This version of the ESI replaces the one published on 24.11.2023 as the previous version contained a mistake regarding the deuterated solvent that the mechanistic experiments were run into.

Organocatalytic Friedel-Crafts Arylation of Aldehydes with Indoles utilizing N-Heterocyclic Iod(az)olium Salts as the Halogen-Bonding Catalyst

Eirini M. Galathri, Thomas J. Kuczmera, Boris J. Nachtsheim* and Christoforos G. Kokotos*

*aLaboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece

*bInstitut für Organische und Analytische Chemie, Universität Bremen, Leobener Straße NW2C, 28359 Bremen, Germany

SUPPORTING INFORMATION
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Remarks</td>
<td>S2</td>
</tr>
<tr>
<td>Optimization of the Reaction Conditions for the Friedel-Crafts Arylation Between 3-Phenylpropanal (1a) and Indole (2a): Catalyst Screening</td>
<td>S3</td>
</tr>
<tr>
<td>Optimization of the Reaction Conditions for the Friedel-Crafts Arylation Between 3-Phenylpropanal (1a) and Indole (2a): Solvent Screening</td>
<td>S4</td>
</tr>
<tr>
<td>Optimization of the Reaction Conditions for the Friedel-Crafts Arylation Between 3-Phenylpropanal (1a) and Indole (2a): Catalyst Loading</td>
<td>S5</td>
</tr>
<tr>
<td>Synthesis of Starting Materials</td>
<td>S6</td>
</tr>
<tr>
<td>General Procedure for the Organocatalytic Reaction between Aldehydes and Indoles</td>
<td>S10</td>
</tr>
<tr>
<td>NMR Mechanistic Studies</td>
<td>S25</td>
</tr>
<tr>
<td>Procedure for Gram Scale Reaction</td>
<td>S33</td>
</tr>
<tr>
<td>Procedure for Green Metrics Reaction</td>
<td>S33</td>
</tr>
<tr>
<td>References</td>
<td>S36</td>
</tr>
<tr>
<td>NMR Spectra</td>
<td>S38</td>
</tr>
</tbody>
</table>
General Remarks

Chromatographic purification of products was accomplished using forced-flow chromatography on Merck® Kieselgel 60 70-230 mesh. Thin-layer chromatography (TLC) was performed on aluminum backed silica plates (0.2 mm, 60 F_{254}). Visualization of the developed chromatogram was performed by fluorescence quenching using phosphomolybdic acid, anisaldehyde or potassium permanganate stains. Melting points were determined on a Buchi® 530 hot stage apparatus and are uncorrected. Mass spectra (ESI) were recorded on a Finningan® Surveyor MSQ LCMS spectrometer. HRMS spectra were recorded on a Bruker® Maxis Impact QTOF spectrometer. 1H-NMR, 19F-NMR and 13C-NMR spectra were recorded on a Varian® Mercury (200 MHz, 188 MHz and 50 MHz, respectively) or on an Avance III HD Bruker 400 MHz (400 MHz, 376 MHz and 100 MHz, respectively) or on a Bruker Avance Neo 600 MHz (600 MHz and 150 MHz) and are internally referenced to residual solvent signals. Data for 1H-NMR are reported as follows: chemical shift (δ ppm), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad signal), coupling constant and assignment. Data for 19F-NMR are reported in terms of chemical shift (δ ppm) and are internally referenced to trifluoroacetic acid (188 MHz) or fluoroform (376 MHz). Data for 13C-NMR are reported in terms of chemical shift (δ ppm). Mass spectra and conversions of the reactions were recorded on a Shimadzu® GCMS-QP2010 Plus Gas Chromatograph Mass Spectrometer utilizing a MEGA® column (MEGA-5, F.T.: 0.25 μm, I.D.: 0.25 mm, L: 30 m, T_{max}: 350 °C, Column ID#: 11475). Catalyst 3a-3e were synthesized following literature procedures.¹
Optimization of the Reaction Conditions for the Friedel-Crafts Arylation Between 3-Phenylpropanal (1a) and Indole (2a): Catalyst Screening

\[\text{Catalyst} \rightarrow \text{Yield}^{[a]} (\%) \]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Yield$^{[a]}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3a-e</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>3b</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>3c</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>3d</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>3e</td>
<td>90</td>
</tr>
</tbody>
</table>

