Supporting Information

- 1. Assessment on Parent amines and Related Structures
- 2. Brief Introduction on the Web Application
- 3. Data Preparation and Visualization
- 4. Unrecognized structures in the dataset

1. Assessment on Parent amines and Related Structures.

To do a quick analysis when developing a chemical route for API production, we think about implementing CPCA approach earlier in stage. Except for detecting *N*-nitrosamine. two other structures as given in Figure S1 could also be considered in our algorithm. Hypothetically, structure in Figure S1 a) can be transformed to *N*-nitrosamine shown Figure S1 c) and Figure S1 b) structure could be transformed to *N*-nitrosamine given in Figure S1 d). The carcinogenic potency categorization approach will be applied to calculate the potency category from which we could have a general understanding of the risk of chemical intermediate by taking their potential *N*-nitrosamine into account.

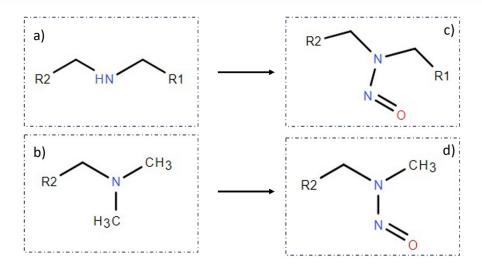
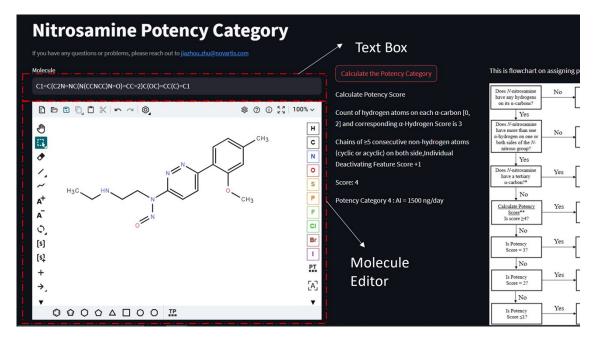
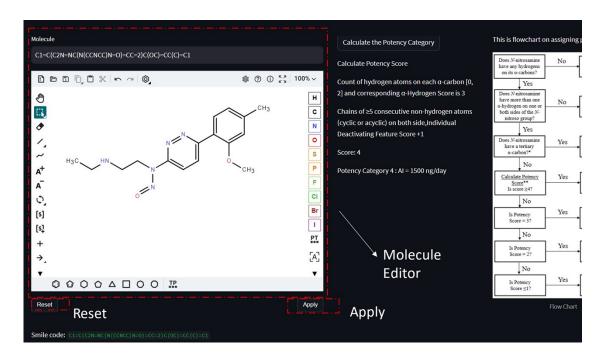


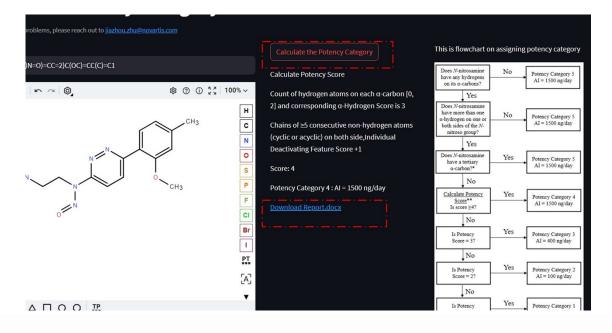
Figure S1. Transformation to N-nitrosamine


2. Brief Introduction on the Web Application

1. Once the web application is set up and ready, here gives the how in the interface


Nitrosamine Potency Category								
If you have any questions or problems, please reach out to jiazhou.zhu@novartis.co								
Molecule	Calculate the Potency Category This is flowchart on assigni	ing p						
C1=C(C2N=NC(N(CCNCC)N=0)=CC=2)C(OC)=CC(C)=C1	Calculate Potency Score	-[
	 ⁽¹⁾ 0 ⁽¹⁾ ⁽¹⁾ 100% ✓ ⁽²⁾ 2 and corresponding α-Hydrogen Score is 3 ⁽²⁾ 2 α α α α α α α α α 	- -{ -{ -{ -{						
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \land \land \land \Box \bigcirc \bigcirc \square$	Is Potency Yes Score ≤1?	-						

