## **Supporting Information**

# Highly Selective Hydrogenolysis of Lignin $\beta$ -O-4 Models by

### Coupled Polyoxometalates/CdS Photocatalytic System

Mo Zhang<sup>a,b,†</sup>, Zheng Li<sup>a,†</sup>, Yeqin Feng<sup>a</sup>, Xing Xin<sup>a</sup>, Guo-Yu Yang<sup>a\*</sup>, Hongjin Lv<sup>a\*</sup>

<sup>a</sup> MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.

<sup>b</sup> School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, P. R. China.

\*Corresponding author e-mail: hlv@bit.edu.cn; ygy@bit.edu.cn †These authors contributed equally to this work.

#### **Table of Contents**

| Fig. S1 TEM images of the CdS QDs                                                          | S3         |
|--------------------------------------------------------------------------------------------|------------|
| Fig. S2 Digital photos of the reaction solution using different capping agent QDs          | S3         |
| Fig. S3 UV-vis spectra of CdS QDs with different capping agents                            | S4         |
| Fig. S4 XPS spectra of CdS QDs                                                             | S5         |
| Fig. S5 Polyhedral and ball-and-stick representations of polyoxometalates: $Ni_4P_2$       | <b>S</b> 6 |
| and Ni <sub>9</sub> P <sub>3</sub>                                                         |            |
| Fig. S6 FT-IR spectra of Ni <sub>4</sub> P <sub>2</sub> and Ni <sub>9</sub> P <sub>3</sub> | S6         |
| Fig. S7 UV-vis spectra of $Ni_9P_3$ and $Ni_4P_2$ catalyst with the same concentration     | <b>S</b> 7 |
| Fig. S8 Digital photos of the reaction solution before and after photocatalysis            | <b>S</b> 7 |
| Fig. S9 SEM and corresponding elemental mapping images of isolated CdS-MPA                 | <b>S</b> 8 |
| QDs                                                                                        |            |
| Fig. S10 High resolution XPS spectra of isolated CdS-MPA QDs from NiCl <sub>2</sub> -      | <b>S</b> 8 |
| catalyzed                                                                                  |            |
| Fig. S11 UV-vis spectra of CdS-MPA QDs before and after photocatalysis                     | S9         |
| Fig. S12 Photocatalytic hydrogenolysis of PP-one                                           | S9         |
| Fig. S13 Gas chromatography (GC) from the photocatalytic hydrogenolysis of PP-             | S10        |
| one                                                                                        |            |
| Fig. S14 Energy level diagram and cyclic voltammogram                                      | S10        |
| Fig. S15 Gas chromatography (GC) trace of hydrogen gas                                     | S11        |
| Table S1 Semiconductor photocatalysts for lignin conversion                                | S12        |
| Table S2 Screening of reaction conditions for photocatalytic hydrogenolysis of PP-         | S13        |
| one                                                                                        |            |
| Fig. S16 <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of compound 1a                 | S14        |
| Fig. S17 <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of compound 2a                 | S15        |
| Fig. S18 <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of compound <b>3a</b>          | S16        |
| Fig. S19 <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of compound 4a                 | S17        |
| Fig. S20 <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of compound 5a                 | S18        |
| Fig. S21 <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of compound 6a                 | S19        |
| Fig. S22 The structure and GC-MS spectra of compound 7a                                    | S20        |



**Fig. S1** TEM images (scale bars: (a) 20 nm and (b) 10 nm, respectively) of CdS-OA QDs, the average length was calculated to be 2.73 nm; (scale bars: (c) 20 nm and (d) 10 nm, respectively) of CdS-MPA QDs, the average length was calculated to be 2.66 nm. It was noticed that ligand exchange does almost not affect the size of CdS QDs



CdS-MPA QDs

CdS-OA QDs

**Fig. S2** Digital photos of the reaction solution using different capping agent QDs: (a) CdS-MPA QDs and (b) CdS-OA QDs



**Fig. S3** UV-vis spectra of CdS QDs with different capping agents. Note: the spectrum of OA-CdS was measured in hexane, while the spectra of MPA-CdS samples were measured in water



**Fig. S4** (a) The survey XPS spectra of CdS-MPA QDs, and corresponding high resolution XPS signals of (b) Cd 3d, (c) S 2p



Fig. S5 Polyhedral and ball-and-stick representations of two polyoxometalates: (a-b)  $Ni_4P_2$  and (c-d)  $Ni_9P_3$ 



Fig. S6 FT-IR spectra of (a)  $Ni_4P_2$ , (b)  $Ni_9P_3$ , ~ 2 wt % in KBr



Fig. S7 UV-vis spectra of Ni<sub>9</sub>P<sub>3</sub> and Ni<sub>4</sub>P<sub>2</sub> catalyst at the same concentration (0.0016 mM)



