethylhexyl) sebacate (DEHS) on the endocrine system in Japanese medaka (Oryzias latipes), Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 264 (2023) 109531. https://doi.org/10.1016/J.CBPC.2022.109531.
- [86] M. Porretti, F. Impellitteri, A. Caferro, A. Albergamo, F. Litrenta, M. Filice, S. Imbrogno, G. Di Bella, C. Faggio, Assessment of the effects of non-phthalate plasticizer DEHT on the bivalve molluscs Mytilus galloprovincialis, Chemosphere. 336 (2023) 139273. https://doi.org/10.1016/J.CHEMOSPHERE.2023.139273.
- [87] H. Wu, A.C. Just, E. Colicino, A.M. Calafat, E. Oken, J.M. Braun, N. McRae, A. Cantoral, I. Pantic, M.L. Pizano-Zárate, M.C. Tolentino, R.O. Wright, M.M. Téllez-Rojo, A.A. Baccarelli, A.L. Deierlein, The associations of phthalate biomarkers during pregnancy with later glycemia and lipid profiles, Environ. Int. 155 (2021) 106612. https://doi.org/10.1016/j.envint.2021.106612.
- [88] A. Rajkumar, T. Luu, M.A. Beal, T.S. Barton-Maclaren, B.F. Hales, B. Robaire, Phthalates and alternative plasticizers

differentially affect phenotypic parameters in gonadal somatic and germ cell lines, Biol. Reprod. 106 (2022) 613–627. https://doi.org/10.1093/biolre/ioab216.

- [89] J.A. Craig, D.M. Ceballos, V. Fruh, Z.E. Petropoulos, J.G. Allen, A.M. Calafat, M. Ospina, H.M. Stapleton, S. Hammel, R. Gray, T.F. Webster, Exposure of Nail Salon Workers to Phthalates, Di(2-ethylhexyl) Terephthalate, and Organophosphate Esters: A Pilot Study, Environ. Sci. Technol. 53 (2019) 14630–14637. https://doi.org/10.1021/acs.est.9b02474.
- [90] M.J. Silva, L.Y. Wong, E. Samandar, J.L. Preau, L.T. Jia, A.M. Calafat, Exposure to di-2-ethylhexyl terephthalate in the U.S. general population from the 2015–2016 National Health and Nutrition Examination Survey, Environ. Int. 123 (2019) 141–147. https://doi.org/10.1016/j.envint.2018.11.041.
- [91] F. Lessmann, L. Correia-Sá, C. Calhau, V.F. Domingues, T. Weiss, T. Brüning, H.M. Koch, Exposure to the plasticizer di(2ethylhexyl) terephthalate (DEHTP) in Portuguese children – Urinary metabolite levels and estimated daily intakes, Environ. Int. 104 (2017) 25–32. https://doi.org/10.1016/j.envint.2017.03.028.
- [92] W.D. Faber, J.A. Deyo, D.G. Stump, L. Navarro, K. Ruble, J. Knapp, Developmental toxicity and uterotrophic studies with Di-2-ethylhexyl terephthalate, Birth Defects Res. Part B - Dev. Reprod. Toxicol. 80 (2007) 396–405. https://doi.org/10.1002/bdrb.20130.
- [93] SCENIHR, The safety of medical devices containing DEHP- plasticized PVC or other plasticizers on neonates and other groups possibly at risk (2015 update) Approved, 2016. https://doi.org/10.2772/45179.
- [94] A. Murawski, M.I.H. Schmied-Tobies, E. Rucic, C. Schmidtkunz, K. Küpper, G. Leng, E. Eckert, L. Kuhlmann, T. Göen, A. Daniels, G. Schwedler, M. Kolossa-Gehring, Metabolites of 4-methylbenzylidene camphor (4-MBC), butylated hydroxytoluene (BHT), and tris(2-ethylhexyl) trimellitate (TOTM) in urine of children and adolescents in Germany-human biomonitoring results of the German Environmental Survey GerES V (2014–201, Environ. Res. 192 (2021) 110345.

https://doi.org/10.1016/j.envres.2020.110345.

