This version of the ESI replaces the one published on 24.11.2023 as the previous version contained a mistake regarding the deuterated solvent that the mechanistic experiments were run into.

Organocatalytic Friedel-Crafts Arylation of Aldehydes with Indoles utilizing \boldsymbol{N}-Heterocyclic Iod(az)olium Salts as the Halogen-Bonding Catalyst

Eirini M. Galathri, ${ }^{\text {a }}$ Thomas J. Kuczmera, ${ }^{\text {b }}$ Boris J. Nachtsheim*b and Christoforos G. Kokotos*a
${ }^{a}$ Laboratory of Organic Chemistry, Department of Chemistry, National and
Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
${ }^{b}$ Institut für Organische und Analytische Chemie, Universität Bremen, Leobener
Straße NW2C, 28359 Bremen, Germany

SUPPORTING INFORMATION

	Page
General Remarks	S2
Optimization of the Reaction Conditions for the Friedel-Crafts Arylation Between 3-Phenylpropanal (1a) and Indole (2a): Catalyst Screening	S3
Optimization of the Reaction Conditions for the Friedel-Crafts Arylation Between 3-Phenylpropanal (1a) and Indole (2a): Solvent Screening	S4
Optimization of the Reaction Conditions for the Friedel-Crafts Arylation Between 3-Phenylpropanal (1a) and Indole (2a): Catalyst Loading	S5
Synthesis of Starting Materials	S6
General Procedure for the Organocatalytic Reaction between Aldehydes and Indoles	S10
NMR Mechanistic Studies	S25
Procedure for Gram Scale Reaction	S33
Procedure for Green Metrics Reaction	S33
References	S36
NMR Spectra	S38

General Remarks

Chromatographic purification of products was accomplished using forced-flow chromatography on Merck ${ }^{\circledR}$ Kieselgel 60 70-230 mesh. Thin-layer chromatography (TLC) was performed on aluminum backed silica plates ($0.2 \mathrm{~mm}, 60 \mathrm{~F}^{254}$). Visualization of the developed chromatogram was performed by fluorescence quenching using phosphomolybdic acid, anisaldehyde or potassium permanganate stains. Melting points were determined on a Buchi ${ }^{\circledR} 530$ hot stage apparatus and are uncorrected. Mass spectra (ESI) were recorded on a Finningan ${ }^{\circledR}$ Surveyor MSQ LCMS spectrometer. HRMS spectra were recorded on a Bruker ${ }^{\circledR}$ Maxis Impact QTOF spectrometer. ${ }^{1} \mathrm{H}$-NMR, ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a Varian ${ }^{\circledR}$ Mercury ($200 \mathrm{MHz}, 188 \mathrm{MHz}$ and 50 MHz , respectively) or on an Avance III HD Bruker $400 \mathrm{MHz}(400 \mathrm{MHz}, 376 \mathrm{MHz}$ and 100 MHz , respectively) or on a Bruker Avance Neo $600 \mathrm{MHz}(600 \mathrm{MHz}$ and 150 MHz$)$ and are internally referenced to residual solvent signals. Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ are reported as follows: chemical shift $(\delta \mathrm{ppm})$, integration, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, br s = broad signal), coupling constant and assignment. Data for ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ are reported in terms of chemical shift ($\delta \mathrm{ppm}$) and are internally referenced to trifluoroacetic acid (188 MHz) or fluoroform (376 MHz). Data for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ are reported in terms of chemical shift ($\delta \mathrm{ppm}$). Mass spectra and conversions of the reactions were recorded on a Shimadzu ${ }^{\circledR}$ GCMS-QP2010 Plus Gas Chromatograph Mass Spectrometer utilizing a MEGA ${ }^{\circledR}$ column (MEGA-5, F.T.: $0.25 \mu \mathrm{~m}$, I.D.: 0.25 mm , L.: $30 \mathrm{~m}, \mathrm{~T}_{\text {max }}: 350{ }^{\circ} \mathrm{C}$, Column ID\# 11475). Catalyst 3a-3e were synthesized following litarture procedures. ${ }^{1}$

Optimization of the Reaction Conditions for the Friedel-Crafts Arylation Between 3-Phenylpropanal (1a) and Indole (2a): Catalyst Screening

1a

2a

Catalyst 3a-e ($0.5 \mathrm{~mol} \%$)
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
1 h , open air

Entry	Catalyst	$\begin{gathered} \text { Yield }^{[a]} \\ (\%) \\ \hline \end{gathered}$
1	-	0
2		50
3		56
4		83
5		55
6	${ }^{-} \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}$ $3 e$	90

[a] Yield determined by ${ }^{1} \mathrm{H}$-NMR using internal standard. The reaction was performed with 3-phenylpropanal (1a) ($26 \mathrm{mg}, 0.20 \mathrm{mmol}$), indole (2a) ($52 \mathrm{mg}, 0.44 \mathrm{mmol}$), catalyst 3a-e ($0.5 \mathrm{~mol} \%, 1.0 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ for 1 h .

Optimization of the Reaction Conditions for the Friedel-Crafts Arylation Between 3-Phenylpropanal (1a) and Indole (2a): Solvent Screening

Entry	Solvent	$\begin{gathered} \text { Yield }^{[a]} \\ (\%) \\ \hline \end{gathered}$
1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	93
2	CHCl_{3}	90
3	MeCN	93
4	EtOAc	89
5	DMSO	35
6	Toluene	96
7	Pet. Eth.	80
8	THF	50
9	$\mathrm{H}_{2} \mathrm{O}$	97 (93)
10	$\mathrm{Et}_{2} \mathrm{O}$	55
11	MeOH	53
12	Cyrene	-
13	2-Me-THF	76

[a] Yield determined by 1H-NMR using internal standard, yield of 4 a after isolation by column chromatography in parenthesis. The reaction was performed with 3-phenyl-propanal (1a) ($26 \mathrm{mg}, 0.20$ mmol), indole (2a) ($52 \mathrm{mg}, 0.44 \mathrm{mmol}$), catalyst 3e $(0.5 \mathrm{~mol} \%, 1.0 \mu \mathrm{~mol})$ in solvent (0.5 mL) for 1 h .

