# Electronic Supplementary Information 

for

Three-component coupling reaction of white phosphorus, alcohols and diaryl disulfides: A chlorine-free avenue for accessing phosphorothioates<br>Yinwei Cao, Mengpei Bai, Junwei Huang, Fushan Chen,* Yan Liu, Guo Tang,* and Yufen Zhao Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China. E-mail: 17706925334@163.com; t12g21@xmu.edu.cn

## Table of Contents

1 General information ..... S1
2 Tables for optimization of the reaction conditions ..... S3
3 General experimental procedures ..... S8
4 Control experiments and proposed reaction mechanism for the synthesis of ..... S8 phosphorothioates
5 Control experiments and proposed reaction mechanism for the synthesis of ..... S14 mixed phosphonates
6 Characterization for products ..... S17
7 Supplementary reference ..... S30
8 NMR spectrum of isolated products ..... S31

## 1. General information.

All reactions were carried out under dry air (unless otherwise noted). All glassware was ovendried prior to use. The commercially available reagents were purchased from TCI, Energy Chemical and Bide Pharmatech Ltd and used without further purification. Some disulfides were prepared according to literature references. ${ }^{1,2}$ Toluene, $N, N$-dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, acetonitrile and dichloroethane were purchased from Sinopharm Chemical Reagent Co., Ltd and used as the solvent. petroleum ether and ethyl acetate are all AR grade were obtained commercially and used as eluent without further purification. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P},{ }^{19} \mathrm{~F}$ and spectra were measured on Bruker AV $600 \mathrm{M}, 500 \mathrm{M}$ or 400 M spectrometers with $\mathrm{CDCl}_{3}$ as solvent. Data were reported relative to solvent peaks $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR and $\mathrm{CDCl}_{3}(77.26 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR. $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard for ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts were uncalibrated. Data are represented as follows: chemical shift, multiplicity ( $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{br}=$ broad), coupling constants in Hertz $(\mathrm{Hz})$. The products were purified by column chromatography on silica gel 300-400 mesh. The CAS number of the known compound was listed. All products were further characterized by HRMS (FT-ICR-MS) and an electrospray ionization source in positive-ion mode.

Preparation of $\mathbf{P}_{4}$-toluene solution A piece of white phosphorus was taken out of water and then put in acetone under argon. One minute later, white phosphorus was taken out and the surface acetone was blowed dry with argon. Then, the dry white phosphorus was put in a conical flask containing toluene. The mixture was stirred intensely with a magnetic stirrer for overnight. White phosphorus-toluene solution prepared with $0.125 \mathrm{~mol} / \mathrm{L}\left(15.5 \mathrm{~g} / \mathrm{L}\right.$, determined by ${ }^{31} \mathrm{P}$ NMR analysis of the solution using $\mathrm{Ph}_{3} \mathrm{P}(\mathrm{O})$ as an internal standard. $\left.\mathrm{D} 1=20 \mathrm{~s}, \mathrm{zg} 30, \mathrm{LB}=1\right)$.

Safety note for $\mathbf{P}_{4}$ : White phosphorus is spontaneously flammable; it should be stored in water or glove box. White phosphorus-toluene solution should be sealed in argon and stored away from light.

## 2. Tables for optimization of the reaction conditions

The yield of product was determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis of the crude reaction mixture using $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P}(\mathrm{O})$ as an internal standard.

Supplementary Table 1-1 Screening of bases. ${ }^{[a]}$


eq. 1
10
1.5
4a

| Entry | Base | Yield of $\mathbf{4 a}^{[b]}$ |
| :---: | :---: | :---: |
| 1 | $\mathrm{~K}_{2} \mathrm{CO}_{3}$ | $6 \%$ |
| 2 | $\mathrm{~K}_{3} \mathrm{PO}_{4}$ | Tarce |
| 3 | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | n.d |
| 4 | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | $28 \%$ |
| 5 | KOH | n.d |
| 6 | NaHCO | n.d |
| 7 | $t$-BuONa | $10 \%$ |
| 8 | TEA | $6 \%$ |
| 9 | DIPEA | $5 \%$ |
| 10 | Et2NH | $7 \%$ |
| 11 | DABCO | $15 \%$ |
| 12 | TMEDA | $8 \%$ |
| 13 | DBU | $46 \%$ |

[a] Standard conditions (unless otherwise specified): $\mathrm{P}_{4}\left(6.20 \mathrm{mg}, 0.20 \mathrm{mmol}\right.$ of P atom, 0.125 M solution of $\mathrm{P}_{4}$ in toluene, 0.40 mL ), ethanol ( $2.00 \mathrm{mmol}, 10.0 \mathrm{eq}$.), diphenyl disulfide ( $0.30 \mathrm{mmol}, 1.5 \mathrm{eq}.), \mathrm{CuCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.02 \mathrm{mmol}$, base ( $0.10 \mathrm{mmol}, 50 \mathrm{~mol} \%$ ) in solvent (acetonitrile, 2.00 mL ), react at $70^{\circ} \mathrm{C}$ (oil bath) for 16 h under an air atmosphere [b] Yield of product was determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis of the crude reaction mixture using $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P}(\mathrm{O})$ as an internal standard. TEA $=$ Triethylamine, DIPEA $=N, N$-Diisopropylethylamine, $\mathrm{DABCO}=$ Triethylenediamine, TMEDA $=$ Tetramethylenediamine, $\mathrm{DBU}=1,8$-Diazabicyclo[5.4.0]undecane-7-ene.

Supplementary Table 1-2 Screening of copper salt. ${ }^{[a]}$

[a] Standard conditions (unless otherwise specified): $\mathrm{P}_{4}\left(6.20 \mathrm{mg}, 0.20 \mathrm{mmol}\right.$ of P atom, 0.125 M solution of $\mathrm{P}_{4}$ in toluene, 0.40 mL ), ethanol ( $2.00 \mathrm{mmol}, 10.0$ eq.), diphenyl disulfide ( $0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.), DBU ( $0.10 \mathrm{mmol}, 50$ $\mathrm{mol} \%$ ) and copper salt $(\mathbf{0 . 0 2} \mathbf{~ m m o l})$ in solvent (acetonitrile, 2.00 mL ), react at $70^{\circ} \mathrm{C}$ (oil bath) for 16 h under an air atmosphere [b] Yield of product was determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis of the crude reaction mixture using $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P}(\mathrm{O})$ as an internal standard. $\mathrm{Cu}(\mathrm{OAc})_{2}=$ Copper(II) acetate, $\mathrm{Cu}(\mathrm{OTf})_{2}=$ Copper(II) trifluoromethanesulfonate, $\mathrm{Cu}(\mathrm{acac})_{2}=$ Cupric acetylacetonate, $\mathrm{Cu}(\mathrm{TFA})_{2}=$ Copper (II) trifluoroacetate

Supplementary Table 1-3 Screening of solvent. ${ }^{[a]}$

[a] Standard conditions (unless otherwise specified): $\mathrm{P}_{4}\left(6.20 \mathrm{mg}, 0.30 \mathrm{mmol}\right.$ of P atom, a 0.125 M solution of $\mathrm{P}_{4}$ in toluene, $\mathbf{0 . 4 0} \mathbf{~ m L}$ ), ethanol ( $2.00 \mathrm{mmol}, 10.0$ eq.), diphenyl disulfide ( $0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) , \mathrm{DBU}(0.10 \mathrm{mmol}, 50$ $\mathrm{mol} \%)$ and $\mathrm{Cu}(\mathrm{acac})_{2}(0.02 \mathrm{mmol})$ in solvent $(\mathbf{2} .00 \mathbf{~ m L})$, react at $70^{\circ} \mathrm{C}$ (oil bath) for 16 h under an air atmosphere [b] Yield of product was determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis of the crude reaction mixture using $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P}(\mathrm{O})$ as an internal standard. $\mathrm{DMSO}=$ Dimethyl sulfoxide, $\mathrm{DMF}=\mathrm{N}, \mathrm{N}$-Dimethylformamide, $\mathrm{DCE}=1,2$-Dichloroethane, THF $=$ Tetrahydrofuran.