$^{[a]}$ Yield determined by 1H-NMR using internal standard. The reaction was performed with 3-phenylpropanal (1a) (26 mg, 0.20 mmol), indole (2a) (52 mg, 0.44 mmol), catalyst 3a-e (0.5 mol%, 1.0 μmol) in CH$_2$Cl$_2$ (0.5 mL) for 1 h.
Optimization of the Reaction Conditions for the Friedel-Crafts Arylation Between 3-Phenylpropanal (1a) and Indole (2a): Solvent Screening

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Yielda (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH$_2$Cl$_2$</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>CHCl$_3$</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>MeCN</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>EtOAc</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>DMSO</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>Toluene</td>
<td>96</td>
</tr>
<tr>
<td>7</td>
<td>Pet. Eth.</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>THF</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>H$_2$O</td>
<td>97 (93)</td>
</tr>
<tr>
<td>10</td>
<td>Et$_2$O</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>MeOH</td>
<td>53</td>
</tr>
<tr>
<td>12</td>
<td>Cyrene</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>2-Me-THF</td>
<td>76</td>
</tr>
</tbody>
</table>

a Yield determined by 1H-NMR using internal standard, yield of 4a after isolation by column chromatography in parenthesis. The reaction was performed with 3-phenylpropanal (1a) (26 mg, 0.20 mmol), indole (2a) (52 mg, 0.44 mmol), catalyst 3e (0.5 mol%, 1.0 μmol) in solvent (0.5 mL) for 1 h.
Optimization of the Reaction Conditions for the Friedel-Crafts Arylation Between 3-Phenylpropanal (1a) and Indole (2a): Catalyst Loading

![Chemical structures](image_url)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst loading (mol%)</th>
<th>Yield[a] (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.005</td>
<td>60[b]</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
<td>87 (79)[b]</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>95[b]</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>97 (93)</td>
</tr>
</tbody>
</table>

[a] Yield determined by 1H-NMR using internal standard, yield of 4a after isolation by column chromatography in parenthesis. The reaction was performed with 3-phenylpropanal (1a) (26 mg, 0.20 mmol), indole (2a) (52 mg, 0.44 mmol), catalyst 3e in water (0.5 mL) for 1 h. [b] Reaction time 18 h.
Synthesis of Starting Materials

10-Undecynal (1h)²

To a flask containing 10-undecynol (504 mg, 3.00 mmol) in CH₂Cl₂ (3 mL), TEMPO (47 mg, 0.30 mmol) was added, followed by iodobenzene diacetate (1.06 g, 3.30 mmol). The reaction mixture was stirred at room temperature until TLC showed consumption of the alcohol and then diluted with CH₂Cl₂ (12 mL). Saturated aqueous solution of Na₂SO₃ (12 mL) was then added, the layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 6 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ (18 mL) and brine (18 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuo. The resulting oil was purified by flash chromatography (Pet. Ether/AcOEt 95:5); Colorless oil; 98% yield; ¹H NMR (400 MHz, CDCl₃) δ: 9.75 (1H, t, J = 1.4 Hz, CHO), 2.41 (2H, td, J = 7.3 and 1.4 Hz, COCH₂), 2.16 (2H, td, J = 7.0 and 2.5 Hz, CH₂), 1.93 (1H, t, J = 2.5 Hz, ΞCH), 1.58-1.65 (2H, m, CH₂), 1.47-1.54 (2H, m, CH₂), 1.24-1.39 (8H, m, 4 x CH₂); ¹³C NMR (100 MHz, CDCl₃) δ: 202.7, 84.5, 68.1, 43.8, 29.1, 29.0, 28.8, 28.5, 28.3, 21.9, 18.3; MS (ESI) m/z 189 [M+Na]⁺.