Optimization of the Reaction Conditions for the Friedel-Crafts Arylation Between 3-Phenylpropanal (1a) and Indole (2a): Catalyst Loading

Entry	Catalyst loading $(\mathbf{m o l \%} \%)$	Yield $^{[\mathrm{ab]}}$ $(\%)$
1	0.005	$60^{[\mathrm{b}]}$
2	0.01	$87(79)^{[\mathrm{bb}}$
3	0.1	$95^{[\mathrm{b}]}$
4	0.5	$97(93)$

[a] Yield determined by $1 \mathrm{H}-\mathrm{NMR}$ using internal standard, yield of 4 a after isolation by column chromatography in parenthesis. The reaction was performed with 3-phenyl-propanal (1a) ($26 \mathrm{mg}, 0.20$ mmol), indole (2a) ($52 \mathrm{mg}, 0.44 \mathrm{mmol}$), catalyst 3e in water (0.5 mL) for 1 h . [b] Reaction time 18 h .

Synthesis of Starting Materials

10-Undecynal ($\mathbf{1 h})^{2}$

To a flask containing 10 -undecynol ($504 \mathrm{mg}, 3.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, TEMPO $(47 \mathrm{mg}, 0.30 \mathrm{mmol})$ was added, followed by iodobenzene diacetate $(1.06 \mathrm{~g}, 3.30$ $\mathrm{mmol})$. The reaction mixture was stirred at room temperature until TLC showed consumption of the alcohol and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$. Saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(12 \mathrm{~mL})$ was then added, the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 6 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(18 \mathrm{~mL})$ and brine (18 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting oil was purified by flash chromatography (Pet. Ether/AcOEt 95:5); Colorless oil; 98% yield; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.75(1 \mathrm{H}, \mathrm{t}, J=1.4 \mathrm{~Hz}, \mathrm{CHO}), 2.41(2 \mathrm{H}, \mathrm{td}, J=7.3$ and 1.4 Hz , $\left.\mathrm{COCH}_{2}\right), 2.16\left(2 \mathrm{H}, \mathrm{td}, J=7.0\right.$ and $\left.2.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.93(1 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}, ~ \Xi \mathrm{CH}), 1.58-$ $1.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.47-1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.24-1.39\left(8 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 202.7,84.5,68.1,43.8,29.1,29.0,28.8,28.5,28.3,21.9,18.3$; MS (ESI) m/z $189[\mathrm{M}+\mathrm{Na}]^{+}$.

1-Methyl-1H-indole (2t) ${ }^{3}$

To a stirring solution of indole ($352 \mathrm{mg}, 3.00 \mathrm{mmol}$) in dry THF (6 mL) at $0^{\circ} \mathrm{C}, \mathrm{NaH}$ ($180 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 4.50 mmol) was added under an argon atmosphere. The heterogenous reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min and at room temperature for 1 h . The reaction mixture was then cooled at $0^{\circ} \mathrm{C}$, iodomethane $(0.2 \mathrm{ml}, 4.00 \mathrm{mmol})$ was added and allowed to warm at room temperature. After 30 min, the reaction mixture was cooled at $0{ }^{\circ} \mathrm{C}$, quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5$ mL) and extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic layers were
washed with brine ($1 \times 50 \mathrm{ml}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting oil was purified by flash chromatography (Pet. Ether/AcOEt 10:1); Green oil; 83% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.68(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$, ArH), $7.38(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.28(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.16(1 \mathrm{H}, \mathrm{t}, J=$ $7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.10(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{ArH}), 6.54(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{ArH}), 3.84(3 \mathrm{H}$, $\mathrm{s}, \mathrm{NCH}_{3}$); ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 136.7,128.7,128.4,121.4,120.8,119.2$, 109.1, 100.9, 32.8; MS (ESI) m/z $154[\mathrm{M}+\mathrm{Na}]^{+}$.

1-Benzyl-1H-indole (2u) ${ }^{4}$

Same procedure as above using benzyl bromide; Yellow solid, mp 39-40 ${ }^{\circ} \mathrm{C}$; 82% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.69(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.32-7.28(4 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.17-7.11(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.59(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, \mathrm{ArH}), 5.36\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 137.5,136.3,128.7,128.6,128.2,127.6,126.8$, 121.7, 121.0, 119.5, 109.7, 101.7, 50.1; MS (ESI) m/z $230[\mathrm{M}+\mathrm{Na}]^{+}$.

1-Isopropyl-1H-indole (2v) ${ }^{5}$

To a stirring solution of indole ($352 \mathrm{mg}, 3.00 \mathrm{mmol}$) in anhydrous DMF (6 mL) at 0 ${ }^{\circ} \mathrm{C}, \mathrm{NaH}(180 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 6.00 mmol) was added under an argon atmosphere. The heterogenous reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Isopropyl iodide ($0.7 \mathrm{ml}, 7.50 \mathrm{mmol}$) was added, the reaction mixture warm at room temperature and allowed to stir for 12 h . Water (6 mL) was added and the reaction mixture was extracted with ethyl acetate ($2 \times 3 \mathrm{~mL}$). The combined organic layers were washed using 1 M aqueous $\mathrm{HCl}(3 \times 3 \mathrm{~mL})$ and water ($2 \times 3 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting oil was purified by flash chromatography (Pet. Ether/AcOEt 10:1); Yellow oil; 93\% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.68(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.43(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.28-7.21$
($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.14(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}, \mathrm{ArH}), 6.56(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{ArH})$, 4.78-4.68 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$), $1.58\left(6 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta: 135.5,128.6,123.5,121.1,120.9,119.2,109.4,101.1,47.0,22.8 ; \mathrm{MS}$ (ESI) m/z $182[\mathrm{M}+\mathrm{Na}]^{+}$.