Supplementary Table 1-4 Screening of reaction temperature. ${ }^{[a]}$

[a] Standard conditions (unless otherwise specified): $\mathrm{P}_{4}\left(6.20 \mathrm{mg}, 0.20 \mathrm{mmol}\right.$ of P atom, a 0.125 M solution of $\mathrm{P}_{4}$ in toluene, 0.40 mL ), ethanol ( $2.00 \mathrm{mmol}, 10.0$ eq.), diphenyl disulfide ( $0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) , DBU ( 0.10 \mathrm{mmol}, 50$ $\mathrm{mol} \%)$ and $\mathrm{Cu}(\mathrm{acac})_{2}(0.02 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.00 \mathrm{~mL})$, react at $\mathrm{T}^{\circ} \mathrm{C}$ (oil bath) for 16 h under an air atmosphere [b] Yield of product was determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis of the crude reaction mixture using $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P}(\mathrm{O})$ as an internal standard.

Supplementary Table 1-5 Screening of other organic bases. ${ }^{[a]}$

[a] Standard conditions (unless otherwise specified): $\mathrm{P}_{4}\left(6.20 \mathrm{mg}, 0.20 \mathrm{mmol}\right.$ of P atom, 0.125 M solution of $\mathrm{P}_{4}$ in toluene, 0.40 mL ), ethanol ( $2.00 \mathrm{mmol}, 10.0 \mathrm{eq}$.), diphenyl disulfide ( $0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.), $\mathrm{Cu}(\mathrm{acac})_{2}(0.02 \mathrm{mmol}$, $)$ base ( $0.10 \mathrm{mmol}, 50 \mathrm{~mol} \%$ ) in $\mathrm{CH}_{3} \mathrm{CN}(2.00 \mathrm{~mL})$, react at $70^{\circ} \mathrm{C}$ (oil bath) for 16 h under an air atmosphere [b] Yield of product was determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis of the crude reaction mixture using $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P}(\mathrm{O})$ as an internal standard. TMG $=$ Tetramethylguanidine, $\mathrm{DBN}=1,5-$ Diazabicyclo[4.3.0]non-5-ene, $\mathrm{MTBD}=1,3,4,6,7,8-$ hexahydro-1-methyl-2h-pyrimidol[1,2-a]pyrimidine, $\mathrm{TBD}=1,5,7-$ Triazabicyclo[4.4.0]dec-5-ene.

Supplementary Table 1-6 Screening of loading amount of disulfide and alcohol. ${ }^{[a]}$



| eq. $\mathbf{1} \boldsymbol{x}$ | $\mathbf{y}$ |  |
| :---: | :---: | :---: |
| Entry | $\mathrm{x}: \mathrm{y}$ | Yield of $\mathbf{4 a} \mathbf{a}^{[\mathrm{b}]}$ |
| 1 | $10: 0.5$ | $44 \%$ |
| 2 | $10: 1.0$ | $74 \%$ |
|  | $10: 1.5$ | $94 \%$ |
|  | 7 | $7.5: 1.5$ |
|  | $5.0: 1.5$ | $74 \%$ |
|  | 4 | $50 \%$ |

[a] Standard conditions (unless otherwise specified): $\mathrm{P}_{4}\left(6.20 \mathrm{mg}, 0.20 \mathrm{mmol}\right.$ of P atom, a 0.125 M solution of $\mathrm{P}_{4}$ in toluene, 0.40 mL ), ethanol (x eq.), diphenyl disulfide (y eq.), TBD ( $0.10 \mathrm{mmol}, 50 \mathrm{~mol} \%$ ) and $\mathrm{Cu}(\mathrm{acac})_{2}(0.02$ mmol ) in solvent $(2.00 \mathrm{~mL})$, react at $70^{\circ} \mathrm{C}$ (oil bath) for 16 h under an air atmosphere [b] Yield of product was determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis of the crude reaction mixture using $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P}(\mathrm{O})$ as an internal standard.

## Supplementary Table 1-7 Investigation of other metal salts ${ }^{[a]}$


[a] Standard conditions (unless otherwise specified): $\mathrm{P}_{4}\left(6.20 \mathrm{mg}, 0.20 \mathrm{mmol}\right.$ of P atom, a 0.125 M solution of $\mathrm{P}_{4}$ in toluene, 0.40 mL ), ethanol ( $2.00 \mathrm{mmol}, 10.0$ eq.), diphenyl disulfide ( $0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) , TBD ( 0.10 \mathrm{mmol}, 50$ $\mathrm{mol} \%)$ and metal salt $(0.02 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.00 \mathrm{~mL})$, react at $70^{\circ} \mathrm{C}$ (oil bath) for 16 h under an air atmosphere [b] Yield of product was determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis of the crude reaction mixture using $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P}(\mathrm{O})$ as an internal standard.

Supplementary Table 1-8 Optimization of the reaction conditions for substrates bearing the strong electron-withdrawing group ${ }^{[a]}$

|  | $\mathrm{EtOH}+\mathrm{Ar}_{2}-\mathrm{S}_{-}-\mathrm{Ar} \underset{\text { toluene } / \mathrm{MeCN}, \text { air, } 70^{\circ} \mathrm{C}}{\frac{[\mathrm{Cu}(10 \mathrm{~mol} \%)}{\mathrm{Base}(50 \mathrm{~mol} \%)}}$ |  |
| :---: | :---: | :---: |
| Entry | deviation | Yield |
| 1 | [Cu] $50 \mathrm{~mol} \%$ | 17\% |
| 2 | TBD 1 eq. | 31\% |
| 3 | $[\mathrm{Cu}] 50 \mathrm{~mol} \%$ and TBD 1 eq. | 22\% |
| 4 | 32 eq. | 45\% |
| 5 | 33 eq . | 51\% |
| 6 | 34 eq. | 58\% |
| 7 | $\mathrm{CuCl}_{2}$ | 24\% |
| 8 | $\mathrm{Cu}(\mathrm{OAc})_{2}$ | 20\% |
| 9 | $\mathrm{CuSO}_{4}$ | 27\% |
| 10 | MTBD | 40\% |
| 11 | DBN | 31\% |
| 12 | $80^{\circ} \mathrm{C}$ | 28\% |

[a] Standard conditions (unless otherwise specified): $\mathrm{P}_{4}\left(6.20 \mathrm{mg}, 0.20 \mathrm{mmol}\right.$ of P atom, a 0.125 M solution of $\mathrm{P}_{4}$ in toluene, 0.40 mL ), ethanol ( $2.00 \mathrm{mmol}, 10.0 \mathrm{eq}$ ), diphenyl disulfide ( $0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$ ), Base ( $0.10 \mathrm{mmol}, 50$ $\mathrm{mol} \%$ ) and metal salt $(0.02 \mathrm{mmol})$ in solvent $(2.00 \mathrm{~mL})$, react at $70^{\circ} \mathrm{C}$ (oil bath) for 16 h under an air atmosphere [b] Yield of product was determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR analysis of the crude reaction mixture using $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{P}(\mathrm{O})$ as an internal standard.

