Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2023

Unlocking the Graphitization Potential of Lignin: Insights into its Transformation through Hot Pressing and Carbonization

Wangda Qu^{a, #, *}, Xiao Han^{a, #}, Jing Liu^b, Linghong Yin^a, Chen Liang^c, Pengyu Hu^a

a. Laboratory of Lignin-based Materials, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China

b. College of New Materials and New Energies, Shenzhen Technology University,

Shenzhen, 518116, China

c. College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China

*Corresponding author: Wangda Qu, e-mail: wqu@qau.edu.cn.

[#]Authors contributed equally to this work.

Supporting Information

Supplementary Figures

Figure S1. a) Lignin and b) stabilized lignin dissolved in THF.

Figure S2. a) DSC curve of lignin; b) DSC curve of stabilized lignin.

Figure S3 TG-DTG curves of stabilized lignin.

Figure S4. DSC curves of lignin-0t and lignin-15t.

Figure S5. The deconvoluted peaks for quantitative fraction of carbon moieties. a) Lignin-0t; b) Lignin-15t.

Figure S6. a) TG-DTG curves of lignin-0t and lignin-15t; b) Lignin-0t and lignin-15t dissolved in THF.

Figure S7. a) XRD profiles of carbonized lignin-0t and carbonized lignin-15t samples at different temperatures; b) XRD profiles of lignin-0t-600c and lignin-15t-600c; c) XRD profiles of lignin-0t-800c and lignin-15t-800c; d) XRD profiles of lignin-0t-1000c and lignin-15t-1000c.

Figure S8. a) XRD profile of raw lignin-15t-1000c; b) XRD profiles of raw lignin-15t-1000c, lignin-0t-1000c and lignin-15t-1000c.

Figure S9. TEM images of a-c) lignin-0t-1000c; d-f) lignin-15t-1000c.

Figure S10. a) Color distribution histogram of X side for lignin-15t-1000c; b) Color distribution histogram of Y side for lignin-15t-1000c.

Figure S11. a) XPS survey spectra of lignin-0t-1600c and lignin-15t-1600c; b) C1s peak deconvolution results for lignin-0t-1600c and lignin-15t-1600c.

Figure S12. TEM images of a-b) lignin-0t-1600c; c-d) lignin-15t-1600c.

Figure S13. a) XRD profiles of lignin-0t-1600c and lignin-15t-1600c; b) Raman spectra of lignin-0t-1600c and lignin-15t-1600c.

Supplementary Tables

Sample	C (%)	H (%)	O (%)	N (%)	S (%)
Lignin	63.20±0.18	5.01±0.12	31.38±0.09	0.17±0.03	0.24±0.02
Lignin-0t	61.51±0.12	1.80±0.09	36.29±0.35	0.31±0.12	0.10±0.03
Lignin-15t	62.60±0.12	1.98±0.09	34.99±0.36	0.34±0.12	0.10±0.03
Lignin-0t- 600c	80.06±0.13	2.17±0.09	16.75±0.20	0.68±0.10	0.34±0.06
Lignin-15t- 600c	83.84±0.13	2.06±0.08	12.94±0.31	0.70±0.08	0.47±0.22
Lignin-0t- 800c	86.07±0.11	1.22±0.08	11.70±0.18	0.74±0.12	0.28±0.10
Lignin-15t- 800c	90.24±0.11	0.85±0.08	8.02±0.32	0.79±0.09	0.11±0.04
Lignin-0t- 1000c	90.85±0.12	0.53±0.10	6.60±0.21	1.55±0.08	0.49±0.08
Lignin-15t- 1000c	93.12±0.13	0.25±0.09	5.82±0.15	0.64±0.13	0.18±0.06

 Table S1. Elemental analysis of lignin and lignin-derived samples.

Lignin-0t	δ (ppm)	Height	Width (Hz)	Area	Area ratio (%)
Aliphatic-C	20.00	0.32	2615	40.48	4.48
-O-CH ₃	59.00	0.45	1130	22.69	1.88
Aliphatic- C_{α} -O	75.00	0.64	2376	82.33	6.82
Aryl-C	126.00	3.33	4242	752.56	62.32
Aryl-C-OR	164.81	1.26	2920	157.36	13.03
COOR	185.42	1.25	2449	138.40	11.47

Table S2. Carbon type assignments of lignin, lignin-0t, and lignin-15t characterizedby solid-state ¹³C NMR.