1-Phenyl-1H-indole (2w) ${ }^{4}$

In a Schlenk flask, iodobenzene ($0.30 \mathrm{~mL}, 2.00 \mathrm{mmol}$), indole ($352 \mathrm{mg}, 3.00 \mathrm{mmol}$), $\mathrm{Cu}_{2} \mathrm{O}(30 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{KOH}(224 \mathrm{mg}, 4.00 \mathrm{mmol})$ were added. After addition of dry DMSO (4 mL), the reaction mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 12 h under an argon atmosphere. The reaction mixture was diluted with EtOAc (10 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 6 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($2 \times 6 \mathrm{~mL}$) and the combined organic layers were washed with brine ($1 \times 20 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The resulting oil was purified by flash chromatography (Pet. Ether/AcOEt 20:1); Yellow oil; 60% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.73(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.61(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}$, ArH), 7.58-7.54 (4H, m, ArH), 7.43-7.37 (2H, m, ArH), 7.30-7.18 (2H, m, ArH), 6.73 $(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 139.8,135.8,129.6,129.3$, 127.9, 126.4, 124.4, 122.3, 121.1, 120.3, 110.5, 103.5; MS (ESI) m/z $216[\mathrm{M}+\mathrm{Na}]^{+}$.

1-Butyl-1H-indole (2x) ${ }^{6}$

$\mathrm{NaH}(90 \mathrm{mg}, 60 \%$ dispersion in mineral oil, 3.00 mmol) was added to indole (351 mg , $3.00 \mathrm{mmol})$ in dry DMSO $(5 \mathrm{~mL})$ under argon at room temperature and the reaction mixture was stirred for 2 h . Then, butyl iodide ($772 \mathrm{mg}, 4.20 \mathrm{mmol}$) was added and the reaction mixture was stirred for 4.5 h . When the reaction was judged complete by

TLC, water (50 mL) was added and the crude reaction mixture was extracted with chloroform ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The resulting oil was purified by flash chromatography (Pet. Ether/AcOEt 20:1); Green oil; 51% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.66(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.38(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.23(1 \mathrm{H}, \mathrm{t}, J$ $=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.15-7.09(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.52(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{ArH}), 4.15(2 \mathrm{H}, \mathrm{t}, J$ $\left.=7.1 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 1.90-1.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.44-1.33\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.97(3 \mathrm{H}, \mathrm{t}, J=$ $7.4 \mathrm{~Hz}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 136.0,128.5,127.8,121.3,120.9$, 119.1, 109.4, 100.8, 46.1, 32.3, 20.2, 13.7; MS (ESI) m/z $196[\mathrm{M}+\mathrm{Na}]^{+}$.

1-Allyl-1H-indole (2y) ${ }^{7}$

A 50 mL round-bottom flask equipped with a stir bar was charged with indole (234 $\mathrm{mg}, 2.00 \mathrm{mmol}$) and crushed potassium hydroxide ($336 \mathrm{mg}, 6.00 \mathrm{mmol}$). Then, DMSO (5 mL) was added to the flask and the solution was stirred at room temperature for 15 min . Next, allyl bromide ($484 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added. The reaction mixture was further stirred at room temperature for 18 h . Then, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and washed with water (15 mL). The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The resulting oil was purified by flash chromatography; Green oil; 96% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.67(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.36(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$, ArH), $7.24(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.15-7.10(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.56(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}$, $\mathrm{ArH}), 6.09-5.97(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 5.26-5.19(1 \mathrm{H}, \mathrm{m},=\mathrm{CHH}), 5.17-5.08(1 \mathrm{H}, \mathrm{m},=\mathrm{CHH})$, $4.77\left(2 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}, \mathrm{NCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 136.1,133.5,128.7$, $127.8,121.5,120.9,119.4,117.2,109.5,101.4,48.8$; MS (ESI) m/z $180[\mathrm{M}+\mathrm{Na}]^{+}$.

General Procedure for the Organocatalytic Reaction Between
 Aldehydes and Indoles

In a glass vial, containing catalyst $\mathbf{3 e}(1.8 \mathrm{mg}, 1.0 \mu \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$, aldehyde (0.20 mmol) and indole (0.44 mmol) were added consecutively. The reaction mixture was stirred for 1 h . After reaction completion, the reaction mixture was extracted with $\mathrm{EtOAc}(2 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The desired product was isolated after purification by column chromatography.

3,3'-(3-Phenylpropane-1,1-diyl)bis($\mathbf{1 H}$-indole) (4a) ${ }^{8}$

Brown solid; 93% yield; mp 156-158 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.88(2 \mathrm{H}$, br $\mathrm{s}, 2 \mathrm{x} \mathrm{NH}), 7.59(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 7.36(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 7.30(2 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 7.26-7.16(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.11-7.05(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.03(2 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH}), 4.55(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{CH}), 2.81-2.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.65-2.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 142.6,136.6,128.5,128.3,127.1,125.7,121.8$, 121.5, 120.1, 119.6, 119.1, 111.1, 37.4, 34.4, 33.5; MS (ESI) m/z 373 [M+Na] ${ }^{+}$.