## 3. General experimental procedures

## General procedure 1: Synthesis of phosphorothioates (4a-51)



## Supplementary Scheme 1-1

To an oven-dried schlenk tube with a magnetic stir bar was added $\mathrm{Cu}(\mathrm{acac})_{2}(0.02 \mathrm{mmol}, 5.3$ $\mathrm{mg}), \mathrm{TBD}(1,5,7-$ Triazabicyclo[4.4.0]dec-5-ene) $(0.1 \mathrm{mmol}, 13.9 \mathrm{mg})$ and disulfide ( 0.3 mmol ). Then alcohol ( 2 mmol ), acetonitrile $(2.00 \mathrm{~mL})$ and $\mathrm{P}_{4}\left(6.2 \mathrm{mg}\right.$ total of $\mathrm{P}_{4}$, a 0.125 M solution of $\mathrm{P}_{4}$ in toluene, 0.40 mL ) were sequentially added to the system. Then the system was stirred at $70^{\circ} \mathrm{C}$ (oil bath) for 16 h . After competition, the solvent was evaporated by rotary evaporation, the crude reaction mixture was purified by flash chromatography using petroleum-AcOEt $[4: 1(\mathrm{v} / \mathrm{v})]$ as the eluent to give the product.

General procedure 2: Synthesis of phosphates (7a-7i)


## Supplementary Scheme 1-2

To an oven-dried schlenk tube with a magnetic stir bar was added $\mathrm{Cu}(\mathrm{acac})_{2}(0.02 \mathrm{mmol}, 5.3$ $\mathrm{mg}), \mathrm{TBD}(1,5,7-$ Triazabicyclo[4.4.0]dec-5-ene) $(0.1 \mathrm{mmol}, 13.9 \mathrm{mg})$, diselenide $(0.05 \mathrm{mmol})$ and phenol ( 0.4 mmol ). Then alcohol ( 2 mmol ), acetonitrile $(2.00 \mathrm{~mL})$ and $\mathrm{P}_{4}\left(6.2 \mathrm{mg}\right.$ total of $\mathrm{P}_{4}$, a 0.125 M solution of $\mathrm{P}_{4}$ in toluene, 0.40 mL ) were sequentially added to the system. Then the system was stirred at $70{ }^{\circ} \mathrm{C}$ (oil bath) for 16 h . After competition, the solvent was evaporated by rotary evaporation, the crude reaction mixture was purified by flash chromatography using petroleumAcOEt $[4: 1(\mathrm{v} / \mathrm{v})]$ as the eluent to give the product.

## General procedure 3: Gram-scale synthesis of $\boldsymbol{O}, \boldsymbol{O}$-diethyl $\boldsymbol{S}$-phenyl phosphorothioate (4a)



## Supplementary Scheme 1-3

To an oven-dried schlenk bottle with a magnetic stir bar was added Cu (acac) $)_{2}(1 \mathrm{mmol}, 261$ mg ), TBD (1,5,7-Triazabicyclo[4.4.0]dec-5-ene) ( $5 \mathrm{mmol}, 696 \mathrm{mg}$ ) and diphenyl disulfide ( 15 mmol, 3.275 g ). Then ethanol $(100 \mathrm{mmol})$, acetonitrile $(100 \mathrm{~mL})$ and $\mathrm{P}_{4}\left(310 \mathrm{mg}\right.$ total of $\mathrm{P}_{4}$, a 0.125 M solution of $\mathrm{P}_{4}$ in toluene, 20 mL ) were sequentially added to the system. Then the system was stirred at $70{ }^{\circ} \mathrm{C}$ (oil bath) for 72 h . After competition, the solvent was evaporated by rotary evaporation, the crude reaction mixture was purified by flash chromatography using petroleum$\operatorname{AcOEt}[4: 1(\mathrm{v} / \mathrm{v})]$ as the eluent to give the product $\mathbf{4 a}(1.771 \mathrm{~g}, 72 \%)$.

## General procedure 4: Transformation of $\boldsymbol{O}, \boldsymbol{O}$-diethyl $\boldsymbol{S}$-phenyl phosphorothioate (4a)



To an oven-dried schlenk tube with a magnetic stir bar containing O,O-diethyl S-phenyl phosphorothioate (4a) ( $0.2 \mathrm{mmol}, 49.2 \mathrm{mg}$ ) was evacuated and purged with argon three times. Then $\mathrm{Tf}_{2} \mathrm{O}(0.3 \mathrm{mmol}, 51 \mu \mathrm{~L})$ and pyridine ( $0.4 \mathrm{mmol}, 33 \mu \mathrm{~L}$ ) were added. The mixture was stirred at room temperature for 15 mins . Then phenol ( 0.6 mmol ) was added under argon atmosphere, the reaction mixture was stirred at room temperature for 1 h . After completion, the solvent was evaporated by rotary evaporation, the crude reaction mixture was purified by flash chromatography using petroleum- $\operatorname{AcOEt}[3: 1(\mathrm{v} / \mathrm{v})]$ as the eluent to give the products $\mathbf{8 a}$ and $\mathbf{8 b}$.
4. Control experiments and ${ }^{31} P$ NMR spectra for the synthesis of phosphorothioates.
(a)

(b)

(c)

(d)


## Supplementary Scheme 2-1. Control experiments A.




Supplementary figure 1-1. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ spectrum of supplementary scheme 2-1 (a).


Supplementary figure 1-2. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ spectrum of supplementary scheme 2-1 (b).



Supplementary figure $\mathbf{1 - 3 .}{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ spectrum of supplementary scheme 2-1 (c).


Supplementary figure 1-4. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ spectrum of supplementary scheme 2-1 (d).


Supplementary Scheme 2-2. The propose mechanism for the copper-catalyzed cross-coupling reaction of $\boldsymbol{H}$-phosphonates and disulfide (Supplementary Scheme 2-1 d).


Supplementary Scheme 2-3. In situ NMR study on the mechanism of reaction A.

## 5. Control experiments and ${ }^{31} \mathrm{P}$ NMR spectra for the synthesis of mixed phosphates.

(a)


1a, 1.0 eq. $\quad 3.0$ eq
13, $80 \%$
(b)

$1 \mathrm{a}, 1.0 \mathrm{eq} . \quad 3.0 \mathrm{eq}$.
2a, 10.0 eq.

$\mathbf{2 a}, 10.0$ eq. $\mathbf{6 a}, 2.0 \mathrm{eq}$.
1a, 1.0 eq
, 10.0 eq. $6 a, 2.0$ eq.


2a, 10.0 eq. 6a, 2.0 eq.

