Supporting information (SI) for

SnO₂/CoS_{1.097} heterojunction as a green electrocatalyst for

hydrogen evolution linking to assistant glycerol oxidation

Xinjie Xie^a, Chunyong Zhang^a, Meng Xiang^a, Chengbin Yu^b, Wangxi Fan^{a,*}, Shuang Dong^{c,*}, and Zhou Yang^{a,*}

^{a.} Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China.

^{b.} Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.

^{c.} School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China.

*Correspondences: Wangxi Fan, fwx@jsut.edu.cn; Shuang Dong, dongs@czu.cn; Zhou Yang, zhouyang@jsut.edu.cn.

Characterizations

The microstructure was observed by a Field-emission scanning electron microscope (FE-SEM, Sigma 500) with an energy dispersive spectrometer (EDS) and Transmission electron microscopy (TEM, JEM-2100) with selected area electron diffraction (SAED). The chemical properties were scanned by X-Ray Diffraction (XRD, X'PERT POWDER, scanning rate is 10° min⁻¹) and X-ray photoelectron spectroscopy (XPS, ThermoFisher Scientific ESCALAB 250, Al target). The H₂ reduction curve was tested by H₂-TPR (Xianquan TP-5080, heating rate and cooling rate are both 10° C min⁻¹). The contents of Co and S were measured by Inductive Coupled Plasma Emission Spectrometer Optical Emission Spectrometry (ICP-OES, Plasma 2000). The GOR product is characterized by ¹H NMR (Bruker Avance III HD, 400 MHz, solution is D₂O) and LC-MS (ThermoFisher U3000 liquid phase-QE mass spectrometry, flowing phase is water: methanol = 95:5).

The electrochemical measurements were performed by an electrochemical workstation (Chenhua, CHI 760E), tested programs include cyclic voltammetry (CV), linear sweep voltammetry (LSV), Chronopotentiometry (CP), electrochemical impedance spectroscopy (EIS), impedance–potential, and i-t curve.

For the three-electrode system, 2 mg of powder sample was dispersed in 200 μ L of mixed solution (deionized water: ethanol: Nafion = 2:7:1) to form ink, and then 10 μ L of this ink was dripped on a glass carbon electrode (GCE) and dried at room temperature, which was used as the working electrode, and Hg/HgO and graphite electrodes were used as the reference and counter electrodes, respectively. For the two-electrode system, the sample was mixed with acetylene black and polyvinylidene fluoride (PVDF) with a weight ratio of 8:1:1, and dispersed in N-methylpyrrolidone (NMP) to form slurry. The above slurry was coated on the nickel foam (1×1 cm) and dried. The electrolyte is 1 M KOH or 1 M KOH with organics.

The electrochemically active surface (ECSA) was calculated on the basis of the double-layer capacitance (C_{dl}) theory,^{S1}

$$ECSA = C_{dl} / C_s$$

Where the slope in the plot of current densities to scan rates stands for 2C_{dl}, and C_s

is 0.04 mF cm⁻².

The Mott-Schottky (M-S) plot was performed according to the equation: $\frac{1}{C^2} = \frac{2}{N_d e \varepsilon \varepsilon_0} (V - V_{FB} - \frac{KT}{e})$

where C is the capacitance at the interface between semiconductor and electrolyte (F cm⁻²); e is the elementary charge (1.6×10^{-19} C); ε is the relative dielectric constant (F m⁻¹); ε_0 is the permittivity of the vacuum; N_d is the carrier density (cm⁻³); V is the applied potential (V); V_{FB} is flat band potential; K is Boltzmann's constant (1.38×10^{-23} F m⁻¹); T is the absolute temperature (K).^{S2}

In the above equation, the line plot of $1/C^2$ to V is named M-S plot. The flat band potential ($E_{\rm fb}$) is the intercept by extrapolating the linear part of M-S plot to $1/C^2 = 0$.