3,3'-(Dodecane-1,1-diyl)bis(1H-indole) (4b) ${ }^{9}$

Brown oil; 60% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.88(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH}), 7.64$ ($2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}$), $7.35(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.18(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{ArH})$, $7.07(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.01(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.51(1 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{CH}), 2.30-$ $2.19\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.36-1.20\left(18 \mathrm{H}, \mathrm{m}, 9 \mathrm{x} \mathrm{CH}_{2}\right), 0.97-088\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 136.6,127.2,121.7,121.3,120.6,119.7,119.0,111.0,35.9$, 34.0, 31.9, 29.8, 29.7, 29.7, 29.6, 29.3, 28.3, 22.7, 14.1; MS (ESI) m/z $423[\mathrm{M}+\mathrm{Na}]^{+}$.

$$
\text { 3, } \mathbf{3}^{\prime} \text {-(Heptane)bis }\left(1 H \text {-indole) }(4 c)^{10}\right.
$$

Brown oil; 84% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.83(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH}), 7.67$ ($2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}$), $7.34(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.21(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{ArH})$, $7.11(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \operatorname{ArH}), 6.96(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{ArH}), 4.53(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}$, $\mathrm{CH}), 2.33-2.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.53-1.39\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{CH}_{2}\right), 1.38-1.25(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ $\left.\mathrm{CH}_{2}\right), 0.93\left(3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 136.5,127.2$, $121.6,121.4,120.5,119.6,118.9,111.0,35.9,34.0,31.8,29.4,28.3,22.7,14.1$; MS (ESI) m/z $353[\mathrm{M}+\mathrm{Na}]^{+}$.

Di-(1H-indol-3-yl)methane (4d) ${ }^{11}$

White solid; 50% yield; mp $160-162{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.89(2 \mathrm{H}, \mathrm{br}$ s, $2 \times \mathrm{NH}$), $7.66(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.38(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.23(2 \mathrm{H}, \mathrm{t}, J$ $=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.13(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 6.95(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 136.4,127.6,122.2,121.9,119.2,119.2,115.7$, 111.0, 21.2; MS (ESI) m/z $269[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-((Cyclohexane)methylene)bis($\mathbf{1 H}$-indole) (4e) ${ }^{12}$

Brown solid; 74% yield; mp 158-160 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.90(2 \mathrm{H}, \mathrm{br}$ s, 2 x NH), $7.69(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.33(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.16(2 \mathrm{H}, \mathrm{t}, J$ $=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.11(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.08(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 4.31$ $(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{CH}), 2.34-2.22(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.87(2 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}, 2 \times \mathrm{CH} H)$, 1.76-1.62 (4H, m, $4 \times \mathrm{CHH}$), 1.34-1.19 (4H, m, $4 \times \mathrm{CHH}$) ; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 136.3,127.8,121.6,121.5,119.7,119.7,119.0,110.9,42.9,40.1,32.4$, 26.7, 26.7; MS (ESI) m/z $351[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-(2-Methylbutane)bis($\mathbf{1 H}$-indole) (4f) ${ }^{13}$

Brown oil; 79% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.84(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH})$, 7.74$7.63(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.18(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.14-$ $7.09(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.06(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.44(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{CH}), 2.50-2.37(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}), 1.77-1.62(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H), 1.30-1.15(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H), 1.03(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}$, CH_{3}), $0.97\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 136.3,136.2$, $127.9,127.7,121.8,121.6,121.6,119.6,119.0,111.0,39.4,39.4,28.0,17.8,12.0$; MS (ESI) m/z $325[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-(3-Methylbutane-1,1-diyl)bis($\mathbf{1 H}$-indole) (4g) ${ }^{13}$

Brown oil; 98% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.80-7.65(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NH}$ and ArH), $7.33(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.24(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.15(2 \mathrm{H}, \mathrm{t}, J=$ $7.5 \mathrm{~Hz}, \mathrm{ArH}), 6.93(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.68(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}), 2.18(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 1.80-1.68(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.08\left(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 136.5,127.0,121.7,121.4,120.4,119.5,119.0,111.1,45.2,31.6,25.9$, 22.8; MS (ESI) m/z $325[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-(Oleyl-2-methylene)bis($\mathbf{1 H}$-indole) (4h) ${ }^{13}$

Brown oil; 80% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.84(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH}), 7.65$ $(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.35(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.20(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}$, ArH), 7.09 ($2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}$), 6.99 ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 5.47-5.37 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}=$), $4.52(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}), 2.31-2.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.13-1.98\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, 1.46-1.24 (22H, m, $\left.11 \times \mathrm{CH}_{2}\right), 0.98-0.90\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 136.6,129.9,127.2,121.7,121.4,120.5,119.6,118.9,111.0,35.8,34.0,31.9,29.8$, 29.5, 29.3, 29.3, 28.3, 27.2, 22.7, 14.1; MS (ESI) m/z $505[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-(Undec-10-yne-1,1-diyl)bis($\mathbf{1 H}$-indole) (4i) ${ }^{13}$

Brown oil; 20\% yield; Reaction time 1 h or $18 \mathrm{~h} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.80$ $(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH}), 7.67(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.34(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.24-$ 7.18 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.15-7.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 6.96 ($2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{ArH}$), $4.53(1 \mathrm{H}$, $\mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}), 2.31-2.19\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.01(1 \mathrm{H}, \mathrm{t}, J=2.7 \mathrm{~Hz}, \Xi \mathrm{CH}), 1.61-$ $1.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.48-1.37\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 1.37-1.29\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 136.5,127.1,121.6,121.4,120.4,119.6,118.9,111.0$,
84.8, 68.1, 35.8, 33.9, 29.6, 29.4, 29.0, 28.7, 28.4, 28.2, 18.3; MS (ESI) m/z 405 $[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-(Phenylmethylene)bis(1 H -indole) $(4 \mathrm{j})^{8}$

Red foam; 70% yield; mp $140-142{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.77(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $2 \times \mathrm{NH}), 7.45(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.40(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.38-7.31(4 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.28(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.23(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{ArH}), 7.07(2 \mathrm{H}, \mathrm{t}, J=$ $7.7 \mathrm{~Hz}, \mathrm{ArH}), 6.62(2 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{ArH}), 5.94(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta: 144.0,136.6,128.7,128.2,127.0,126.1,123.6,121.9,119.9,119.6,119.2$, 111.0, 40.2; MS (ESI) m/z $345[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-((2-Bromophenyl)methylene)bis($\mathbf{1 H}$-indole) (4k) ${ }^{14}$