1-Methyl-1H-indole (2t)³

To a stirring solution of indole (352 mg, 3.00 mmol) in dry THF (6 mL) at 0 °C, NaH (180 mg, 60% dispersion in mineral oil, 4.50 mmol) was added under an argon atmosphere. The heterogenous reaction mixture was stirred at 0 °C for 15 min and at room temperature for 1 h. The reaction mixture was then cooled at 0 °C, iodomethane (0.2 ml, 4.00 mmol) was added and allowed to warm at room temperature. After 30 min, the reaction mixture was cooled at 0 °C, quenched with saturated aq. NH₄Cl (5 mL) and extracted with diethyl ether (3 x 50 mL). The combined organic layers were
washed with brine (1 x 50 ml), dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo. The resulting oil was purified by flash chromatography (Pet. Ether/AcOEt 10:1); Green oil; 83% yield; 1H NMR (400 MHz, CDCl$_3$) δ: 7.68 (1H, d, $J = 7.9$ Hz, ArH), 7.38 (1H, d, $J = 7.9$ Hz, ArH), 7.28 (1H, t, $J = 7.9$ Hz, ArH), 7.16 (1H, t, $J = 7.9$ Hz, ArH), 7.10 (1H, d, $J = 2.5$ Hz, ArH), 6.54 (1H, d, $J = 2.5$ Hz, ArH), 3.84 (3H, s, NCH$_3$); 13C NMR (100 MHz, CDCl$_3$) δ: 136.7, 128.7, 128.4, 121.4, 120.8, 119.2, 109.1, 100.9, 32.8; MS (ESI) m/z 154 [M+Na]$^+$.

1-Benzyl-1H-indole (2u)4

Same procedure as above using benzyl bromide; Yellow solid, mp 39-40 ºC; 82% yield; 1H NMR (400 MHz, CDCl$_3$) δ: 7.69 (1H, d, $J = 7.8$ Hz, ArH), 7.32-7.28 (4H, m, ArH), 7.17-7.11 (5H, m, ArH), 6.59 (1H, d, $J = 2.3$ Hz, ArH), 5.36 (2H, s, NCH$_2$); 13C NMR (100 MHz, CDCl$_3$) δ: 137.5, 136.3, 128.7, 128.6, 128.2, 127.6, 126.8, 121.7, 121.0, 119.5, 109.7, 101.7, 50.1; MS (ESI) m/z 230 [M+Na]$^+$.

1-Isopropyl-1H-indole (2v)5

To a stirring solution of indole (352 mg, 3.00 mmol) in anhydrous DMF (6 mL) at 0 ºC, NaH (180 mg, 60% dispersion in mineral oil, 6.00 mmol) was added under an argon atmosphere. The heterogenous reaction mixture was stirred at 0 ºC for 30 min. Isopropyl iodide (0.7 ml, 7.50 mmol) was added, the reaction mixture warm at room temperature and allowed to stir for 12 h. Water (6 mL) was added and the reaction mixture was extracted with ethyl acetate (2 x 3 mL). The combined organic layers were washed using 1M aqueous HCl (3 x 3 mL) and water (2 x 3 mL), dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo. The resulting oil was purified by flash chromatography (Pet. Ether/AcOEt 10:1); Yellow oil; 93% yield; 1H NMR (400 MHz, CDCl$_3$) δ: 7.68 (1H, d, $J = 7.8$ Hz, ArH), 7.43 (1H, d, $J = 7.8$ Hz, ArH), 7.28-7.21
(2H, m, ArH), 7.14 (1H, t, J = 7.8 Hz, ArH, ArH), 6.56 (1H, d, J = 2.5 Hz, ArH),
4.78-4.68 (1H, m, NCH), 1.58 (6H, d, J = 6.7 Hz, 2 x CH₃); ¹³C NMR (101 MHz,
CDCl₃) δ: 135.5, 128.6, 123.5, 121.1, 120.9, 119.2, 109.4, 101.1, 47.0, 22.8; MS
(ESI) m/z 182 [M+Na]+.