 $+\quad \stackrel{\text { O }}{\text { O }}$

14, 23\%
12, 30\%
(c)


 $+\mathrm{EtO}-\stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{P}$
7a, trace
12, 30\%
(d)


1a, 1.0 eq


7a, trace


OEt
12, $20 \%$
(e)

| $\substack{\mathrm{O} \\ \mathrm{EtO} \\ \mathrm{P} \\ \mathrm{O} \\ \mathrm{O}-\mathrm{H} \\ \mathbf{1 2}}$ | +PhOH |
| :---: | :---: |
|  | $\mathbf{6 a}, 2.0 \mathrm{eq}$ |

$$
+\quad \mathrm{PhOH}
$$

6a, 2.0 eq


Supplementary Scheme 3-1. Control experiments B.


Supplementary figure 2-1. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ spectrum of supplementary scheme 3-1 (a).


Supplementary figure 2-2. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ spectrum of supplementary scheme 3-1 (b).


Supplementary figure 2-3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of supplementary scheme 3-1 (c).

$$
\begin{gathered}
\stackrel{\circ}{e} \\
\stackrel{+}{\infty} \\
i 1
\end{gathered}
$$



Supplementary figure 2-4. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of supplementary scheme 3-1 (d).

Supplementary figure 2-4. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ spectrum of supplementary scheme 3-1 (e).
(a)

(b)

$$
2 \mathrm{PhSeH}+\mathrm{O}_{2} \longrightarrow \mathrm{PhSeSePh}+\mathrm{H}_{2} \mathrm{O}
$$

Supplementary Scheme 3-2. The propose mechanism for the multicomponent synthesis of mixed phosphonates from $\mathrm{P}_{4}$.

## 6. Characterization for products.

## O,O-diethyl $S$-phenyl phosphorothioate (4a, CAS Registry No. 1889-58-3)



Light yellow oil; $44.2 \mathrm{mg}, 90 \%$ yield; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.55(\mathrm{dt}, J=7.7,2.0 \mathrm{~Hz}$, 2H), 7.42-7.27 (m, 3H), 4.26-4.06 (m, 4H), $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, 126MHz): $\delta 134.69(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 129.47(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 129.12(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 126.76(\mathrm{~d}, J=7.3$ $\mathrm{Hz}), 64.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 16.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 22.86 \mathbf{H R M S}:$ $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{PSNa}^{+}$269.0372, found 269.0370.

## O,O-diethyl $S$-(p-tolyl) phosphorothioate (4b, CAS Registry No. 4143-38-8)



Light yellow oil; $45.2 \mathrm{mg}, 87 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.42(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.13 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.09(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ $\left.\mathbf{( C D C l}_{3}, 126 \mathrm{MHz}\right): \delta 139.44(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 134.77(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 130.31(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 123.01(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}), 64.15(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 21.32,16.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right):$ $\delta$ 23.30; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{PSNa}^{+}$283.0528, found 283.0529.

O,O-diethyl S-(4-methoxyphenyl) phosphorothioate (4c, CAS Registry No. 56809-76-9)


Light yellow oil; 36.5 mg , $66 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{C D C l}_{\mathbf{3}}, \mathbf{5 0 0} \mathbf{~ M H z}$ ): $\delta 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.81$ (m, 2H), 4.22-4.04 (m, 4H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6}\right.$ MHz): $\delta 160.61(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 136.48(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 116.78(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 115.13(\mathrm{~d}, J=2.6$ $\mathrm{Hz}), 64.10(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 55.49,16.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 23.50$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{PSNa}^{+}$299.0477, found 299.0480.

S-(4-(tert-butyl)phenyl) $O, O$-diethyl phosphorothioate (4d, CAS Registry No. 4521-71-4)


Light yellow oil; $37.8 \mathrm{mg}, 67 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.14(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.28(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6} \mathbf{~ M H z}\right):$ $\delta 152.55(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 134.52(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 126.65(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 123.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 64.18$ $(\mathrm{d}, J=6.1 \mathrm{~Hz}), 34.85,31.36,16.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 4 2} \mathbf{~ M H z}\right): \delta 23.30$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{PSNa}^{+}$325.0998, found 325.0997.


Light yellow oil; $48.3 \mathrm{mg}, 75 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): ~ \delta 7.63(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{dd}, J=8.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.17(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 142.18(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 140.13,135.09(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}), 129.08,128.20(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 128.01,127.27,125.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 64.34(\mathrm{~d}, J=6.3$ $\mathrm{Hz}), 16.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 22.81$; HRMS: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{PS}^{+}$323.0865, found 323.0864 .
$S$-(4-aminophenyl) $\boldsymbol{O}, \boldsymbol{O}$-diethyl phosphorothioate (4f, CAS Registry No. 94409-35-5)


Light yellow oil; $31.9 \mathrm{mg}, 61 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.32-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.57$ (m, 2H), 4.20-4.10 (m, 4H), 3.85 (brs, 2H), 1.29 (t, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (CDCl $\mathbf{C l}_{3}$, 126MHz): $\delta 147.96,136.55(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 115.90(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 113.08,64.08(\mathrm{~d}, J=6.3 \mathrm{~Hz})$, $16.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 4 2} \mathbf{~ M H z}\right): \delta 24.10 ; \mathbf{H R M S}:[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{PSNa}^{+}$284.0481, found 284.0480.

## O,O-diethyl $S$-(2-fluorophenyl) phosphorothioate (4g, CAS Registry No. 1883501-47-0)



Light yellow oil; $40.1 \mathrm{mg}, 76 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}$ ): $\delta 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{ddt}$, $J=10.3,7.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 4.28-4.15(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR (CDCl $\left.\mathbf{C D}_{3}, \mathbf{1 2 6 ~ M H z}\right): \delta 162.29(\mathrm{dd}, J=248.8,5.6 \mathrm{~Hz}), 137.71(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 131.82(\mathrm{dd}, J=$ $8.1,3.2 \mathrm{~Hz}), 116.51(\mathrm{dd}, J=23.1,2.7 \mathrm{~Hz}), 114.05(\mathrm{dd}, J=19.3,7.6 \mathrm{~Hz}), 64.46(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 16.15$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 21.36(\mathrm{~d}, J=4.0 \mathrm{~Hz}) ;{ }^{\mathbf{1 9}} \mathbf{F}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, 471 MHz ): $\delta-106.23\left(\mathrm{~d}, J=4.0 \mathrm{~Hz}\right.$ ); HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{FO}_{3} \mathrm{PSNa}^{+}$287.0278, found 287.0277.

## $\boldsymbol{S}$-(4-chlorophenyl) $\boldsymbol{O}, O$-diethyl phosphorothioate (4k, CAS Registry No. 4524-70-3)



Light yellow oil; $48.3 \mathrm{mg}, 86 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.34-$ 7.28(m, 2H), 4.24-4.10(m, 4H), $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6 M H z}\right): \delta$ $135.95(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 135.69(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 129.74(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 125.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 64.46$
$(\mathrm{d}, J=6.4 \mathrm{~Hz}), 16.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 22.13 ; \mathbf{H R M S}:[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ClO}_{3} \mathrm{PSNa}^{+} 302.9982$, found 302.9985 .

## $\boldsymbol{S}$-(4-bromophenyl) $\boldsymbol{O}, \boldsymbol{O}$-diethyl phosphorothioate (4i, CAS Registry No. 15224-36-9)



Light yellow oil; $52.7 \mathrm{mg}, 81 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.40$ (m, 2H), 4.24-4.09 (m, 4H), $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 136.15$ $(\mathrm{d}, J=5.3 \mathrm{~Hz}), 132.69(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 126.04(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 123.83(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 64.46(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}), 16.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 21.91 ; \mathbf{H R M S}:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{BrO}_{3} \mathrm{PS}^{+}$324.9657, found 324.9658.