Faradaic efficiency (FE) of GOR

The half-reaction formula for each product from GOR is listed as follows:

Product	Anode reaction formula	e ⁻ (mol)	
Glycerol acid	$\mathrm{CH_2OH}\text{-}\mathrm{CHOH}\text{-}\mathrm{CH_2OH}\text{+} 5\mathrm{OH}^- \to \mathrm{CH_2OH}\text{-}$	4	
	$CHOH-COO^- + 4H_2O + 4e^-$		
Glyceraldehyde	$\mathrm{CH_2OH}\text{-}\mathrm{CHOH}\text{-}\mathrm{CH_2OH}\text{-} \rightarrow \mathrm{CH_2OH}\text{-}$	2	
	$CHOH-CHO + 2H_2O + 2e^-$		
Formic acid	$CH_2OH-CHOH-CH_2OH + 11OH^- \rightarrow 3CHOO^- +$		
	$8H_{2}O + 8e^{-}$	8/3	

FE of GOR is calculated based on the following equation:

$$FE (\%) = \frac{4 \times Cglya + 2 \times Cglycd + \frac{8}{3} \times Cformic}{Q} \times V \times F \times 100\%$$

Where, C_{glya} , C_{glycd} , and C_{formic} are the concentration (mol L⁻¹) of glycerol acid, glyceraldhyde, and formic acid; V is the volume of tested electrolyte (10 × 10⁻³ L); F is the Faradaic constant (96485 C mol⁻¹); Q is the total charge (C) passed during electrochemical reaction.^{S3}

DFT calculations

All the spin-polarized DFT calculations are performed by the Vienna Ab initio Simulation Package (VASP)^{S4} with the projector augmented wave (PAW) method.^{S5}

The exchange-function is treated using the generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE)^{S6} function. The energy cutoff for the plane wave basis expansion was set to 500 eV. Partial occupancies of the Kohn–Sham orbitals were allowed using the Gaussian smearing method and a width of 0.05 eV and the spin polarization was considered. For k-space sampling, k1 × k2 × k3 Γ -centered Monkhorst-Pack meshes were used, where kn (n = 1,2,3) was prepared as the mesh spacing near ($2\pi \times 0.04 \text{ Å}^{-1}$) to each direction. The self-consistent calculations apply a convergence energy threshold of 10⁻⁴ eV, and the force convergency was set to 0.05 eV/Å.

Element	Co	S
Content (mg L ⁻¹)	7.14	4.26

Table S1. The contents of Co and S tested by ICP-OES

 Table S2. The contents of component

Component	$C_3H_6O_3$	$C_3H_6O_4$	НСООН
Content (mol L ⁻¹)	0.037	0.027	0.029

Table S3. Comparison with other electrocatalysts in electrolyte with organic additions

 by two-electrode method.

Electrocatalyst	Electrolyte	Cell voltage (V) at 10
		mA cm ⁻²
Mn-CoSe ₂ /CFC) ^{S7}	1 M KOH + 0.1 M glycerol	1.45
Ni ₃ N-Ni _{0.2} Mo _{0.8} N ^{S8}	1 M KOH + 0.1 M glycerol	1.40
PtSA-NiCo LDHs/	1 M KOH + 0.1 M glycerol	1.21
NF ^{S9}		
CNs@CoPt ^{S10}	1 M KOH + 10 mM glycerol	1.50
W-NiS ₂ /MoO ₂ @CC ^{S11}	1 M KOH + 0.33 M urea	1.372
Core-corona Co/CoP S12	1 M KOH + 0.5 M glucose	1.42
Ni-MoS ₂ ^{S13}	1 M KOH + 0.3 M glucose	1.67
$0.5 \text{ SnO}_2/0.5 \text{ CoS}_{1.097}$ (This	1 M KOH + 0.1 M glycerol	1.18
work)		

Figure S1 The elemental mapping of 0.7 $SnO_2/0.3 CoS_{1.097}$.

Figure S2 The elemental mapping of 0.3 $SnO_2/0.7 CoS_{1.097}$.

Figure S3 The EIS plots of SnO_2 , $CoS_{1.097}$, 0.7 $SnO_2/0.3$ $CoS_{1.097}$, 0.5 $SnO_2/0.5$ $CoS_{1.097}$, 0.3 $SnO_2/0.7$ $CoS_{1.097}$, and RuO_2 in 1 M KOH (a) and 1 M KOH + 0.1 M glycerol (b). (All the EIS test at Amplitude = 0.005 V from 1 HZ to 10^5 HZ.)

Figure S4 The OER LSV curves (a) and EIS plots (b) of $0.5 \text{ SnO}_2/0.5 \text{ CoS}_{1.097}$ in the different electrolytes.