- [95] C. Höllerer, G. Becker, T. Göen, E. Eckert, Human metabolism and kinetics of tri-(2-ethylhexyl) trimellitate (TEHTM) after oral administration, Arch. Toxicol. 92 (2018) 2793–2807. https://doi.org/10.1007/s00204-018-2264-2.
- [96] H. Iwase1, S. Oiso, H. Kariyazono, K. Nakamura, Biological Effects of the Plasticizer Tris (2-Ethylhexyl) Trimellitate, Clin. Pharmacol. Biopharm. S2 (2014). https://doi.org/10.4172/2167-065x.s2-004.
- [97] X.H. Chen, L. Ma, Y.X. Hu, D.X. Wang, L. Fang, X.L. Li, J.C. Zhao, H.R. Yu, H.Z. Ying, C.H. Yu, Transcriptome profiling and pathway analysis of hepatotoxicity induced by tris (2-ethylhexyl) trimellitate (TOTM) in mice, Environ. Toxicol. Pharmacol. 41 (2016) 62–71. https://doi.org/10.1016/j.etap.2015.11.007.
- [98] R. Nagorka, W. Birmili, J. Schulze, J. Koschorreck, Diverging trends of plasticizers (phthalates and non-phthalates) in indoor and freshwater environments—why?, Environ. Sci. Eur. 34 (2022) 1–15. https://doi.org/10.1186/S12302-022-00620-4/FIGURES/4.
- [99] European Chemicals Agency (ECHA), Tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate, decision on substance, (2022).
 https://echa.europa.eu/documents/10162/f7881694-9737-9bb2-48d2-64affb546f83 (accessed August 9, 2023).
- [100] S. Kim, Y. Kim, H.B. Moon, Contamination and historical trends of legacy and emerging plasticizers in sediment from highly industrialized bays of Korea, Sci. Total Environ. (2020) 142751. https://doi.org/10.1016/j.scitotenv.2020.142751.
- [101] ECHA, Guidance on Information Requirements and Chemical Safety Assessment Chapter R.11: PBT/vPvB assessment., 2014. https://doi.org/10.2823/128621.
- [102] BIBRA, TOXICITY PROFILE FOR EPOXIDISED SOYA BEAN OIL, BIBRA (British Ind. Biol. Res. Assoc. (2019).
- [103] ECHA, Information on chemicals.(accessed on 12,2020) http://echa.europa.eu/, (2020).

- [104] Norwegian Scientific Committee for Food Safety, Opinion of the Panel on Food Additives, Flavourings, Processing Aids, Materials in Contact with Food and Cosmetics, (2005) 1–6.
- [105] G.A. Pedersen, L.K. Jensen, A. Fankhauser, S. Biedermann, J.H. Petersen, B. Fabech, Migration of epoxidized soybean oil (ESBO) and phthalates from twist closures into food and enforcement of the overall migration limit, Food Addit. Contam. - Part A. 25 (2008) 503–510. https://doi.org/10.1080/02652030701519088.
- [106] A. Fankhauser-Noti, S. Biedermann-Brem, K. Grob, PVC plasticizers/additives migrating from the gaskets of metal closures into oily food: Swiss market survey June 2005, Eur. Food Res. Technol. 223 (2006) 447–453. https://doi.org/10.1007/s00217-005-0223-7.
- [107] G.A. Pedersen, L.K. Jensen, A. Fankhauser, S. Biedermann, J.H. Petersen, B. Fabech, Migration of epoxidized soybean oil (ESBO) and phthalates from twist closures into food and enforcement of the overall migration limit, Food Addit. Contam. - Part A Chem. Anal. Control. Expo. Risk Assess. 25 (2008) 503–510. https://doi.org/10.1080/02652030701519088.
- [108] L. Fantoni, C. Simoneau, European survey of contamination of homogenized baby food by epoxidized soybean oil migration from plasticized PVC gaskets, Food Addit. Contam. 20 (2003) 1087–1096. https://doi.org/10.1080/02652030310001615186.
- [109] J. Maag, C. Lassen, U.K. Brandt, J. Kjølholt, L. Molander, H. Mikkelsen, A.S. Cowi, Identification and assessment of alternatives to selected phthalates, Danish Environ. Prot. Agency, Minist. Environ. (2010).
- [110] S. Franke, J. Schwarzbauer, W. Francke, Arylesters of alkylsulfonic acids in sediments: Part III of organic compounds as contaminants of the Elbe River and its tributaries, Fresenius. J. Anal. Chem. 360 (1998) 580–588. https://doi.org/10.1007/s002160050762.
- [111] H. Fromme, J. Schwarzbauer, T. Lahrz, M. Kraft, L. Fembacher, Alkylsulfonic acid phenylesters (ASEs, Mesamoll®) in dust samples of German residences and daycare centers (LUPE 3), Int. J. Hyg. Environ. Health. 220 (2017) 440–444.

https://doi.org/10.1016/j.ijheh.2016.12.009.