O,O-diethyl $S$-(4-(trifluoromethyl)phenyl) phosphorothioate (4j, CAS Registry No. 1883501-42-5)


Light yellow oil; $25.7 \mathrm{mg}, 41 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 500 \mathrm{MHz}\right.$ ): $\delta 7.70$ (dd, $J=8.4,2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.27-4.13(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, $126 \mathbf{M H z}): \delta 134.50(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 132.20(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 130.97(\mathrm{dq}, J=2.2,33.0 \mathrm{~Hz}), 126.12$ $(\mathrm{m}), 123.74(\mathrm{q}, J=272.0 \mathrm{~Hz}), 64.46(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 16.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, $\mathbf{2 0 2} \mathbf{M H z}$ ): $\delta 21.29 ;{ }^{\mathbf{1 9}} \mathbf{F}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ( $\left.\mathbf{C D C l}_{3}, \mathbf{4 7 1 M H z}\right): \delta-62.92 ; \mathbf{H R M S}:[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{PSNa}^{+}$337.0245, found 337.0244.

O,O-diethyl S-(3-nitrophenyl) phosphorothioate (4k, CAS Registry No. 4184-51-4)


Yellow oil; $33.9 \mathrm{mg}, 58 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 8.42(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.15(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 148.64,140.39(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 130.28(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}), 129.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 129.24(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 124.01(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 64.83(\mathrm{~d}, J=6.5 \mathrm{~Hz})$, $16.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}) ;{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 4 2} \mathbf{~ M H z}\right): \delta 20.71 ; \mathbf{H R M S}:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{PS}^{+}$292.0402, found 292.0402.

O,O-diethyl S-(4-nitrophenyl) phosphorothioate (41, CAS Registry No. 3270-82-8)


Yellow oil; $34.4 \mathrm{mg}, 59 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 8.18$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.75 (dd, $J=8.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.29-4.14(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6} \mathbf{~ M H z}\right):$ $\delta 148.04,136.47(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 134.31(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 124.31(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 64.94(\mathrm{~d}, J=6.5$ $\mathrm{Hz}), 16.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 20.08 ; \mathbf{H R M S}:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{PS}^{+}$292.0402, found 292.0404.
methyl 2-((diethoxyphosphoryl)thio)benzoate (4m, CAS Registry No. 2222022-82-2)


Brown oil; $20.7 \mathrm{mg}, 34 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.88(\mathrm{dt}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (dt, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dt}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.10(\mathrm{~m}, 4 \mathrm{H}), 3.92$ $(\mathrm{s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 157.25,135.35(\mathrm{~d}, J=5.0$ $\mathrm{Hz}), 134.43(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 132.16(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 130.99,128.53(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 128.40(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}), 64.55(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 52.61,16.19(\mathrm{~d}, J=7.0 \mathrm{~Hz}) ;{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 202 \mathbf{M H z}\right): \delta$ 22.03; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{PSNa}^{+}$327.0426, found 327.0425.
$S$-(3,5-dimethylphenyl) $O, O$-diethyl phosphorothioate (4n, CAS Registry No. 1883501-37-8)


Light yellow oil; $45.5 \mathrm{mg}, 89 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.17(\mathrm{~s}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H})$, 4.24-4.11 (m, 4H), 2.28(s, 6H), $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 0 1} \mathbf{~ M H z}\right): \delta 139.12$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}), 132.39(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 131.00(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 125.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 64.14(\mathrm{~d}, J=$ 6.2 Hz ), 21.30, $16.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 23.29 ; \mathbf{H R M S}:[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{PSNa}^{+}$297.0685, found 297.0683.

S-(3,4-dimethoxyphenyl) O,O-diethyl phosphorothioate (4o, CAS Registry No. 2376402-64-9)


Light yellow oil; $36.0 \mathrm{mg}, 56 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.10(\mathrm{dt}, J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06(\mathrm{q}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.11(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 1.29(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 150.35(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 149.43(\mathrm{~d}, J=2.3 \mathrm{~Hz})$, $128.06(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 117.88(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 117.03(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 111.86(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 64.23$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}), 56.21,56.11,16.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}) ;{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 23.44 ;$ HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{PSNa}^{+} 329.0583$, found 329.0583.
$S$-(2-((( $(2-(1 H-i n d o l-2-y l) e t h y l) a m i n o) o x y) c a r b o n y l) p h e n y l) ~ O, O$-diethyl phosphorothioate (4p, new compound)


Brown oil; $26.0 \mathrm{mg}, 29 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dt}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{tt}, J=7.6,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.02(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{dt}, J=$ $7.3,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6}\right.$ MHz): $\delta 158.53,143.58(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 137.35(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 136.63,130.29(\mathrm{~d}, J=2.5 \mathrm{~Hz})$, $130.26(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 130.04(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 127.64,122.45,122.15,121.73(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 119.47$, $118.91,113.18,111.44,65.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 40.66,25.45,16.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}) ;{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ( $\left.\mathbf{C D C l}_{3}, 202 \mathrm{MHz}\right): \delta 23.83$; HRMS: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PS}^{+} 449.1295$, found 449.1296.

## O,O-diethyl $S$-(naphthalen-2-yl) phosphorothioate (4q, CAS Registry No. 109161-61-7)



Light yellow oil; $46.2 \mathrm{mg}, 78 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right.$ ): $\delta 8.08$ (s, 1H), 7.80 (ddt, $J=$ $7.0,3.9,3.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.61(\mathrm{dt}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.14(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 134.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 133.78(\mathrm{~d}, J=2.3$ $\mathrm{Hz}), 133.21(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 131.09(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 129.16(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 127.24,125.93,123.96$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}), 64.35(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 16.20(\mathrm{~d}, J=7.3 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 202 \mathbf{M H z}\right): \delta$ 22.85; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{PSNa}^{+} 319.0528$, found 319.0526.

## O,O-diethyl $S$-(naphthalen-1-yl) phosphorothioate (4r, CAS Registry No. 1883501-39-0)



Light yellow oil; $38.8 \mathrm{mg}, 69 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 8.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.94-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-$ $4.04(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 1 M H z}\right): \delta 135.45(\mathrm{~d}, J=5.6 \mathrm{~Hz})$, $134.94(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 134.50(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 130.51(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 128.74,127.26,126.67,126.15$, $125.88(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 123.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 64.44(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 16.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}) ;{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ( $\left.\mathbf{C D C l}_{3}, 202 \mathrm{MHz}\right): \delta 22.61$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{PSNa}^{+} 319.0528$, found 319.0530.

## O,O-diethyl $S$-(thiophen-2-yl) phosphorothioate (4s, CAS Registry No. 2085285-68-1)



Brown oil; $29.3 \mathrm{mg}, 58 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z ) : ~} \delta 7.41$ (dd, $\left.J=5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.21$ $(\mathrm{d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=5.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.15(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 136.27(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 131.21(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 127.99(\mathrm{~d}, J=$ $3.4 \mathrm{~Hz}), 123.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 64.55(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 16.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, $\mathbf{2 4 2} \mathbf{~ M H z}$ ): $\delta 20.71$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{PS}_{2} \mathrm{Na}^{+}$274.9936, found 274.9927.