Fig. S8 Digital photos of the reaction solution before and after photocatalysis using (a) 0.1 mM of Ni<sub>9</sub>P<sub>3</sub> catalyst and (b) 0.9 mM of NiCl<sub>2</sub>. Reaction conditions: 10 mM of PP-one (1a), 1  $\mu$ M of CdS-MPA QDs, 10 mL of iso-propanol/H<sub>2</sub>O (3/2), blue LED (450 nm), 8h, Ar/CH<sub>4</sub> (4/1) atmosphere



Fig. S9 SEM and corresponding elemental mapping images of isolated CdS-MPA QDs from NiCl<sub>2</sub>-catalyzed post-reaction solution. Reaction conditions: 10 mM of PP-one (1a), 1  $\mu$ M of CdS-MPA QDs, 10 mL of iso-propanol/H<sub>2</sub>O (3/2), blue LED (450 nm), 8h, Ar/CH<sub>4</sub> (4/1) atmosphere



**Fig. S10** High resolution XPS spectra of (a) Full XPS spectrum, (b) Cd 3d, (c) S 2p, and (d) Ni 2p signals of isolated CdS-MPA QDs from NiCl<sub>2</sub>-catalyzed post-reaction solution after photocatalysis for 8 h



Fig. S11 UV-vis spectra of CdS-MPA QDs before and after photocatalysis



Fig. S12 Photocatalytic hydrogenolysis of PP-one. (a) the first run using fresh CdS-MPA QDs and Ni<sub>9</sub>P<sub>3</sub> catalyst, (b) the second run using isolated CdS-MPA QDs and no fresh Ni<sub>9</sub>P<sub>3</sub> catalyst was added in this cycle, (c) the third run using isolated CdS-MPA QDs and fresh Ni<sub>9</sub>P<sub>3</sub> catalyst. Standard reaction conditions: 10 mM of PP-one (1a), 1  $\mu$ M of CdS-MPA QDs, 0.1 mM of Ni<sub>9</sub>P<sub>3</sub> catalyst, 10mL of iso-propanol/H<sub>2</sub>O (3/2), blue LED (450 nm), 8h, Ar/CH<sub>4</sub> (4/1) atmosphere



Fig. S13 Gas chromatography (GC) from the photocatalytic hydrogenolysis of PP-one. Reaction conditions: 10 mM of PP-one (1a), 1  $\mu$ M of CdS-MPA QDs, 0.1 mM of Ni<sub>9</sub>P<sub>3</sub>, 10mL of iso-propanol/H<sub>2</sub>O (3/2), blue LED (450 nm), 8h, Ar/CH<sub>4</sub> (4/1) atmosphere



**Fig. S14** (a) Schematic energy level diagram for photocatalytic hydrogenolysis of PP-one; (b) Cyclic voltammogram of  $Ni_9P_3$  (0.1 mM) in 0.1 M TBAPF<sub>6</sub> and 0.01M AgNO<sub>3</sub> acetonitrile solution using glassy carbon working electrode, Ag/Ag<sup>+</sup> reference electrode, and Pt silk counter electrode; Scan rate: 100 mV/s. The measured potential was expressed by converting to normal hydrogen electrode (NHE)



Fig. S15 Gas chromatography (GC) trace of hydrogen gas produced from the photocatalytic hydrogenolysis of PP-one. Reaction conditions: 10 mM of PP-one (1a), 1  $\mu$ M of CdS-MPA QDs, 0.1 mM of Ni<sub>9</sub>P<sub>3</sub>, 10mL of iso-propanol/H<sub>2</sub>O (3/2), blue LED (450 nm), 8h, Ar/CH<sub>4</sub> (4/1) atmosphere