looks like

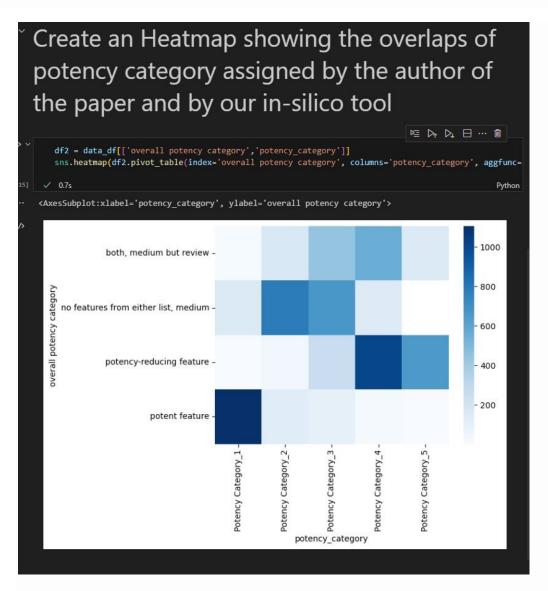

2. Smile string can be enter to either text box or the Molecule Editor

3. Once you have entered the molecule and you made further changes to the molecule, click apply button before you move on

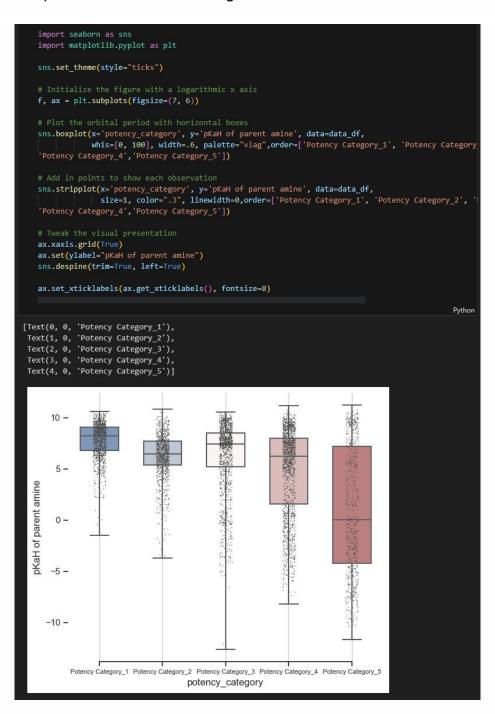
4. Once everything is ready, click on the 'calculate the potency category' button. The results will be given, and you can also download the report file. If you are not good with the template, you can edit the code to make your own template.

3. Data Preparation and Visualization

Raw code could be found through github link.

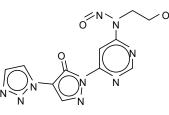

 The smiles strings in red box will iteratively be calculated with our code, which is CPCA.py in GitHub link, calculated scores will be generated for each row and append to this excel sheet as given in the red box. A new csv file will be prepared used for further data analysis.