Pink foam; 96% yield; mp $76-78{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.83(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2$ x NH), $7.66(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and $1.4 \mathrm{~Hz}, \mathrm{ArH}), 7.45(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.37$ $(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.26(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and $1.9 \mathrm{~Hz}, \mathrm{ArH}), 7.22(2 \mathrm{H}, \mathrm{t}, J=7.9$ $\mathrm{Hz}, \mathrm{ArH}), 7.17(1 \mathrm{H}, \mathrm{td}, J=7.8$ and $1.4 \mathrm{~Hz}, \mathrm{ArH}), 7.11(1 \mathrm{H}, \mathrm{td}, J=7.8$ and 1.9 Hz , ArH), $7.07(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 6.59(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{ArH}), 6.35(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 143.0,136.7,132.8,130.4,127.8,127.3,127.0$, $124.8,123.8,122.0,119.9,119.3,118.4,111.1,39.5 ;$ MS (ESI) m/z $425[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-((4-Bromophenyl)methylene)bis($\mathbf{1 H}$-indole) (41) ${ }^{16}$

Red foam; 54% yield; mp 112-114 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.89(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $2 \times \mathrm{NH}), 7.46-7.39(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.36(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.27-7.19(4 \mathrm{H}, \mathrm{m}$, ArH), $7.07(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 6.60(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 5.88(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 143.1,136.6,131.2,130.4,126.8,123.6,122.0,119.8,119.7$, 119.3, 118.9, 111.1, 39.6; MS (ESI) m/z $425[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-((4-Ethynylphenyl)methylene) bis($\mathbf{1 H}$-indole) (4m) ${ }^{17}$

Red foam; 86% yield; mp 208-210 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.04(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $2 \times \mathrm{NH}), 7.57(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.47(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.40(2 \mathrm{H}, \mathrm{d}, J$ $=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.36(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.23(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.06$ $(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 6.66(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{ArH}), 5.96(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 149.8,136.7,132.1,129.5,126.7,123.6,122.2,119.5,119.2$, 119.1, 118.1, 111.2, 109.9, 40.3; MS (ESI) m/z $370[\mathrm{M}+\mathrm{Na}]^{+}$.

3, $\mathbf{3}^{\prime}$-((4-Isopropylphenyl)methylene)bis($\mathbf{1 H}$-indole) (4n) $)^{18}$

Orange oil; 53% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.80(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH}), 7.46$ $(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.37-7.34(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.31(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{ArH})$, 7.24-7.16 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.08-7.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $6.65(2 \mathrm{H}, \mathrm{dd}, J=2.4$ and 0.8 Hz , $\mathrm{ArH}), 5.90(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 2.98-2.89(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.29\left(6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 146.4,141.2,136.6,128.5,127.1,126.2,123.5,121.8$, 119.9, 119.9, 119.1, 111.0, 39.7, 33.6, 24.0; MS (ESI) m/z 387 [M+Na] ${ }^{+}$.

3,3'-((4-(Trifluoromethyl)phenyl)methylene)bis($\mathbf{1 H}$-indole) (40) ${ }^{8}$

Brown foam; 77% yield; reaction time $18 \mathrm{~h} ; \mathrm{mp} 67-69{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.79(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH}), 7.60(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.1$ $\mathrm{Hz}, \mathrm{ArH}), 7.46(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 7.38(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{ArH}), 7.31-7.25$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.15-7.10(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.61(2 \mathrm{H}, \mathrm{dd}, J=2.4$ and $0.8 \mathrm{~Hz}, \mathrm{ArH}), 6.01$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 148.2,136.7,129.1,128.5$ (q, $J=32.0$ $\mathrm{Hz}), 126.9,125.3,125.3(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.5(\mathrm{q}, J=272.0 \mathrm{~Hz}), 123.8,122.3,119.8$, 119.5, 118.8, 111.3, 40.2; ${ }^{19}$ F NMR: ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 62.1$; MS (ESI) m/z 413 $[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-((4-Chlorophenyl)methylene)bis($\mathbf{1 H}$-indole) (4p) ${ }^{8}$

Orange foam; 80% yield; $\mathrm{mp} 77-79{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.70(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $2 \times \mathrm{NH}), 7.47(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.35(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.32(4 \mathrm{H}, \mathrm{s}$, ArH), 7.30-7.26 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.15-7.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 6.56 ($2 \mathrm{H}, \mathrm{dd}, J=2.4$ and 0.8 $\mathrm{Hz}, \mathrm{ArH}$), $5.93(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 142.5,136.5,131.7$, 130.0, 128.3, 126.8, 123.6, 122.0, 119.7, 119.3, 118.9, 111.1, 39.5; MS (ESI) m/z 379 $[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-((4-Methoxyphenyl)methylene)bis($\mathbf{1 H}$-indole) (4q) ${ }^{8}$

Orange solid; 75% yield; mp 188-190 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.89(2 \mathrm{H}$, br s, 2 x NH), $7.43(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.37(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.29-7.27$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.20(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.04(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 6.85(2 \mathrm{H}$, $\mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 6.66(2 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{ArH}), 5.87(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 3.81(3 \mathrm{H}, \mathrm{s}$, OCH_{3}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 157.9,136.7,136.2,129.6,127.1,123.5$, $121.9,120.0,120.0,119.2,113.6,111.0,55.2,39.3 ;$ MS (ESI) m/z $375[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-((4-Nitrophenyl)methylene)bis($\mathbf{1 H}$-indole) (4r) ${ }^{15}$

Pink solid; 88% yield; reaction time $18 \mathrm{~h} ; \mathrm{mp} 217-219{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 8.16(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 8.04(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{x} \mathrm{NH}), 7.53(2 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}, \mathrm{ArH}), 7.41(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.36(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.23(2 \mathrm{H}, \mathrm{t}, J$ $=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.05(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 6.71(2 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{ArH}), 6.02$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 151.9,146.6,136.7,132.0,129.5,128.6$, 126.7, 123.6, 122.3, 119.5, 118.1, 111.3, 40.2; MS (ESI) m/z 390 [M+Na]+.