1-Phenyl-1H-indole (2w)⁴

In a Schlenk flask, iodobenzene (0.30 mL, 2.00 mmol), indole (352 mg, 3.00 mmol),
Cu₂O (30 mg, 0.20 mmol) and KOH (224 mg, 4.00 mmol) were added. After addition
of dry DMSO (4 mL), the reaction mixture was stirred at 120 °C for 12 h under an
argon atmosphere. The reaction mixture was diluted with EtOAc (10 mL) and washed
with H₂O (2 x 6 mL). The aqueous phase was extracted with EtOAc (2 x 6 mL) and
the combined organic layers were washed with brine (1 x 20 mL), dried over
anhydrous Na₂SO₄ and the solvent was removed in vacuo. The resulting oil was
purified by flash chromatography (Pet. Ether/AcOEt 20:1); Yellow oil; 60% yield;
¹H NMR (400 MHz, CDCl₃) δ: 7.73 (1H, d, J = 7.8 Hz, ArH), 7.61 (1H, d, J = 8.1 Hz,
ArH), 7.58-7.54 (4H, m, ArH), 7.43-7.37 (2H, m, ArH), 7.30-7.18 (2H, m, ArH), 6.73
(1H, d, J = 3.2 Hz, ArH); ¹³C NMR (100 MHz, CDCl₃) δ: 139.8, 135.8, 129.6, 129.3,
127.9, 126.4, 124.4, 122.3, 121.1, 120.3, 110.5, 103.5; MS (ESI) m/z 216 [M+Na]+.

1-Butyl-1H-indole (2x)⁶

NaH (90 mg, 60% dispersion in mineral oil, 3.00 mmol) was added to indole (351 mg,
3.00 mmol) in dry DMSO (5 mL) under argon at room temperature and the reaction
mixture was stirred for 2 h. Then, butyl iodide (772 mg, 4.20 mmol) was added and
the reaction mixture was stirred for 4.5 h. When the reaction was judged complete by
TLC, water (50 mL) was added and the crude reaction mixture was extracted with chloroform (3 x 50 mL). The combined organic layers were dried with anhydrous Na$_2$SO$_4$, filtered and concentrated in vacuo. The resulting oil was purified by flash chromatography (Pet. Ether/AcOEt 20:1); Green oil; 51% yield; 1H NMR (400 MHz, CDCl$_3$) δ: 7.66 (1H, d, J = 7.9 Hz, ArH), 7.38 (1H, d, J = 7.9 Hz, ArH), 7.23 (1H, t, J = 7.9 Hz, ArH), 7.15-7.09 (2H, m, ArH), 6.52 (1H, d, J = 2.8 Hz, ArH), 4.15 (2H, t, J = 7.1 Hz, NCH$_2$), 1.90-1.81 (2H, m, CH$_2$), 1.44-1.33 (2H, m, CH$_2$), 0.97 (3H, t, J = 7.4 Hz, CH$_3$); 13C NMR (100 MHz, CDCl$_3$) δ: 136.0, 128.5, 127.8, 121.3, 120.9, 119.1, 109.4, 100.8, 46.1, 32.3, 20.2, 13.7; MS (ESI) m/z 196 [M+Na]$^+$.

1-Allyl-1H-indole (2y)7

A 50 mL round-bottom flask equipped with a stir bar was charged with indole (234 mg, 2.00 mmol) and crushed potassium hydroxide (336 mg, 6.00 mmol). Then, DMSO (5 mL) was added to the flask and the solution was stirred at room temperature for 15 min. Next, allyl bromide (484 mg, 4.00 mmol) was added. The reaction mixture was further stirred at room temperature for 18 h. Then, the reaction mixture was diluted with CH$_2$Cl$_2$ (15 mL) and washed with water (15 mL). The organic layer was dried with anhydrous Na$_2$SO$_4$, filtered and concentrated in vacuo. The resulting oil was purified by flash chromatography; Green oil; 96% yield; 1H NMR (400 MHz, CDCl$_3$) δ: 7.67 (1H, d, J = 7.9 Hz, ArH), 7.36 (1H, d, J = 7.9 Hz, ArH), 7.24 (1H, t, J = 7.9 Hz, ArH), 7.15-7.10 (2H, m, ArH), 6.56 (1H, d, J = 2.5 Hz, ArH), 6.09-5.97 (1H, m, =CH), 5.26-5.19 (1H, m, =CHH), 5.17-5.08 (1H, m, =CHH), 4.77 (2H, d, J = 5.4 Hz, NCH$_2$); 13C NMR (100 MHz, CDCl$_3$) δ: 136.1, 133.5, 128.7, 127.8, 121.5, 120.9, 119.4, 117.2, 109.5, 101.4, 48.8; MS (ESI) m/z 180 [M+Na]$^+$.

