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Characterizations

The microstructure was observed by a Field-emission scanning electron 

microscope (FE-SEM, Sigma 500) with an energy dispersive spectrometer (EDS) and 

Transmission electron microscopy (TEM, JEM-2100) with selected area electron 

diffraction (SAED). The chemical properties were scanned by X-Ray Diffraction 

(XRD, X'PERT POWDER, scanning rate is 10° min-1) and X-ray photoelectron 

spectroscopy (XPS, ThermoFisher Scientific ESCALAB 250, Al target). The H2 

reduction curve was tested by H2-TPR (Xianquan TP-5080, heating rate and cooling 

rate are both 10°C min-1). The contents of Co and S were measured by Inductive 

Coupled Plasma Emission Spectrometer Optical Emission Spectrometry (ICP-OES, 

Plasma 2000). The GOR product is characterized by 1H NMR (Bruker Avance III HD, 

400 MHz, solution is D2O) and LC-MS (ThermoFisher U3000 liquid phase-QE mass 

spectrometry, flowing phase is water: methanol = 95:5). 

The electrochemical measurements were performed by an electrochemical 

workstation (Chenhua, CHI 760E), tested programs include cyclic voltammetry (CV), 

linear sweep voltammetry (LSV), Chronopotentiometry (CP), electrochemical 

impedance spectroscopy (EIS), impedance–potential, and i-t curve. 

For the three-electrode system, 2 mg of powder sample was dispersed in 200 μL of 

mixed solution (deionized water: ethanol: Nafion = 2:7:1) to form ink, and then 10 μL 

of this ink was dripped on a glass carbon electrode (GCE) and dried at room 

temperature, which was used as the working electrode, and Hg/HgO and graphite 

electrodes were used as the reference and counter electrodes, respectively. For the two-

electrode system, the sample was mixed with acetylene black and polyvinylidene 

fluoride (PVDF) with a weight ratio of 8:1:1, and dispersed in N-methylpyrrolidone 

(NMP) to form slurry. The above slurry was coated on the nickel foam (1×1 cm) and 

dried. The electrolyte is 1 M KOH or 1 M KOH with organics.

The electrochemically active surface (ECSA) was calculated on the basis of the 

double-layer capacitance (Cdl) theory,S1

ECSA = Cdl /Cs

Where the slope in the plot of current densities to scan rates stands for 2Cdl, and Cs 
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is 0.04 mF cm-2. 

The Mott-Schottky (M-S) plot was performed according to the equation: =
1

𝐶2

2
𝑁𝑑𝑒𝜀𝜀0

(𝑉 ‒ 𝑉𝐹𝐵 ‒
𝐾𝑇
𝑒

)

where C is the capacitance at the interface between semiconductor and electrolyte 

(F cm-2); e is the elementary charge (1.6×10-19 C); ε is the relative dielectric constant 

(F m-1); ε0 is the permittivity of the vacuum; Nd is the carrier density (cm-3); V is the 

applied potential (V); VFB is flat band potential; K is Boltzmann's constant (1.38× 10-

23 F m-1); T is the absolute temperature (K).S2 

In the above equation, the line plot of 1/C2 to V is named M-S plot. The flat band 

potential (Efb) is the intercept by extrapolating the linear part of M-S plot to 1/C2 = 0.

Faradaic efficiency (FE) of GOR
The half-reaction formula for each product from GOR is listed as follows:

Product Anode reaction formula e– (mol)

Glycerol acid
CH2OH-CHOH-CH2OH + 5OH– → CH2OH-

CHOH-COO– + 4H2O + 4e–
4

Glyceraldehyde
CH2OH-CHOH-CH2OH + 2OH– → CH2OH-

CHOH-CHO + 2H2O + 2e–
2

Formic acid
CH2OH-CHOH-CH2OH + 11OH– → 3CHOO– + 

8H2O + 8e–
8/3

FE of GOR is calculated based on the following equation:

FE (%) =  × V × F × 100%

4 × 𝐶𝑔𝑙𝑦𝑎 + 2 × 𝐶𝑔𝑙𝑦𝑐𝑑 +
8
3

× 𝐶𝑓𝑜𝑟𝑚𝑖𝑐 

𝑄

Where, Cglya, Cglycd, and Cformic are the concentration (mol L–1) of glycerol acid, 

glyceraldhyde, and formic acid; V is the volume of tested electrolyte (10 × 10-3 L); F is 

the Faradaic constant (96485 C mol–1); Q is the total charge (C) passed during 

electrochemical reaction.S3

DFT calculations

All the spin-polarized DFT calculations are performed by the Vienna Ab initio 

Simulation Package (VASP)S4 with the projector augmented wave (PAW) method.S5 
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The exchange-function is treated using the generalized gradient approximation (GGA) 

with Perdew-Burke-Ernzerhof (PBE)S6 function. The energy cutoff for the plane wave 

basis expansion was set to 500 eV. Partial occupancies of the Kohn−Sham orbitals were 

allowed using the Gaussian smearing method and a width of 0.05 eV and the spin 

polarization was considered. For k-space sampling, k1 × k2 × k3 Γ-centered 

Monkhorst-Pack meshes were used, where kn (n = 1,2,3) was prepared as the mesh 

spacing near (2π × 0.04 Å−1) to each direction. The self-consistent calculations apply a 

convergence energy threshold of 10-4 eV, and the force convergency was set to 0.05 

eV/Å.
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Table S1. The contents of Co and S tested by ICP-OES

Element Co S

Content (mg L-1) 7.14 4.26

Table S2. The contents of component

Component C3H6O3 C3H6O4 HCOOH

Content (mol L-1) 0.037 0.027 0.029

Table S3. Comparison with other electrocatalysts in electrolyte with organic additions 

by two-electrode method.

Electrocatalyst Electrolyte Cell voltage (V) at 10 

mA cm-2

Mn-CoSe2/CFC) S7 1 M KOH + 0.1 M glycerol 1.45

Ni3N-Ni0.2Mo0.8N S8 1 M KOH + 0.1 M glycerol 1.40

PtSA-NiCo LDHs/

NF S9

1 M KOH + 0.1 M glycerol 1.21

CNs@CoPt S10 1 M KOH + 10 mM glycerol 1.50

W-NiS2/MoO2@CC S11 1 M KOH + 0.33 M urea 1.372

Core-corona Co/CoP S12 1 M KOH + 0.5 M glucose 1.42

Ni-MoS2 S13 1 M KOH + 0.3 M glucose 1.67

0.5 SnO2/0.5 CoS1.097 (This 

work)

1 M KOH + 0.1 M glycerol 1.18
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Figure S1 The elemental mapping of 0.7 SnO2/0.3 CoS1.097.
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Figure S2 The elemental mapping of 0.3 SnO2/0.7 CoS1.097.
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Figure S3 The EIS plots of SnO2, CoS1.097, 0.7 SnO2/0.3 CoS1.097, 0.5 SnO2/0.5 

CoS1.097, 0.3 SnO2/0.7 CoS1.097, and RuO2 in 1 M KOH (a) and 1 M KOH + 0.1 M 

glycerol (b). (All the EIS test at Amplitude = 0.005 V from 1 HZ to 105 HZ.)
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Figure S4 The OER LSV curves (a) and EIS plots (b) of 0.5 SnO2/0.5 CoS1.097 in the 

different electrolytes.
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Figure S5 The M-S plots of SnO2, CoS1.097, 0.7 SnO2/0.3 CoS1.097, 0.5 SnO2/0.5 

CoS1.097, 0.3 SnO2/0.7 CoS1.097 in 1 M KOH. 
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Figure S6 The 1H NMR of electrolyte of 0.5 SnO2/0.5 CoS1.097 before and after GOR.
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Figure S7 (a, b) LS-MS of product after GOR of 0.5 SnO2/0.5 CoS1.097. (c) GOR 

formula of 0.5 SnO2/0.5 CoS1.097.
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Figure S8 (a) Chronopotentiometry curve of the 0.5 SnO2/0.5 CoS1.097 at a constant 

current of 100 mA. (b) The plot of corresponding charge to time.
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Figure S9 I-t plot of 0.5 SnO2/0.5 CoS1.097 in 1 M KOH + 0.1 M glycerol.
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Figure S10 The CV curves at different scan rates of (a) 0.7 SnO2/0.3 CoS1.097, (b) 0.5 

SnO2/0.5 CoS1.097, and (c) 0.3 SnO2/0.7 CoS1.097. (d) The plots of current density to scan 

rates.
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Figure S11 The ECSA of 0.7 SnO2/0.3 CoS1.097, 0.5 SnO2/0.5 CoS1.097, and 0.3 

SnO2/0.7 CoS1.097. 
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Figure S12 The photos of overall water splitting of 0.5 SnO2/0.5 CoS1.097 in (a) 1 M 

KOH, (b) 1 M KOH + 0.1 M gly, (c) 1 M KOH + 0.33 M urea, and (d) 1 M KOH + 0.1 

M glu.
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