Lignin-15t	δ (ppm)	Height	Width (Hz)	Area	Area ratio (%)	
Aliphatic-C	15.00	0.23	1068.59	15.35	2 75	
	25.00	0.19	1270.33	11.90	5.75	
-O-CH ₃	59.00	0.24	296.72	3.80	0.52	
Aliphatic C. O	61.50	0.34	752.81	10.09	2 22	
Anphane- C_{γ} -O	66.5	0.39	717.78	14.04	5.52	
Aliphatic- C_{α} -O	73.96	0.38	980.29	12.23	1.69	
Aliphatic- C_{β} -O	80.41	0.21	496.79	6.29	0.87	
Aryl-C	125.10	2.19	4666.64	499.68	68.85	
Aryl-C-OR	159.93	0.62	2182.25	43.32	12 10	
	170.00	0.45	1226.09	44.51	12.10	
(LOOD)	179.74	0.48	2089.22	24.54	0.00	
COOR	186.00	0.41	2431.12	40.03	8.90	

Samula	Stabilization	Hot pressing	Carbonization	Total	
Sample	Yield (%)	Yield (%)	Yield (%)	Yield (%)	
Lignin-0t-600c			54.18±3.12	26.45±0.29	
Lignin-0t-800c	49.50±0.30	98.64±0.31	51.53±1.96	25.16±0.18	
Lignin-0t-			50 62 1 06	24.72 ± 0.19	
1000c			30.02±1.90	∠ 4 ./∠≖0.10	
Lignin-15t-			50.01+2.95	29 (9+0 44	
600c			59.91±2.85	28.68±0.44	
Lignin-15t-	40.50:0.20	0.6 51 + 0.50	52.06+2.42		
800c	49.50±0.30	96./1±0.52	53.06±3.42	25.40±0.53	
Lignin-15t-					
1000c			52.65±3.16	25.20±0.49	

 Table S3. Yields of carbonized lignin-0t and carbonized lignin-15t at different

Sample	SP ² Carbon (%)	SP ³ Carbon (%)	C-O (%)	C(O)O (%)	π-π* (%)	SP ² +SP ³ (%)
Lignin-0t- 600c	11.20	53.86	24.19	10.74	-	65.06
Lignin- 15t-600c	47.83	29.07	22.02	7.21	-	76.90
Lignin-0t- 800c	20.08	48.47	22.02	9.43	-	68.55
Lignin- 15t-800c	55.67	23.13	14.57	6.63	-	78.80
Lignin-0t- 1000c	24.26	45.86	18.43	7.21	4.24	70.36
Lignin- 15t-1000c	62.34	18.49	10.31	5.43	3.43	80.83

Table S4. Ratio of different carbon types determined by XPS analysis of carbonized lignin-0t samples and carbonized lignin-15t samples at different temperatures.

Sampla	Mass residual		
Sample	during carbonization (%)		
Lignin-0t-1600c	32.53		
Lignin-15t-1600c	41.42		

 Table S5. Comparison of the yield of lignin-0t-1600c and lignin-15t-1600c.

Element	Lignin-0t-1600c	Lignin-15t-1600c
C (%)	95.39±0.18	96.47±0.12
H (%)	0.35±0.09	0.23±0.06
O (%)	4.06±0.35	3.09±0.06
N (%)	0	0
S (%)	0.20±0.08	0.21±0.003

 Table S6. Elemental analysis of lignin-0t-1600c and lignin-15t-1600c.

Sample	SP ² carbon (%)	SP ³ carbon (%)	C-O (%)	C(O)O (%)	π-π [*] (%)	SP ² +SP ³ (%)
Lignin-	32.49	39.63	13.84	5.88	8.16	72.12
Ot-1600c						
15t-	70.05	13.90	7.20	4.81	4.04	83.95
1600c						

Table S7. Ratio of different carbon types determined by XPS analysis of lignin-0t-1600c and lignin-15t-1600c.

Sample	2θ (002) (°)	20 (004)	FWHM (002)	Lc	d ₀₀₂
	()	0	0	(1111)	(1111)
Lignin-	25 212	NI/A	5 80	1 404	0 2516
0t-1600c	25.312	IN/A	5.80	1.404	0.5510
Lignin-	2(100	50.04	1.00	4.01.0	0.000
15t-1600c	26.188	53.84	1.89	4.316	0.3399

 Table S8. Lattice parameters of lignin-0t-1600c and lignin-15t-1600c.