| Entry | Catalyst                                                                | Heterogeneous/Homogeneous | Substrate concentration | Reaction<br>time | Product           | Conv.<br>[%] | Yield<br>[%]            | Ref.         |
|-------|-------------------------------------------------------------------------|---------------------------|-------------------------|------------------|-------------------|--------------|-------------------------|--------------|
| 1     | CdS-MPA QDs (1<br>$\mu$ M) + Ni <sub>9</sub> P <sub>3</sub> (0.1<br>mM) | Homogeneous               | 10 mM                   | 8 h              |                   | 99           | A: 99<br>B: 99          | This<br>work |
| 2     | Znln <sub>2</sub> S <sub>4</sub> (5 mg)                                 | Heterogeneous             | 100 mM                  | 4 h              |                   | 99           | A: 83<br>B: 90<br>C: 6  | 4            |
| 3     | Ni/CdS<br>(20 mg)                                                       | Heterogeneous             | 5 mM                    | 8 h              |                   | 100          | A: 99<br>B: 99          | 9            |
| 4     | CdS (10mg)                                                              | Heterogeneous             | 20 mM                   | 3 h              |                   | 99           | A: 93<br>B: 91          | 37           |
| 5     | $\begin{array}{c} Pb/Znln_2S_4~(10~mg),\\ TiO_2~(5~mg) \end{array}$     | Heterogeneous             | 133 mM                  | 33 h             |                   | 94           | A: 94<br>B: 76          | 50           |
| 6     | $Zn_4In_2S_7~(10~mg)$                                                   | Heterogeneous             | 20 mM                   | 4 h              |                   | 99           | A: 82<br>B: 86<br>C: 10 | 51           |
| 7     | Mesoporous g-C <sub>3</sub> N <sub>4</sub><br>(10 mg)                   | Heterogeneous             | 50 mM                   | 10 h             |                   | 96           | A: 51<br>B: 30<br>C: 21 | 54           |
| 8     | ln <sub>2</sub> S <sub>3</sub> (20 mg)                                  | Heterogeneous             | 0.16 mM                 | 8.384 min        | HOLLO             | N.A.         | N.A.                    | 55           |
| 9     | Zn <sub>4</sub> In <sub>2</sub> S <sub>7</sub> (10mg)                   | Heterogeneous             | 20 mM                   | 2 h              |                   | 93           | A: 70<br>B: 51<br>C: 17 | 56           |
| 10    | $Cd_xZn_{1-x}S$ (10 mg)                                                 | Heterogeneous             | 20 mM                   | 2 h              |                   | 93           | A: 85<br>B: 36          | 57           |
| 11    | Ligand-controlled<br>CdS<br>QDs (15 mg)                                 | Heterogeneous             | Native lignin           | 8 h              | Aromatic monomers | 27           | N.A.                    | 58           |

#### Table S1 Semiconductor Photocatalysts for Lignin Conversion

| PP-one blue LED (450 nm) |           |                   |              | Phenol Acetophenone          |                 |  |
|--------------------------|-----------|-------------------|--------------|------------------------------|-----------------|--|
| Entry                    | Conv. (%) | Product Yield (%) |              | H (umal)                     | A cotono (umol) |  |
|                          |           | Phenol            | Acetophenone | <b>Π</b> <sub>2</sub> (μποι) | Acctone (µmor)  |  |
| 1                        | 99.3      | 99.3              | 98.8         | 142.3                        | 205.3           |  |
| 2 <sup>b</sup>           | 0         | 0                 | 0            | 0                            | 78.4            |  |
| 3°                       | 48.5      | 48.4              | 43.1         | 17.9                         | 76.7            |  |
| 4 <sup><i>d</i></sup>    | 43.5      | 42.8              | 21.8         | 405.2                        | 276.3           |  |

Table S2 Screening of Reaction Conditions for Photocatalytic Hydrogenolysis of PP-one<sup>a</sup>

 $\begin{array}{c} O \\ O \\ O \\ O \\ CdS QDs + Ni_9P_3 \end{array} \qquad HO \\ + \\ \end{array}$ 

<sup>*a*</sup> Reaction conditions: 10mM of 2-phenoxy-1-phenylethan-1-one, 1  $\mu$ M of CdS-MPA QDs, 0.1 mM of Ni<sub>9</sub>P<sub>3</sub>, 10 mL of isopropanol/H<sub>2</sub>O (3/2), blue LED (450 nm), Ar/CH<sub>4</sub> (4/1) atmosphere, 8 h. <sup>*b*</sup> with 10mM K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>. <sup>*c*</sup> with 10mM Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub>. <sup>*d*</sup> with 2 wt % Pt



**Fig. S16** (a) <sup>1</sup>H NMR spectra and (b) <sup>13</sup>C NMR spectra of compound 2-phenoxy-1-phenylethan-1-one (**1a**)



**Fig. S17** (a) <sup>1</sup>H NMR spectra and (b) <sup>13</sup>C NMR spectra of compound 2-(2-methoxyphenoxy)-1-phenylethan-1-on (**2a**)



**Fig. S18** (a) <sup>1</sup>H NMR spectra and (b) <sup>13</sup>C NMR spectra of compound 1-(4-methoxyphenyl)-2-phenoxyethan-1-one (**3a**)



**Fig. S19** (a) <sup>1</sup>H NMR spectra and (b) <sup>13</sup>C NMR spectra of compound 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethan-1-one (**4a**)



**Fig. S20** (a) <sup>1</sup>H NMR spectra and (b) <sup>13</sup>C NMR spectra of compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethan-1-one (**5a**)



**Fig. S21** (a) <sup>1</sup>H NMR spectra and (b) <sup>13</sup>C NMR spectra of compound 3-hydroxy-2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)propan-1-one (**6a**)



Fig. S22 The structure and GC-MS spectra of compound ((1-phenylethane-1,2-diyl)bis(oxy))dibenzene (7a)