RowID	Structure	pKaH of parer coverall potency category	Average M CAS (Unic	CAS (Coun	calculate_sco
Row0	[H][C@@]13N(C[C@@]3([H])CN(C1)c2cnc(Cl)c(Cl)c2)N=O	6.653855397.1 potency-reducing feature	273.1189	d	3
Row1	[H][C@]1(CN[C@]1([H])C=O)CN(N=O)c2cnc(Cl)c(Cl)c2	-0.81360723 1 potency-reducing feature	289.1183	Q	4
Row2	[H][C@@]1(NC[C@@]1([H])C=O)CN(N=O)c2cnc(Cl)c(Cl)c2	1.44846647 1 potency-reducing feature	289.1183	d	4
Row3	FC(F)(F)CSCC1NS(=0)(=0)c2cc(S(N)(=0)=0)c(Cl)cc2N1N=0	5.06490545 1 potency-reducing feature	454.8531 96782-87-	1	
Row4	N(CC#C)(Cc1ccccc1)N=O	§.511025395 10 potent feature	174.1996 555-57-7	- 1	1
Row5	[H][C@]2(OC(=0)C=1SC=CC=1)CN([C@]([H])(C2)C(0)=0)N=0	434326895 11 both, medium but review	270.262	Q	6
Row6	[0-][N+](=0)C1=CC(CN(CP(0)(0)=0)N=0)=C2NC(=0)C(0)=NC2=C1	2.313356046 10 potent feature	359.1893	d	0
Row7	CIC=2C=CC(CI)=C(N1CCN(CC1)N=0)C=2	1.328533637 0 no features from either list, medium	260.1201	d	3
Row8	CIC2=CC=CC(N1CCN(CC1)N=0)=C2CI	7.328533637 0 no features from either list, medium	260.1201 2036070-4	1	3
Row9	Clc2cc(Cl)cc(N1CCN(CC1)N=O)c2	1.449841192:0 no features from either list, medium	260.1201	d	3
Row10	CIC=1C=CC=2SCCCCN(N=0)C=2C=1	2.174618665 1 potency-reducing feature	242.7252	Q	4
Row11	CIC1=CC=2N(C(NC(=0)C=2C=C1S(N)(=0)=0)CC)N=0	0.30668435 1 potency-reducing feature	318.7369	d	
low12	CIC1=CC=2N(C(N(C)S(=0)(=0)C=2C=C1S(N)(=0)=0)C(0C)=0)N=0	4.70387596 1 potency-reducing feature	398.7999	0	
Row13	Fc2ccc(N1CCN(CC1)N=O)c(F)c2	7.6454682:0 no features from either list, medium	227.211	d	3
Row14	Fc2cc(F)cc(N(C1CN(C1)N=O)S(C)(=O)=O)c2	4.96045428:0 no features from either list, medium	291.2746	0	1
Row15	N1(CCC(=CC1)c2ncccc2)N=O	§ 527904377 10 potent feature	189.2142	d	3
low16	S2CN(CN(Cc1ccccc1)C2=S)N=O	4.318314764 0 no features from either list, medium	253.3438	d	6
Row17	OC(=N)N=NC=1C=C(C(0)C=0)C(N(C)N=0)=CC=10	0.0209920611 both, medium but review	281.2252	0	2
Row18	OC(=N)N=NC=1C=C(CC(=0)S(0)(=0)=0)C(N(C)N=0)=CC=10	.77599712211 both, medium but review	345.2888	d	2
low19	Clc1ccc(OCCCN(C)N=O)c(Cl)c1	9.153579318 10 potent feature	263.1207	Q	1
Row20	Clc2cccc(N1CCN(CC1)N=O)c2	1.757753564:0 no features from either list, medium	225.6751 19794-93-	4	3
Row21	Clc2ccccc2N1CCN(CC1)N=0	1.636446009 0 no features from either list, medium	225.6751	0	3
Row22	CIC=1C=CC=CC=1NC(CN(CC)N=O)=O	§.935738438 10 potent feature	241.6745	d	2
Row23	Clc1ccc(C(OCCN(C)N=O)=O)cc1N	572145266 10 potent feature	257.6739	d	1
Row24	Clc2nc(SC1CCN(CC1)N=O)ccc2	8.978613036:0 no features from either list, medium	257.7399	d	3
Row25	FC=2C=CC(N1CCN(CC1)N=0)=CC=2	1.920575558:0 no features from either list, medium	209.2206 103377-41	1	3
low26	FC=2C=CC=CC=2N1CCN(CC1)N=O	7.790558579:0 no features from either list, medium	209.2206	Q	3
low27	N(C)(CC=Cc1ccccc1)N=O	1.566886412 10 potent feature	176.2155	d	2
Row28	[H]/C(CN(C)N=O)=C(/[H])c1ccccc1	566886412 10 potent feature	176.2155 65472-88-	1	2


2. The calculated scores will be assigned with potency categories based on the CPCA rules.

3. Once the categories are assigned to each molecule, an heat map will be created based on the two columns which are 'overall potency category' and 'potency_category'. The previous one is the raw category assigned by Schlingemann, Joerg, et al. The latter one is based on the CPCA rules.

4. A boxplot along with the striplot are also provided using seaborn package in python to visualize the distribution of the pka values of their parent amines under different potency categories. 75%, 50% and 25% percentile of the pka values are given in plot. The detailed code is given as below.