Figure S5 The M-S plots of SnO_2 , $CoS_{1.097}$, 0.7 $SnO_2/0.3$ $CoS_{1.097}$, 0.5 $SnO_2/0.5$ $CoS_{1.097}$, 0.3 $SnO_2/0.7$ $CoS_{1.097}$ in 1 M KOH.

Figure S6 The ¹H NMR of electrolyte of 0.5 $SnO_2/0.5 CoS_{1.097}$ before and after GOR.

Figure S7 (a, b) LS-MS of product after GOR of 0.5 $SnO_2/0.5 CoS_{1.097}$. (c) GOR formula of 0.5 $SnO_2/0.5 CoS_{1.097}$.

Figure S8 (a) Chronopotentiometry curve of the $0.5 \text{ SnO}_2/0.5 \text{ CoS}_{1.097}$ at a constant current of 100 mA. (b) The plot of corresponding charge to time.

Figure S9 I-t plot of 0.5 $SnO_2/0.5 CoS_{1.097}$ in 1 M KOH + 0.1 M glycerol.

Figure S10 The CV curves at different scan rates of (a) $0.7 \text{ SnO}_2/0.3 \text{ CoS}_{1.097}$, (b) $0.5 \text{ SnO}_2/0.5 \text{ CoS}_{1.097}$, and (c) $0.3 \text{ SnO}_2/0.7 \text{ CoS}_{1.097}$. (d) The plots of current density to scan rates.

Figure S11 The ECSA of 0.7 $SnO_2/0.3 CoS_{1.097}$, 0.5 $SnO_2/0.5 CoS_{1.097}$, and 0.3 $SnO_2/0.7 CoS_{1.097}$.

Figure S12 The photos of overall water splitting of $0.5 \text{ SnO}_2/0.5 \text{ CoS}_{1.097}$ in (a) 1 M KOH, (b) 1 M KOH + 0.1 M gly, (c) 1 M KOH + 0.33 M urea, and (d) 1 M KOH + 0.1 M glu.

References

- Z. Yang, X. Xie, Z. Zhang, J. Yang, C. Yu, S. Dong, M. Xiang and H. Qin, Int. J. Hydrogen Energy, 2022, 47, 27338-27346.
- Z. Yang, X. Xie, J. Wei, Z. Zhang, C. Yu, S. Dong, B. Chen, Y. Wang, M. Xiang and H. Qin, J. Colloid. Interface Sci., 2023, 642, 439-446.
- X. Yu, R. B. Araujo, Z. Qiu, E. Campos dos Santos, A. Anil, A. Cornell, L. G. M. Pettersson and M. Johnsson, Adv. Energy Mater., 2022, 12, 2103750.
- 4. G. Kresse and J. Furthmuller, Comput. Mater. Sci., 1996, 6, 15-50.
- 5. P. E. Blöchl, Phys. Rev. B 1994, 50, 17953-17979.
- J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B 1992, 46, 6671-6687.
- L. Fan, Y. Ji, G. Wang, Z. Zhang, L. Yi, K. Chen, X. Liu and Z. Wen, J. Energy Chem., 2022, 72, 424-431.
- X. Liu, Z. Fang, X. Teng, Y. Niu, S. Gong, W. Chen, T. J. Meyer and Z. Chen, J. Energy Chem., 2022, 72, 432-441.
- H. Yu, W. Wang, Q. Mao, K. Deng, Z. Wang, Y. Xu, X. Li, H. Wang and L. Wang, Appl. Catal., B, 2023, 330, 122617.
- S. Li, W. Xie, Y. Song, Y. Li, Y. Song, J. Li and M. Shao, Chem. Eng. J., 2022, 437, 135473.
- 11. S. Ligani Fereja, P. Li, Z. Zhang, J. Guo, Z. Fang, Z. Li, S. He and W. Chen, Chem. Eng. J., 2022, 432, 134274.
- Y. Zhang, Y. Qiu, Z. Ma, Y. Wang, Y. Zhang, Y. Ying, Y. Jiang, Y. Zhu and S. Liu, J. Mater. Chem. A, 2021, 9, 10893–10908.
- X. Liu, P. Cai, G. Wang and Z. Wen, Int. J. Hydrogen Energy, 2020, 45, 32940-32948.