## $O, O$-diethyl $S$-(2-methylfuran-3-yl) phosphorothioate (4t, new compound)



Brown oil; $25.1 \mathrm{mg}, 50 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ( $\left.\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.27(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.10(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ $\left.\mathbf{( C D C l}_{3}, \mathbf{1 2 6 ~ M H z}\right): \delta 156.65(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 141.13,115.41,101.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 64.22(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}), 16.25(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 12.09(\mathrm{~d}, J=2.3 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 22.88$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{PSNa}^{+}$273.0321, found 273.0320.

## O,O-dibutyl S-phenyl phosphorothioate (5a, CAS Registry No. 22946-78-7)



Light yellow oil; $54.4 \mathrm{mg}, 92 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}$ ): $\delta 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dt}, J$ $=5.3,2.6 \mathrm{~Hz} 3 \mathrm{H}), 4.16-4.02(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 134.66(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 129.44(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 129.06$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}) 126.85(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 67.96(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 32.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 18.80,13.68$; ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ( $\mathbf{C D C l}_{3}, 202 \mathrm{MHz}$ ): $\delta 22.95$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{PSNa}^{+}$ 325.0998 , found 325.1000 .

## $O, O$-dipentyl $S$-phenyl phosphorothioate(5b, CAS Registry No. 195209-86-0)



Light yellow oil; $59.4 \mathrm{mg}, 86 \%$ yield; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.55(\mathrm{dt}, J=7.6,2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.32$ (dd, $J=5.3,2.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.21-3.94(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 8 \mathrm{H}), 0.98-$ $0.76(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 2 6 M H z}\right): \delta 134.66(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 129.46(\mathrm{~d}, J=2.2 \mathrm{~Hz})$, $129.07(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 126.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 68.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 30.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 27.73$, 22.33, 14.06; ${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ( $\mathbf{C D C l}_{3}, 202 \mathbf{M H z}$ ): $\delta$ 22.92; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{PSNa}^{+} 353.1311$, found 353.1308 .

## O,O-diheptyl S-phenyl phosphorothioate (5c, CAS Registry No. 2217636-00-3)



Light yellow oil; $70.5 \mathrm{mg}, 87 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): ~ \delta 7.55(\mathrm{dt}, J=7.6,2.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 4.14-4.03(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 16 \mathrm{H}), 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6} \mathbf{~ M H z}\right): 134.66(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 129.46(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 129.06(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}), 126.93(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 68.30(\mathrm{~d}, J=6.7 \mathrm{~Hz}) 31.85,30.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 28.94,25.57$, 22.71; ${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 4 2} \mathbf{~ M H z}\right): \delta 37.01(\mathrm{~d}, J=446.7 \mathrm{~Hz}) ; \mathbf{H R M S}:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{PS}^{+} 387.2117$, found 387.2118 .

## $O, O$-didodecyl $S$-phenyl phosphorothioate (5d, new compound)



Light yellow oil; $94.8 \mathrm{mg}, 90 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30$ $(\mathrm{m}, 3 \mathrm{H}), 4.13-4.12(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.24(\mathrm{~m}, 36 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR (CDCl $\left.\mathbf{C D}_{3}, \mathbf{1 2 6 ~ M H z}\right): \delta 134.69(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 129.48(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 129.08(\mathrm{~d}, J=2.8 \mathrm{~Hz})$, $126.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 68.33(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 30.39,30.34,29.85,29.84,29.75,29.69,29.55,29.32$, 25.65, 22.89, 14.30; ${ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 22.92$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{55} \mathrm{O}_{3} \mathrm{PNa}^{+} 549.3502$, found 549.3502 .


Light yellow oil; $38.7 \mathrm{mg}, 64 \%$ yield; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.60-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.91-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.80(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H})$; ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 134.76(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 129.45(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 129.10(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}), 126.75(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 74.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 29.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 18.81 ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ( $\left.\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 22.83$; HRMS: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{PSNa}^{+} 325.0998$, found 325.0998.

## $O, O$-bis(2-methylpentyl) $S$-phenyl phosphorothioate (5f, new compound)



Light yellow oil; $60.9 \mathrm{mg}, 85 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29$ $(\mathrm{m}, 3 \mathrm{H}), 4.02-3.81(\mathrm{~m}, 4 \mathrm{H}), 1.76(\mathrm{dt}, J=12.6,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.37-1.21(\mathrm{~m}, 6 \mathrm{H}), 1.12-1.04(\mathrm{~m}, 2 \mathrm{H})$, $0.91-0.83(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6 M H z}\right): \delta 134.71$, (dt, $\left.J=5.5,2.8 \mathrm{~Hz}\right), 129.43(\mathrm{~d}, J$ $=2.2 \mathrm{~Hz}), 129.05(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 126.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 72.91(\mathrm{dd}, J=7.2,1.9 \mathrm{~Hz}), 35.19,33.75$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}), 20.01,16.59(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 14.36 ;{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 22.84$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{PSNa}^{+}$381.1624, found 381.1631.

## $O, O$-bis(2-cyclohexylethyl) $S$-phenyl phosphorothioate ( 5 g , new compound)



Light yellow oil; $63,2 \mathrm{mg}, 77 \%$ yield; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.54(\mathrm{dt}, J=7.5,2.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.32(\mathrm{dd}, J=5.2,1.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.18-4.06(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 10 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.37-$ $1.29(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.09(\mathrm{~m}, 6 \mathrm{H}), 0.91-0.82(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 134.57$ $(\mathrm{d}, J=5.3 \mathrm{~Hz}), 129.44(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 129.01(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 126.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 66.32(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}), 37.61(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 34.02,33.16,26.60,26.28 ;{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 202 \mathbf{M H z}\right): \delta$ 22.88; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{PSNa}^{+} 433.1937$ found 433.1938 .

## $S$-phenyl $O, O$-bis(4-phenylbutyl) phosphorothioate ( 5 h , new compound)



Light yellow oil; $81.6 \mathrm{mg}, 89 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.53(\mathrm{dt}, J=8.1,2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.27(\mathrm{dt}, J=13.1,5.3 \mathrm{~Hz}, 7 \mathrm{H}), 7.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.17-4.04(\mathrm{~m}$, 4H), $2.59(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.66(\mathrm{dq}, J=7.9,4.6 \mathrm{~Hz}, 8 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6 M H z}\right): \delta$ 142.06, $134.70(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 129.53(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 129.16(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 128.60,128.55,128.53$ $(\mathrm{d}, J=4.5 \mathrm{~Hz}), 126.80,68.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 35.45,29.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 27.38 ;{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ ( $\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{M H z}$ ): $\delta 23.10$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{PSNa}^{+} 477.1624$, found 477.1625.
$S$-phenyl $O, O$-bis(2-(thiophen-2-yl)ethyl) phosphorothioate (5i, new compound)


Light brown oil; $57.4 \mathrm{mg}, 70 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 7.16(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=5.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J=3.5,1.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.36-4.22(\mathrm{~m}, 4 \mathrm{H}), 3.14(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 138.91$, $134.87(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 129.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 129.30(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 127.13,126.11,124.37,68.13$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}), 30.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}) ;{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 23.24 ; \mathbf{H R M S}:[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{PS}_{3} \mathrm{Na}^{+}$433.0126, found 433.0130.