\[\text{N} \]

\[\text{CH} \]
General Procedure for the Organocatalytic Reaction Between Aldehydes and Indoles

In a glass vial, containing catalyst 3e (1.8 mg, 1.0 μmol) in H₂O (0.5 mL), aldehyde (0.20 mmol) and indole (0.44 mmol) were added consecutively. The reaction mixture was stirred for 1 h. After reaction completion, the reaction mixture was extracted with EtOAc (2 mL). The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The desired product was isolated after purification by column chromatography.

3,3’-(3-Phenylpropane-1,1-diyl)bis(1H-indole) (4a)⁸

Brown solid; 93% yield; mp 156-158 °C; ¹H NMR (400 MHz, CDCl₃) δ: 7.88 (2H, br s, 2 x NH), 7.59 (2H, d, J = 8.1 Hz, ArH), 7.36 (2H, d, J = 8.1 Hz, ArH), 7.30 (2H, d, J = 8.1 Hz, ArH), 7.26-7.16 (5H, m, ArH), 7.11-7.05 (2H, m, ArH), 7.03 (2H, s, ArH), 4.55 (1H, t, J = 8.0 Hz, CH), 2.81-2.73 (2H, m, CH₂), 2.65-2.55 (2H, m, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ: 142.6, 136.6, 128.5, 128.3, 127.1, 125.7, 121.8, 121.5, 120.1, 119.6, 119.1, 111.1, 37.4, 34.4, 33.5; MS (ESI) m/z 373 [M+Na]⁺.
3,3’-(Dodecane-1,1-diyl)bis(1H-indole) (4b)

Brown oil; 60% yield; 1H NMR (400 MHz, CDCl3) δ: 7.88 (2H, br s, 2 x NH), 7.64 (2H, d, J = 7.5 Hz, ArH), 7.35 (2H, d, J = 7.5 Hz, ArH), 7.18 (2H, t, J = 7.5 Hz, ArH), 7.07 (2H, t, J = 7.5 Hz, ArH), 7.01 (2H, s, ArH), 4.51 (1H, t, J = 6.5 Hz, CH), 2.30-2.19 (2H, m, CH2), 1.36-1.20 (18H, m, 9 x CH2), 0.97-0.88 (3H, m, CH3); 13C NMR (100 MHz, CDCl3) δ: 136.6, 127.2, 121.7, 121.3, 120.6, 119.7, 119.0, 111.0, 35.9, 34.0, 31.9, 29.8, 29.7, 29.6, 29.3, 28.3, 22.7, 14.1; MS (ESI) m/z 423 [M+Na]+.

3,3’-(Heptane)bis(1H-indole) (4c)

Brown oil; 84% yield; 1H NMR (400 MHz, CDCl3) δ: 7.83 (2H, br s, 2 x NH), 7.67 (2H, d, J = 7.9 Hz, ArH), 7.34 (2H, d, J = 7.9 Hz, ArH), 7.21 (2H, t, J = 7.9 Hz, ArH), 7.11 (2H, t, J = 7.9 Hz, ArH), 6.96 (2H, d, J = 2.0 Hz, ArH), 4.53 (1H, t, J = 7.3 Hz, CH), 2.33-2.21 (2H, m, CH2), 1.53-1.39 (4H, m, 2 x CH2), 1.38-1.25 (4H, m, 2 x CH2), 0.93 (3H, t, J = 6.7 Hz, CH3); 13C NMR (100 MHz, CDCl3) δ: 136.5, 127.2, 121.6, 121.4, 120.5, 119.6, 118.9, 111.0, 35.9, 34.0, 31.8, 29.4, 28.3, 22.7, 14.1; MS (ESI) m/z 353 [M+Na]+.
Di-(1H-indol-3-yl)methane (4d)11

![Chemical Structure]

White solid; 50\% yield; mp 160-162 °C; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 7.89 (2H, br s, 2 x NH), 7.66 (2H, d, J = 7.5 Hz, ArH), 7.38 (2H, d, J = 7.5 Hz, ArH), 7.23 (2H, t, J = 7.5 Hz, ArH), 7.13 (2H, t, J = 7.5 Hz, ArH), 6.95 (2H, s, ArH), 4.28 (2H, s, CH\textsubscript{2}); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 136.4, 127.6, 122.2, 121.9, 119.2, 119.2, 115.7, 111.0, 21.2; MS (ESI) m/z 269 [M+Na]+.