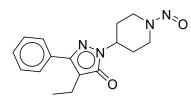

4. Unrecognized structures in the dataset

16 unrecognized structures are given as below, invalid pattern can be found in all of given structures (where the structures are generated in ChemDraw Software based on the SMILES string)

Row479

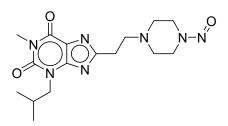
O(CCN(N=O)c1ncnc(c1)-n3ncc(-n2nncc2)c3=O)CC=O

 δ

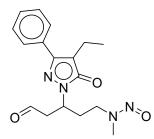


Row813

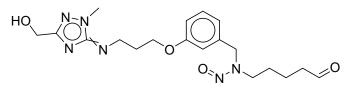
N(CCCC)(CCN=c1nc(no1)-c2cccc2)N=O


Row1354

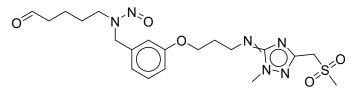
N1(CCC(CC1)n2nc(c(CC)c2=O)-c3ccccc3)N=O


Row1489

N1(CCN(CC1)N=O)CCc2nc3n(CC(C)C)c(=O)n(C)c(=O)c3n2


Row1759

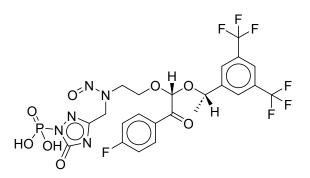
N(C)(CCC(CC=O)n1nc(c(CC)c1=O)-c2cccc2)N=O


Row2721

OCc2nn(C)c(=NCCCOc1cccc(CN(CCCCC=O)N=O)c1)n2

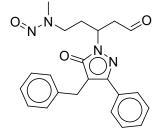
Row3161

O(CCCN=c1nc(CS(C)(=O)=O)nn1C)c2cccc(CN(CCCCC=O)N=O)c2

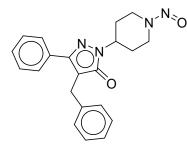


Row3299

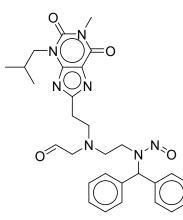
N1(CCC(CC1)n4nc(-c2cccc2)c(Cc3ccccc3)c4=O)N=O


[H][C@@](OCC=O)(O[C@@]([H])(C)c1cc(C(F)(F)F)cc(C(F)(F)F)c1)[C@@]([H])(N(Cc2 nn(P(O)(O)=O)c(=O)n2)N=O)c3ccc(F)cc3

Row3997

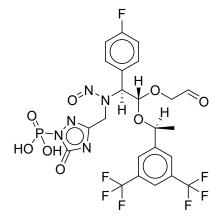

$$\label{eq:eq:cond} \begin{split} & [H][C@@](OCCN(Cc1nn(P(O)(O)=O)c(=O)n1)N=O)(O[C@@]([H])(C)c2cc(C(F)(F)F)cc(C(F)(F)F)c2)C(=O)c3ccc(F)cc3) \end{split}$$

Row3996

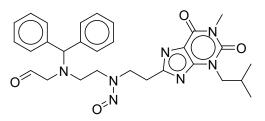


N(C)(CCC(CC=O)n2nc(c(Cc1ccccc1)c2=O)-c3ccccc3)N=O

Row3736

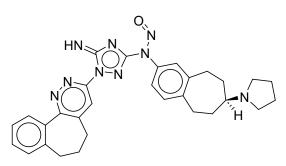


Row5286

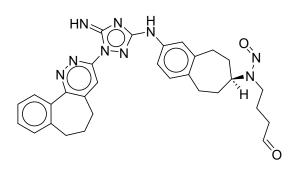


N(CCN(C(c1ccccc1)c2ccccc2)N=O)(CCc3nc4n(CC(C)C)c(=O)n(C)c(=O)c4n3)CC=O)n(C)c(=O)c4n3)CC=On(C)c4n3)CC=On(C)c4n3)C(C)C(C)C)C(C)CC=On(C)C)C(C)C(C)CCCOCA)C(C)C)C(C)C(C)C(C)C(C)C(C)C)C

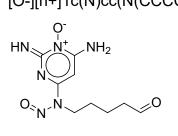
Row5285



N(CCN(CCc1nc2n(CC(C)C)c(=O)n(C)c(=O)c2n1)N=O)(CC=O)C(c3ccccc3)c4ccccc4


Row5381

[H][C@]6(N1CCCC1)CCc7ccc(N(N=O)c5nn(c4nnc3c(CCCc2cccc23)c4)c(=N)n5)cc7C C6


Row5382

[H][C@]5(N(CCCC=O)N=O)CCc6ccc(Nc4nn(c3nnc2c(CCCc1ccccc12)c3)c(=N)n4)cc6C C5

Row6365

[O-][n+]1c(N)cc(N(CCCCC=O)N=O)nc1=N