## $O, O$-bis(9-chlorononyl) $S$-phenyl phosphorothioate (5j, new compound)



Light yellow oil; $70.3 \mathrm{mg}, 66 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.15-4.03(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.77-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 4 \mathrm{H})$, 1.32-1.25 (m, 20H); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 134.67(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 129.51(\mathrm{~d}, J=2.2$ $\mathrm{Hz}), 129.12(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 126.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 68.29(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 45.32,32.82,30.39(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}), 29.48,29.18,28.97,27.04,25.60 ;{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 22.98$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{PSNa}^{+} 533.1783$, found 533.1780.

## $S$-phenyl $O, O$-di(undec-10-en-1-yl) phosphorothioate ( 5 k , new compound)



Light yellow oil; $41.3 \mathrm{mg}, 40 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}$, $J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 5.82-5.79(\mathrm{~m}, 2 \mathrm{H}), 5.00-4.92(\mathrm{~m}, 4 \mathrm{H}), 3.63(\mathrm{t}, J=5.9 \mathrm{~Hz} 4 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 4 \mathrm{H})$, 1.69-1.60 (m, 2H), 1.60-1.53 (m, 2H), 1.38-1.26(m, 24H); ${ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta$ $139.42(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 134.71(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 129.52(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 129.11(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 127.01$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}), 114.36(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 68.37(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 63.30,34.02,33.06,30.39(\mathrm{~d}, J=6.9$
 calcd for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{O}_{3} \mathrm{PNa}^{+} 517.2876$, found 517.2875.

## O,O-diisopropyl $S$-phenyl phosphorothioate (51, CAS Registry No. 15267-38-6)



Light yellow oil; 48.3 mg , $88 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.32$ $(\mathrm{m}, 3 \mathrm{H}), 4.82-4.72(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.23(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ( $\mathbf{C D C l}_{3}, \mathbf{1 2 6 ~ M H z ) : ~} \delta 134.39(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 129.32(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 128.82(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 127.50$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}), 73.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 23.64(\mathrm{~d}, J=5.7 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta$ 20.42; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{PSNa}^{+}$297.0685, found 297.0684.
diethyl phenyl phosphate (7a, CAS Registry No. 2510-86-3)


Light yellow oil; $31.3 \mathrm{mg}, 68 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ( $\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dt}$, $J=8.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.14(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{dt}, J=7.1,1.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (CDCl $\left.{ }_{3}, \mathbf{1 2 6 M H z}\right): \delta 150.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 129.85,125.12,120.15(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 64.73$ $(\mathrm{d}, J=6.1 \mathrm{~Hz}), 16.25(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta-6.31 ; \mathbf{H R M S}:[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{PNa}^{+} 253.0600$, found 253.0599.
[1,1'-biphenyl]-4-yl diethyl phosphate (7b, CAS Registry No. 37782-03-9)


Light yellow oil; 36.1 mg , 59\% yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.57-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.38$
$(\mathrm{m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.18(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ( $\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1 M H z}\right): \delta 150.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 140.36,138.25,128.94,128.51,127.45,127.13$, $120.40(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 64.77(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 16.25(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 202\right.$ MHz): $\delta-6.28$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{PNa}^{+}$329.0913, found 329.0907.

4-(tert-butyl)phenyl diethyl phosphate (7c, CAS Registry No. 13538-40-4)


Light yellow oil; $40.5 \mathrm{mg}, 66 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.07$ (m, 2H), 4.24-4.15 (m, 4H), $1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6}\right.$ MHz): $\delta 148.63(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 147.96,126.70,119.50(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 64.64(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 34.54$, $31.58,16.27(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta-6.05 ; \mathbf{H R M S}:[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{PNa}^{+} 309.1226$, found 309.1226.

4-(benzyloxy)phenyl diethyl phosphate (7d, CAS Registry No. 57991-82-9)


Pale yellow oil; $28.3 \mathrm{mg}, 42 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.43-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.31$ (m, 1H), 7.16-7.10 (m, 2H), 6.94-6.89 (m, 2H), $5.02(\mathrm{~s}, 2 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 4 \mathrm{H}) 1.34(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 1 M H z}\right): \delta 156.05,144.76(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 137.01,128.77,128.20$, $127.63,121.09(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 115.88,70.66,64.68(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 16.28(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ( $\left.\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta-5.97$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{PNa}^{+} 359.1019$, found 359.1021.

## diethyl (4-(trifluoromethyl)phenyl) phosphate (7e, CAS Registry No.1454305-46-4)



Pale yellow oil; $20.3 \mathrm{mg}, 34 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{M H z}\right): \delta 7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.27-4.17(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6 M H z}\right):$ $\delta 153.51(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 127.23(\mathrm{q}, J=32.0 \mathrm{~Hz}), 127.11(\mathrm{dq}, J=3.8,1.1 \mathrm{~Hz}), 123.85(\mathrm{q}, J=271.6$ $\mathrm{Hz}), 120.30(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 64.89(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 16.04(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, $202 \mathbf{M H z}$ ): $\delta-6.72 ;{ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ( $\mathbf{C D C l}_{3}, 377 \mathbf{M H z}$ ): $\delta-62.34$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{OPNa}^{+} 427.2161$, found 427.2154.


Pale yellow oil; $32.0 \mathrm{mg}, 57 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\left.\mathbf{C D C l}_{3}, \mathbf{6 0 0} \mathbf{~ M H z}\right): \delta 7.85-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.69(\mathrm{~s}$, $1 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.20(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ( $\mathbf{C D C l}_{3}, \mathbf{1 2 6 ~ M H z ) : ~} \delta 148.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 134.06,131.06,130.00,127.87,127.70,126.87$, $125.62,120.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 116.55(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 64.86(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 16.29(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;$ ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ( $\mathbf{C D C l}_{3}, 202 \mathrm{MHz}$ ): $\delta-6.25$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{PNa}^{+}$ 303.0756, found 303.0757.
benzo[d][1,3]dioxol-5-yl diethyl phosphate (7g, CAS Registry No. 5460-52-6)


Yellow oil; $34.0 \mathrm{mg}, 62 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ( $\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right): \delta 6.67-6.63(\mathrm{~m}, 3 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H})$, 4.23-4.13 (m, 4H), $1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}\right): \delta 148.28,145.35(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}), 144.90,112.56(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 108.16,102.68(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 101.86,64.75(\mathrm{~d}, J=6.1$ $\mathrm{Hz}), 16.27(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ( $\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}$ ): $\delta-5.90 ; \mathbf{H R M S}:[\mathrm{M}+\mathrm{Na}]{ }^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{6} \mathrm{PNa}^{+}$297.0498, found 297.0496.
diethyl ( 8 R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl) phosphate (7h, CAS Registry No. 2529-44-4)


Light yellow oil; $46.3 \mathrm{mg}, 57 \%$ yield; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right): \delta 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.00-6.91 (m, 2H), 4.26-4.13 (m, 4H), 2.88 (dd, $J=9.1,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.33$ $(\mathrm{m}, 1 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.17-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.41(\mathrm{~m}, 6 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 220.93,148.84(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 138.46,136.65,126.74$, $120.11(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 117.34(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 64.66(\mathrm{~d}, ~ J=6.1 \mathrm{~Hz}), 50.60,48.12,44.23,38.23$, 36.03, 31.72, 29.60, 26.51, 25.97, 21.76, $16.30(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 14.01 ;{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 202\right.$ MHz): $\delta-6.07$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{PNa}^{+} 429.1801$, found 429.1801.