3,3\textquoteleft-((Cyclohexane)methylene)bis(1H-indole) (4e)12

![Chemical Structure]

Brown solid; 74\% yield; mp 158-160 °C; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 7.90 (2H, br s, 2 x NH), 7.69 (2H, d, J = 7.8 Hz, ArH), 7.33 (2H, d, J = 7.8 Hz, ArH), 7.16 (2H, t, J = 7.8 Hz, ArH), 7.11 (2H, d, J = 7.8 Hz, ArH), 7.08 (2H, t, J = 7.8 Hz, ArH), 4.31 (1H, d, J = 8.7 Hz, CH), 2.34-2.22 (1H, m, CH), 1.87 (2H, d, J = 12.6 Hz, 2 x CHH), 1.76-1.62 (4H, m, 4 x CHH), 1.34-1.19 (4H, m, 4 x CHH); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 136.3, 127.8, 121.6, 121.5, 119.7, 119.7, 119.0, 110.9, 42.9, 40.1, 32.4, 26.7, 26.7; MS (ESI) m/z 351 [M+Na]+.
3,3'-(2-Methylbutane)bis(1H-indole) (4f)13

Brown oil; 79% yield; 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 7.84 (2H, br s, 2 x NH), 7.74-7.63 (2H, m, ArH), 7.30 (2H, t, \(J = 7.8\) Hz, ArH), 7.18 (2H, t, \(J = 7.8\) Hz, ArH), 7.14-7.09 (2H, m, ArH), 7.06 (2H, s, ArH), 4.44 (1H, d, \(J = 7.6\) Hz, CH), 2.50-2.37 (1H, m, CH), 1.77-1.62 (1H, m, CHH), 1.30-1.15 (1H, m, CHH), 1.03 (3H, d, \(J = 6.5\) Hz, \(\text{CH}_3\)), 0.97 (3H, t, \(J = 7.3\) Hz, \(\text{CH}_3\)); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 136.3, 136.2, 127.9, 127.7, 121.8, 121.6, 119.6, 119.0, 111.0, 39.4, 39.4, 28.0, 17.8, 12.0; MS (ESI) m/z 325 [M+Na]+.

3,3'-(3-Methylbutane-1,1-diyl)bis(1H-indole) (4g)13

Brown oil; 98% yield; 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 7.80-7.65 (4H, m, 2 x NH and ArH), 7.33 (2H, d, \(J = 7.5\) Hz, ArH), 7.24 (2H, t, \(J = 7.5\) Hz, ArH), 7.15 (2H, t, \(J = 7.5\) Hz, ArH), 6.93 (2H, s, ArH), 4.68 (1H, t, \(J = 7.2\) Hz, CH), 2.18 (2H, t, \(J = 7.2\) Hz, \(\text{CH}_2\)), 1.80-1.68 (1H, m, CH), 1.08 (6H, d, \(J = 6.6\) Hz, 2 x \(\text{CH}_3\)); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 136.5, 127.0, 121.7, 121.4, 120.4, 119.5, 119.0, 111.1, 45.2, 31.6, 25.9, 22.8; MS (ESI) m/z 325 [M+Na]+.