3,3'-(Cyclohexane-1,1-diyl)bis(1H-indole) (4s) ${ }^{19}$

Brown foam; 96% yield; reaction time $18 \mathrm{~h} ; \mathrm{mp} 76-78{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.81(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{NH}), 7.65(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.32(2 \mathrm{H}, \mathrm{d}, J=7.6$ $\mathrm{Hz}, \mathrm{ArH}), 7.15(4 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.05(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.00(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, ArH), 2.67-2.58 (4H, m, $4 \times \mathrm{CH} H), 1.78-1.62(6 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CHH}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 137.0,126.2,123.5,122.1,121.4,121.1,118.4,111.1,39.5,36.8$, 26.7, 22.9; MS (ESI) m/z 337 [M+Na] ${ }^{+}$.

3,3'-(3-Phenylpropane-1,1-diyl)bis(2-methyl-1H-indole) (4t) ${ }^{20}$

Brown solid; 75% yield; mp 188-190 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.69(2 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.63(2 \mathrm{H}, \mathrm{br} \mathrm{s} 2 \mathrm{NH}),, 7.29(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.23(3 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.19(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.10(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.04$ $(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 4.48(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}), 2.85-2.71\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, 2.27 ($6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 142.5,135.1,130.9,128.5$, $128.4,128.2$, 125.6, 120.4, 119.3, 119.0, 114.5, 110.1, 36.2, 34.9, 34.3, 12.6; MS (ESI) m/z $401[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-(3-Phenylpropane-1,1-diyl)bis(1-methyl-1H-indole) (4u) ${ }^{21}$

Brown oil; 76% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.61(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH})$, $7.31(4 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.27-7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.08(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{ArH})$, $6.92(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.54(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}), 3.76\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right), 2.80-2.74$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.62-2.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 142.7,137.3$, $128.5,128.2,127.5,126.3,125.6,121.3,119.7,118.8,118.5,109.1,37.9,34.5,33.3$, 32.6; MS (ESI) m/z $401[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-(3-Phenylpropane-1,1-diyl)bis(1-benzyl-1H-indole) (4v) ${ }^{13}$

Brown oil; 94% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.76-7.67$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.467.33 (10H, m, ArH), 7.31-7.23 (5H, m, ArH), 7.22-7.12 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 5.36 ($4 \mathrm{H}, \mathrm{s}, 2$ x NCH_{2}), $4.67(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}), 2.93-2.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.78-2.66(2 \mathrm{H}, \mathrm{m}$, CH_{2}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 142.6,137.9,137.0,128.6,128.5,128.2,127.4$, $126.5,125.8,121.5,119.9,119.2,118.7,109.6,49.7,37.4,34.4,33.6$; MS (ESI) m/z $553[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-(3-Phenylpropane-1,1-diyl)bis(1-isopropyl-1H-indole) (4w)

Brown oil; 80% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.61(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH})$, $7.40(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.34(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.26-7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.14(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.07(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 4.75-4.65(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}), 4.56$ $(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}), 2.80-2.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.68-2.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.56(6 \mathrm{H}, \mathrm{d}$, $\left.J=7.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right), 1.54\left(6 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 142.8,136.2,128.6,128.2,127.6,125.6,121.1,120.9,119.7,118.7,118.3,109.3$, $46.8,37.7,34.5,33.9,22.8,22.7$; HRMS exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\left(\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{Na}^{+}\right)$requires $\mathrm{m} / \mathrm{z} 457.2614$, found $\mathrm{m} / \mathrm{z} 457.2622$.

3,3'-(3-Phenylpropane-1,1-diyl)bis(1-phenyl-1H-indole) (4x) ${ }^{13}$

Brown oil; 99% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.97(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH})$, $7.85(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.72(4 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}), 7.67(4 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}$, ArH), 7.57-7.54 (4H, m, ArH), 7.52-7.44 (7H, m, ArH), $7.40(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{ArH})$, $4.94(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}), 3.13\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.97(2 \mathrm{H}, \mathrm{q}, J=7.7 \mathrm{~Hz}$, CH_{2}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 142.3,139.8,136.4,129.4,128.6,128.5,128.3$, 125.9, 125.7, 125.3, 124.1, 122.3, 120.8, 119.9, 119.8, 110.5, 37.5, 34.5, 33.3; MS (ESI) m/z $525[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-(3-Phenylpropane-1,1-diyl)bis(1-butyl-1H-indole) (4y) ${ }^{13}$

Brown oil; 98% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.84(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArH})$, 7.53 ($4 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{ArH}$), $7.48-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.28(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, \mathrm{ArH})$, $7.20(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 4.78(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}), 4.26\left(4 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2}\right)$, 3.05-2.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.90-2.80 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.07-1.94 (4H, m, $2 \mathrm{x} \mathrm{CH}_{2}$), 1.59$1.50\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.17\left(6 \mathrm{H}, \mathrm{t}, \quad J=7.4 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 142.8,136.6,128.5,128.2,127.6,125.6,125.4,121.0,119.9,118.5,118.3$, 109.3, 45.9, 37.7, 34.5, 33.6, 32.3, 20.2, 13.7; MS (ESI) m/z $485[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-(3-Phenylpropane-1,1-diyl)bis(1-allyl-1H-indole) (4z) ${ }^{13}$

Brown oil; 97% yield; ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.67(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$, 7.41-7.34 (4H, m, ArH), 7.32-7.23 (5H, m, ArH), 7.13 ($2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}$), 7.05 $(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.13-6.00(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}=\mathrm{CH}), 5.26(2 \mathrm{H}, \mathrm{dd}, J=10.3$ and $1.5 \mathrm{~Hz}, 2 \mathrm{x}$ $=\mathrm{CH} H), 5.14(2 \mathrm{H}, \mathrm{dd}, J=17.3$ and $1.5 \mathrm{~Hz}, 2 \mathrm{x}=\mathrm{CH} H), 4.75(4 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{x}$ $\left.\mathrm{NCH}_{2}\right), 4.62(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}), 2.87-2.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.72-2.63(2 \mathrm{H}, \mathrm{m}$, CH_{2}) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 142.7,136.7,133.8,128.5,128.2,127.7,125.6$, $125.3,121.3,119.8,118.6,116.8,109.5,48.6,37.7,34.5,33.5$; MS (ESI) m/z 453 $[\mathrm{M}+\mathrm{Na}]^{+}$.