- [112] M. Ricking, J. Schwarzbauer, S. Franke, Molecular markers of anthropogenic activity in sediments of the Havel and Spree Rivers (Germany), Water Res. 37 (2003) 2607–2617. https://doi.org/10.1016/S0043-1354(03)00078-2.
- [113] M.Z. Fiume, Final Report on the Safety Assessment of Triacetin, Int. J. Toxicol. 22 (2003) 1–10. https://doi.org/10.1080/10915810390204845.
- [114] M.J. Quinn Jr, D. Ziolkowski Jr, Chapter 17 Wildlife Toxicity Assessment for Triacetin, Elsevier Inc., 2015. https://doi.org/10.1016/B978-0-12-800020-5.00017-X.
- [115] R.M. David, L.K. Lockhart, K.M. Ruble, Lack of sensitization for trimellitate, phthalate, terephthalate and isobutyrate plasticizers in a human repeated insult patch test, Food Chem. Toxicol. 41 (2003) 589–593. https://doi.org/10.1016/S0278-6915(02)00282-X.
- [116] W.S. Cain, R.A. De Wijk, A.A. Jalowayski, G. Pilla Caminha, R. Schmidt, Odor and chemesthesis from brief exposure to TXIB, Indoor Air. 15 (2005) 445–457. https://doi.org/10.1111/J.1600-0668.2005.00390.X.
- [117] European Chemicals Agency (ECHA), Brief Profile 1-isopropyl-2,2-dimethyltrimethylene diisobutyrate, (2023). https://echa.europa.eu/brief-profile/-/briefprofile/100.027.213 (accessed August 11, 2023).
- [118] B. Sahlberg, M. Gunnbjörnsdottir, A. Soon, R. Jogi, T. Gislason, G. Wieslander, C. Janson, D. Norback, Airborne molds and bacteria, microbial volatile organic compounds (MVOC), plasticizers and formaldehyde in dwellings in three North European cities in relation to sick building syndrome (SBS), Sci. Total Environ. 444 (2013) 433–440. https://doi.org/10.1016/j.scitotenv.2012.10.114.
- [119] J.L. Kim, L. Elfman, Y. Mi, G. Wieslander, G. Smedje, D. Norbäck, Indoor molds, bacteria, microbial volatile organic

compounds and plasticizers in schools - Associations with asthma and respiratory symptoms in pupils, Indoor Air. 17 (2007) 153–163. https://doi.org/10.1111/j.1600-0668.2006.00466.x.

- [120] W.J. Krasavage, K.S. Tischer, R.L. Roudabush, E.K. Company, M. Pro-, D.C. March, K. Company, The reversibility of increased rat liver weights and microsomal processing enzymes after feeding high levels of 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, Toxicol. Appl. Pharmacol. 22 (1972) 400–408.
- [121] L. Tao, H. Tan, X. Qiao, L. Li, Y. Yu, J. Xie, D. Chen, Emerging Plasticizers in South China House Dust and Hand Wipes: Calling for Potential Concern?, Environ. Sci. Technol. 56 (2022) 12190–12199. https://doi.org/10.1021/ACS.EST.2C02106/SUPPL_FILE/ES2C02106_SI_001.PDF.
- [122] F. Lessmann, A. Schütze, T. Weiss, A. Langsch, R. Otter, T. Brüning, H.M. Koch, Metabolism and urinary excretion kinetics of di(2-ethylhexyl) terephthalate (DEHTP) in three male volunteers after oral dosage, Arch. Toxicol. 90 (2016) 1659–1667. https://doi.org/10.1007/S00204-016-1715-X/METRICS.
- [123] H.M. Koch, A. Schütze, C. Pälmke, J. Angerer, T. Brüning, Metabolism of the plasticizer and phthalate substitute diisononylcyclohexane-1,2-dicarboxylate (DINCH®) in humans after single oral doses, Arch. Toxicol. 87 (2013) 799–806. https://doi.org/10.1007/s00204-012-0990-4.
- [124] Y.E. Liu, X.J. Luo, K.L. Guan, C.C. Huang, X.M. Qi, Y.H. Zeng, B.X. Mai, Tissue-specific distribution of legacy and emerging organophosphorus flame retardants and plasticizers in frogs, Toxics. 9 (2021) 1–12. https://doi.org/10.3390/toxics9060124.
- [125] Y.E. Liu, B. Tang, Y. Liu, X.J. Luo, B.X. Mai, A. Covaci, G. Poma, Occurrence, biomagnification and maternal transfer of legacy and emerging organophosphorus flame retardants and plasticizers in water snake from an e-waste site, Environ. Int. 133 (2019) 105240. https://doi.org/10.1016/j.envint.2019.105240.

[126] T.G. Bekele, H. Zhao, Q. Wang, Tissue distribution and bioaccumulation of organophosphate esters in wild marine fish from Laizhou Bay, North China: Implications of human exposure via fish consumption, J. Hazard. Mater. 401 (2021) 123410. https://doi.org/10.1016/j.jhazmat.2020.123410.