3,3'- (Oleyl-2-methylene)bis(1H-indole) (4h)13

Brown oil; 80% yield; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 7.84 (2H, br s, 2 x NH), 7.65 (2H, d, J = 7.8 Hz, ArH), 7.35 (2H, d, J = 7.8 Hz, ArH), 7.20 (2H, t, J = 7.8 Hz, ArH), 7.09 (2H, t, J = 7.8 Hz, ArH), 6.99 (2H, s, ArH), 5.47-5.37 (2H, m, 2 x CH=), 4.52 (1H, t, J = 7.2 Hz, CH), 2.31-2.22 (2H, m, CH\textsubscript{2}), 2.13-1.98 (4H, m, 2 x CH\textsubscript{2}), 1.46-1.24 (22H, m, 11 x CH\textsubscript{2}), 0.98-0.90 (3H, m, CH\textsubscript{3}); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 136.6, 129.9, 127.2, 121.7, 121.4, 120.5, 119.6, 118.9, 111.0, 35.8, 34.0, 31.9, 29.8, 29.5, 29.3, 28.3, 27.2, 22.7, 14.1; MS (ESI) m/z 505 [M+Na]+.

3,3'- (Undec-10-yne-1,1-diyl)bis(1H-indole) (4i)13

Brown oil; 20% yield; Reaction time 1 h or 18 h; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 7.80 (2H, br s, 2 x NH), 7.67 (2H, d, J = 8.0 Hz, ArH), 7.34 (2H, d, J = 8.0 Hz, ArH), 7.24-7.18 (2H, m, ArH), 7.15-7.08 (2H, m, ArH), 6.96 (2H, d, J = 2.2 Hz, ArH), 4.53 (1H, t, J = 7.5 Hz, CH), 2.31-2.19 (4H, m, 2 x CH\textsubscript{2}), 2.01 (1H, t, J = 2.7 Hz, ΞCH), 1.61-1.52 (2H, m, CH\textsubscript{2}), 1.48-1.37 (6H, m, 3 x CH\textsubscript{2}), 1.37-1.29 (4H, m, 2 x CH\textsubscript{2}); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 136.5, 127.1, 121.6, 121.4, 120.4, 119.6, 118.9, 111.0,
84.8, 68.1, 35.8, 33.9, 29.6, 29.4, 29.0, 28.7, 28.4, 28.2, 18.3; MS (ESI) m/z 405 [M+Na]+.

3,3′-(Phenylmethylene)bis(1H-indole) (4j)8

Red foam; 70% yield; mp 140-142 °C; 1H NMR (400 MHz, CDCl3) δ: 7.77 (2H, br s, 2 x NH), 7.45 (2H, d, J = 7.7 Hz, ArH), 7.40 (2H, d, J = 7.7 Hz, ArH), 7.38-7.31 (4H, m, ArH), 7.28 (1H, d, J = 7.7 Hz, ArH), 7.23 (2H, t, J = 7.7 Hz, ArH), 7.07 (2H, t, J = 7.7 Hz, ArH), 6.62 (2H, d, J = 1.7 Hz, ArH), 5.94 (1H, s, CH); 13C NMR (100 MHz, CDCl3) δ: 144.0, 136.6, 128.7, 128.2, 127.0, 126.1, 123.6, 121.9, 119.9, 119.6, 119.2, 111.0, 40.2; MS (ESI) m/z 345 [M+Na]+.

3,3′-((2-Bromophenyl)methylene)bis(1H-indole) (4k)14

Pink foam; 96% yield; mp 76-78 °C; 1H NMR (400 MHz, CDCl3) δ: 7.83 (2H, br s, 2 x NH), 7.66 (1H, dd, J = 7.8 and 1.4 Hz, ArH), 7.45 (2H, d, J = 7.9 Hz, ArH), 7.37 (2H, d, J = 7.9 Hz, ArH), 7.26 (1H, dd, J = 7.8 and 1.9 Hz, ArH), 7.22 (2H, t, J = 7.9 Hz, ArH), 7.17 (1H, td, J = 7.8 and 1.4 Hz, ArH), 7.11 (1H, td, J = 7.8 and 1.9 Hz, ArH), 7.07 (2H, t, J = 7.9 Hz, ArH), 6.59 (2H, d, J = 2.2 Hz, ArH), 6.35 (1H, s, CH); 13C NMR (100 MHz, CDCl3) δ: 143.0, 136.7, 132.8, 130.4, 127.8, 127.3, 127.0, 124.8, 123.8, 122.0, 119.9, 119.3, 118.4, 111.1, 39.5; MS (ESI) m/z 425 [M+Na]+.
3,3′-((4-Bromophenyl)methylene)bis(1H-indole) (4l)16