3,3'-(3-Phenylpropane-1,1-diyl)bis(1-methyl-2-phenyl-1H-indole) (4aa)

Green solid; 78% yield; mp $130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.69(2 \mathrm{H}, \mathrm{d}$, $J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.44-7.35(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.34-7.25(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.24-7.17(3 \mathrm{H}, \mathrm{m}$, ArH), $7.08(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.02-6.91(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.56(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}$, $\mathrm{CH}), 3.50\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{3}\right), 2.72-2.59\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta: 142.4,138.1,136.9,132.5,130.9,128.4,128.0,127.9,127.6,127.3,125.2$, $121.0,120.8,118.9,115.8,109.0,36.7,34.4,34.2,30.5$; HRMS exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{Na}^{+}\right)$requires $\mathrm{m} / \mathrm{z} 553.2614$, found $\mathrm{m} / \mathrm{z} 553.2614$.

3,3'-(3-Phenylpropane-1,1-diyl)bis(1H-pyrrole) (4ab)

Brown oil; 60% yield; ${ }^{1} \mathrm{H}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.38-7.06$ ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 5.96 $(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 3.90-3.78(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.68-2.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.24-2.13(2 \mathrm{H}, \mathrm{m}$, CH_{2}) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 141.9,132.7,128.6,128.5,128.5,128.3,125.8$, 117.7, 108.2, 105.5, 105.4, 105.2, 36.8, 35.2, 33.5; HRMS exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{Na}^{+}\right)$requires $\mathrm{m} / \mathrm{z} 273.1362$, found $\mathrm{m} / \mathrm{z} 273.1366$.

NMR Mechanistic Studies

First, we investigated the halogen-bond (XB) between iodonium catalyst $\mathbf{3 e}$ with 3-phenyl-propanal (1a) by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$ and $150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$). We observed a slight low-field proton and a significant carbon shift, which indicates the halogen bond between $\mathbf{3 e}$ and 1a.

[^0]
${ }^{13} \mathrm{C}$-NMR spectrum (150 MHz) of 3-phenyl-propanal (1a) and 3-phenylpropanal (1a) with catalyst $\mathbf{3 e}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Also, we investigated the halogen-bond (XB) between iodonium catalysts 3b or 3a with 3-phenyl-propanal (1a) by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (600 MHz and $150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$). We observed similar low-field proton and carbon shifts, which indicates the halogen bond between $\mathbf{3 a}$ and $\mathbf{1 a}$, but between $\mathbf{3 b}$ and $\mathbf{1 a}$, we did not observe any significant change.

${ }^{1} \mathrm{H}$-NMR spectrum (600 MHz) of 3-phenyl-propanal and 3-phenylpropanal with catalyst 3b in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

${ }^{13} \mathrm{C}$-NMR spectrum (150 MHz) of 3-phenyl-propanal and 3-phenylpropanal with catalyst 3b in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

${ }^{1} \mathrm{H}$-NMR spectrum (600 MHz) of 3-phenyl-propanal and 3-phenylpropanal with catalyst $\mathbf{3 a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Next, we investigated the halogen-bond (XB) between iodonium catalyst $\mathbf{3 e}$ with indole (2a) by ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (400 MHz and 100 MHz , DMSO- d_{6}). We did not observe any significant change.

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $(400 \mathrm{MHz})$ of indole (2a) with catalyst $\mathbf{3 e}$ in DMSO- d_{6}.

${ }^{13} \mathrm{C}$-NMR spectrum $(100 \mathrm{MHz})$ of indole (2a) with catalyst $\mathbf{3} \mathbf{e}$ in DMSO- d_{6}.

Procedure for Gram Scale Reaction

In a round bottom flask, containing catalyst $\mathbf{3 e}(2 \mathrm{mg}, 1 \mu \mathrm{~mol})$, in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, 3-phenyl-propanal $(1.34 \mathrm{~g}, 10.00 \mathrm{mmol})$ and indole $(2.58 \mathrm{~g}, 22.00 \mathrm{mmol})$ were added consecutively. The reaction mixture was stirred for 18 h . After reaction completion, the reaction mixture was extracted in EtOAc (50 mL). The organic layer was concentrated in vacuo. The desired product was isolated after purification by column chromatography, $2.74 \mathrm{~g}, 79 \%$ yield.

Procedure for Green Metrics Reaction

In a glass vial, containing catalyst $\mathbf{3 e}(0.4 \mathrm{mg}, 0.2 \mu \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$, 3-phenylpropanal ($27 \mathrm{mg}, 0.20 \mathrm{mmol}$) and indole ($52 \mathrm{mg}, 0.44 \mathrm{mmol}$) were added consecutively. The reaction mixture was stirred for 18 h . After reaction completion, the reaction mixture was extracted with EtOAc (2 mL). The organic layer was concentrated in vacuo. No further purification was required.

E-factor calculation

After obtaining the desired product, without proceeding in purification by column chromatography, the E-factor was calculated.