## [1,1'-biphenyl]-4-yl bis(3-methylbut-3-en-1-yl) phosphate (7i, new compound)



Light yellow oil; $49.4 \mathrm{mg}, 64 \%$ yield; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right): \delta 7.55(\mathrm{dt}, J=7.1,1.3 \mathrm{~Hz}$, $4 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 4.31-4.22$ $(\mathrm{m}, 4 \mathrm{H}), 2.43(\mathrm{t}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 150.39(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}), 140.98,140.45,138.40,129.02,128.57,127.53,127.22,120.51(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 113.09$, $66.85(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 38.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 22.64 ;{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta-6.24 ;$ HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{PNa}^{+} 409.1539$, found 409.1539.

## $O$-ethyl $O, S$-diphenyl phosphorothioate (8a, CAS Registry No. 51350-42-6)



Pale yellow oil; $47.0 \mathrm{mg}, 80 \%$ yield; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{6 0 0} \mathbf{~ M H z}\right): \delta 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.28$ $(\mathrm{m}, 5 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 3 \mathrm{H}), 4.31-4.26(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right.$, $150 \mathrm{MHz}): \delta 150.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 135.17(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 129.89,129.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 129.53$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}), 125.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 125.50,120.62(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 65.05(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 16.22$
 $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{PSNa}^{+}$317.0372, found 317.0371.
$O$-ethyl $\quad O$-((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl) $S$-phenyl phosphorothioate ( 8 bb , new compound)


Pale yellow oil; $65.9 \mathrm{mg}, 70 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ( $\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}$ ): $\delta 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.30$ $(\mathrm{m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.24(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.55-$ $2.47(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.19-1.95(\mathrm{~m}, 5 \mathrm{H}), 1.61-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.91(\mathrm{~s}, \mathbf{3 H}) ;{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 1 ~ M H z}\right): \delta 220.97,148.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 138.47,137.02$, 135.07 (d, $J=5.4 \mathrm{~Hz}$ ), $129.52(\mathrm{~d}, ~ J=2.5 \mathrm{~Hz}), 129.42(\mathrm{~d}, ~ J=3.1 \mathrm{~Hz}), 126.70,126.00(\mathrm{~d}, J=7.5$ $\mathrm{Hz}), 120.52(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 117.76(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 65.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 50.57,48.09,44.20,38.16$,
 MHz): $\delta 18.57$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{PSNa}^{+} 493.1573$, found 493.1575 .
triphenyl phosphorotrithioite (9, CAS Registry No. 1095-04-1)

 $\left.\mathbf{( C D C l}_{3}, \mathbf{1 2 6 ~ M H z}\right): \delta 134.41(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 132.31(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 129.36,128.69(\mathrm{~d}, J=2.1$ $\mathrm{Hz}) ;{ }^{\mathbf{3 1}} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ( $\left.\mathbf{C D C l}_{3}, \mathbf{2 0 2} \mathbf{~ M H z}\right): \delta 132.31 ; \mathbf{H R M S}:[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{PS}_{3} \mathrm{Na}^{+}$ 380.9965 , found 380.9965 .

O-ethyl S, $S$-diphenyl phosphorodithioite (10, CAS Registry No. 28204-36-6)


Colorless oil; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{C D C l}_{3}$, $500 \mathbf{M H z}$ ): $\delta 7.55-7.53$ (m, 4H), 7.34-7.29 (m, 6H), 4.20-4.14 ( $\mathrm{m}, 2 \mathrm{H}$ ), $\left.1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~}{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 2 6} \mathbf{~ M H z}\right): \delta 133.50,133.45,129.49$, $128.15(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 62.09(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 16.51(\mathrm{~d}, J=2.6 \mathrm{~Hz}) ;{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 202\right.$ MHz): $\delta 157.52$; HRMS: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{OPS}_{2} \mathrm{Na}^{+} 317.0194$, found 317.0195.

## 7. Supplementary Reference

1. Y. Liu, J. Kim, H. Seo, S. Park and J. Chae, Adv. Synth. Catal., 2015, 357, 2205-2212.
2. X. Qiu, X. Yang, Y. Zhang, S. Song and N. Jiao, Org. Chem. Front., 2019, 6, 2220-2225.

## 8．NMR spectrum of isolated products．

 へ人入入人



$\underbrace{\dot{\text { J }}}$


${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 a}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound $\mathbf{4 a}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 a}$

M

0
0
0
0
0
0
Coses,


${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 b}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(242 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 b}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 c}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 c}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 c}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 4 d


${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 d}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 d}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 e}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 e}$


${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 e}$

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 f}$


[^0]${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 f}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 f}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 g}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 g}$
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 g}$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 g}$



I

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 h}$


${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 h}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 i}$



${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 i}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 i}$



${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 j}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 j}$

${ }^{19}$ F NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4} \mathbf{j}$


## 

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $242 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 j}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 k}$


| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 k}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 41

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 41

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 m}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 m}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 n}$






${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 n}$

$-23.29$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 n}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 0}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 4 o


${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 o}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 p}$


[^1]${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ spectrum of compound $\mathbf{4 p}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4} \mathbf{p}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{4 q}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 q}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 r}$


${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 r}$


${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 r}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 s}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 s}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 t}$



${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{4 t}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $4 \mathbf{t}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 a}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 5a


${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 a}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 b}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 b}$


[^2]${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 b}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 c}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 c}$


${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 c}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{5 d}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 d}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 d}$


//


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 e}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 5e

22.83

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) spectrum of compound 5e


${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 f}$


## 

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 f}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 g}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 g}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 g}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{5 h}$


i N N N N

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 h}$


${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 h}$

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 i}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 i}$


${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 i}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 j}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 j}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 j}$

${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound $\mathbf{5 k}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of compound $\mathbf{5 k}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 1}$
웅
도N Nั

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 I}$


${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{5 I}$


1
4
$ـ$

${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $7 \mathbf{a}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $7 \mathbf{a}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{7 b}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 7b


$$
\begin{gathered}
\stackrel{\infty}{\sim} \\
̣ \\
i \\
i
\end{gathered}
$$


${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) spectrum of compound 7b




${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 7 c


| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| f 1 | $(\mathrm{ppm})$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 7c

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 7 c

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 7d

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $7 \mathbf{d}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 7d


## 



${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{7 e}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 7e

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 7e


${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 7e



Han_

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $7 \mathbf{f}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 7f



${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) spectrum of compound $7 \mathbf{f}$

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $7 \mathbf{g}$


${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{7} \mathbf{g}$

$\stackrel{\circ}{\stackrel{\circ}{i}}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{7} \mathbf{g}$

## 잉 0 0




${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{7 h}$

 f1 (ppm)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $7 \mathbf{h}$

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $7 \mathbf{i}$


${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{8 a}$


${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 8a
$\qquad$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $242 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{8 a}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{8 b}$

$\begin{array}{lllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{8 b}$
$-18.57$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{8 b}$

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 9

$\begin{array}{lllllllllllllllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$ f1 (ppm)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 9


${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound 9

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{1 0}$



${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{1 0}$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of compound $\mathbf{1 0}$


[^0]:    $\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \mathrm{f} 1 \\ 100 \\ (\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^1]:    $\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \mathrm{f} 1 \\ 100 \\ (\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^2]:    