E factor $=\left[1804(\right.$ EtOAc $)+500\left(\mathrm{H}_{2} \mathrm{O}\right)+27(3$-phenyl-propanal) $+52($ indole $)+0.4$ (catalyst 3c) - 68 (product) $\mathrm{mg} / 68 \mathrm{mg}=34.1$
${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of crude reaction mixture after extraction

装骂罗
$\underbrace{\sim \sim}_{=1}$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of isolated product after purification by column chromatography

Atom economy calculation

$\%$ Atom econ. $=\frac{\text { Molar mass of Product }}{\text { Molar mass of All reactants }} \times 100 \%=\frac{350 \mathrm{mg} / \mathrm{mmol}}{(135+117+117) \mathrm{mg} / \mathrm{mmol}}$
$\times 100 \%=95 \%$

Atom efficiency

For the formation of one molecule of product, only one molecule of water is lost.

Carbon efficiency

No carbon atom lost.

Reaction mass efficiency

$\frac{\text { Atom mass of desired product }}{\text { Mass of reactants }} \times 100 \%=\frac{68 \mathrm{mg}}{27 \mathrm{mg}+52 \mathrm{mg}} \times 100 \%=86 \%$

References

1. A. Boelke, T. J. Kuczmera, E. Lork and B. J. Nachtsheim, Chem. Eur. J., 2021, 27, 13128-13134.
2. G. Pelletier, W. S. Bechara, A. B. Charette, J. Am. Chem. Soc., 2010, 132, 12817-12819.
3. Y.-M. Su, Y. Hou, F. Yin, Y.-M. Xu, Y. Li, X. Zheng, X.-S. Wang, Org. Lett., 2014, 16, 2958-2961.
4. J. Kim, H. Kim, S. Chang, Org. Lett., 2012, 14, 3924-3927.
5. H. J. Winfield, M. M. Cahill, K. D. O' Shea, L. T. Pierce, T. Robert, S. Ruchaud, S. Bach, P. Marchand, F. O. McCarthy, Bioorg. Med. Chem., 2018, 26, 4209-4224.
6. J. C. Borghs, V. Zubar, L. M. Azofra, J. Sklyaruk, M. Rueping, Org. Lett., 2020, 22, 4222-4227.
7. F. Turnu, A. Luridiana, A. Cocco, S. Porcu, A. Frongia, G. Sarais, F. Secci, Org. Lett., 2019, 21, 7329-7332.
8. Z. M. Salem, J. Saway, J. J. Badillo, Org. Lett., 2019, 21, 8528-8532.
9. G. Tocco, G. Zedda, M. Casu, G. Simbula, M. Begala, Molecules, 2017, 22, 1747.
10. C. Fan, R. Li, J. Duan, K. Xu, Y. Liu, D. Wang, X. He, Synth. Commun., 2022, 1155-1164.
11. S. Singh, R. Mahato, P. Sharma, N. Yadav, N. Vodnala, C. K. Hazra, Chem. Eur. J., 2022, 28, e2021045.
12. J. Beltrá, M. C. Gimeno, R. P. Herrera, Beilstein J. Org. Chem., 2014, 10, 2206-2214.
13. E. M. Galathri, L. Di Terlizzi, M. Fagnoni, S. Protti, C. G. Kokotos, Org. Biomol. Chem., 2023, 21, 365-369.
14. A. Gogoi, G. Basumatary, G. Bez, Synthesis, 2023, 55, 786-798.
15. S. Rinkam, W. Senapak, S. Watchasit, R. Saeeng, U. Sirion, Synlett, 2022, 33, 1383-1390
16. Z. Wu, G. Wang, S. Yuan, D. Wu, L. Wanyi, B. Ma, H. Zhan, S. Bi, X. Chen, Green Chem., 2019, 21, 3542-3546.
17. J. V. Alegre-Requena, A. Valero-Tena, I. G. Sonsona, S. Uriel, R. P. Herrera, Org. Biomol. Chem., 2020, 18, 1594-1601.
18. Y. Vinita, B. Ekambaram, B. M. Santosh, Adv. Synth. Catal., 2021, 44314439.
19. T. Yang, H. Lu, Y. Shu, Y. Ou, L. Hong, C.-T. Au, R. Qiu, Org. Lett., 2020, 22, 827-831.
20. F. He, P. Li, Y. Gu, G. Li, Green Chem., 2009, 11, 1767-1773.
21. C. Qiao, X.-F. Liu, H.-C. Fu, H.-P. Yang, Z.-B. Zhang, L.-N. He, Chem. Asian J., 2018, 17, 2664-2670.

$\stackrel{\otimes}{\dagger}$

$\stackrel{0}{\stackrel{0}{7}}$

留亭

等等

枵

$\begin{aligned} & \text { M. } \\ & \text { on } \\ & \underset{\sim}{6} \\ & \gamma \end{aligned}$	Eir	
	$\stackrel{\sim}{\mathrm{V}}$	

品㫨星

$\stackrel{\leftrightarrow}{\square}$

譳
壮等易

\bigcirc	
\％	ヘベ入o
T	$\overrightarrow{\text { avin }}$

$\stackrel{\rightharpoonup}{n}$

育

4n

䜤

$4 q$
$\stackrel{\vec{m}}{\stackrel{\rightharpoonup}{1}}$

8
+

$4 t$

$4 u$

150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | | |
| :--- |
| $\mathrm{f1}(\mathrm{ppm})$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

桨よが

150	140	130	120	110	100	90	${ }_{f}^{80}(\mathrm{ppm})$	70	60	50	40	30	20	10	0

$4 y$

| 1 | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

シダ蒔
$\stackrel{8}{i}$

$\underset{i}{\text { Ni }}$

${ }_{\alpha}^{\alpha \times-}$
$\stackrel{8}{8}$
$\stackrel{8}{\circ}$
舫解

[^0]: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (600 MHz) of 3-phenyl-propanal (1a) and 3-phenylpropanal (1a) with catalyst $\mathbf{3 e}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