Red foam; 54% yield; mp 112-114 °C; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 7.89 (2H, br s, 2 x NH), 7.46-7.39 (4H, m, ArH), 7.36 (2H, d, J = 7.6 Hz, ArH), 7.27-7.19 (4H, m, ArH), 7.07 (2H, t, J = 7.6 Hz, ArH), 6.60 (2H, s, ArH), 5.88 (1H, s, CH); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 143.1, 136.6, 131.2, 130.4, 126.8, 123.6, 122.0, 119.8, 119.7, 119.3, 118.9, 111.1, 39.6; MS (ESI) m/z 425 [M+Na]+.

3,3′-((4-Ethynylphenyl)methylene)bis(1H-indole) (4m)17

Red foam; 86% yield; mp 208-210 °C; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 8.04 (2H, br s, 2 x NH), 7.57 (2H, d, J = 8.0 Hz, ArH), 7.47 (2H, d, J = 8.0 Hz, ArH), 7.40 (2H, d, J = 7.6 Hz, ArH), 7.36 (2H, d, J = 7.6 Hz, ArH), 7.23 (2H, t, J = 7.6 Hz, ArH), 7.06 (2H, t, J = 7.6 Hz, ArH), 6.66 (2H, d, J = 2.2 Hz, ArH), 5.96 (1H, s, CH); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 149.8, 136.7, 132.1, 129.5, 126.7, 123.6, 122.2, 119.5, 119.2, 119.1, 118.1, 111.2, 109.9, 40.3; MS (ESI) m/z 370 [M+Na]+.
Orange oil; 53% yield; 1H NMR (400 MHz, CDCl$_3$) δ: 7.80 (2H, br s, 2 x NH), 7.46 (2H, d, $J = 8.3$ Hz, ArH), 7.37-7.34 (2H, m, ArH), 7.31 (2H, d, $J = 8.3$ Hz, ArH), 7.24-7.16 (4H, m, ArH), 7.08-7.03 (2H, m, ArH), 6.65 (2H, dd, $J = 2.4$ and 0.8 Hz, ArH), 5.90 (1H, s, CH), 2.98-2.89 (1H, m, CH), 1.29 (6H, d, $J = 6.8$ Hz, 2 x CH$_3$); 13C NMR (100 MHz, CDCl$_3$) δ: 146.4, 141.2, 136.6, 128.5, 127.1, 126.2, 123.5, 121.8, 119.9, 119.9, 119.1, 111.0, 39.7, 33.6, 24.0; MS (ESI) m/z 387 [M+Na]$^+$.

Brown foam; 77% yield; reaction time 18 h; mp 67-69 °C; 1H NMR (400 MHz, CDCl$_3$) δ: 7.79 (2H, br s, 2 x NH), 7.60 (2H, d, $J = 8.1$ Hz, ArH), 7.51 (2H, d, $J = 8.1$ Hz, ArH), 7.46 (2H, d, $J = 8.1$ Hz, ArH), 7.38 (2H, d, $J = 8.1$ Hz, ArH), 7.31-7.25 (2H, m, ArH), 7.15-7.10 (2H, m, ArH), 6.61 (2H, dd, $J = 2.4$ and 0.8 Hz, ArH), 6.01 (1H, s, CH); 13C NMR (100 MHz, CDCl$_3$) δ: 148.2, 136.7, 129.1, 128.5 (q, $J = 32.0$ Hz), 126.9, 125.3, 125.3 (q, $J = 3.7$ Hz), 124.5 (q, $J = 272.0$ Hz), 123.8, 122.3, 119.8, 119.5, 118.8, 111.3, 40.2; 19F NMR: (376 MHz, CDCl$_3$) δ: 62.1; MS (ESI) m/z 413 [M+Na]$^+$.
3,3’-((4-Chlorophenyl)methylene)bis(1H-indole) (4p)\(^8\)

Orange foam; 80% yield; mp 77-79 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.70 (2H, br s, 2 x NH), 7.47 (2H, d, \(J = 8.0\) Hz, ArH), 7.35 (2H, d, \(J = 8.0\) Hz, ArH), 7.32 (4H, s, ArH), 7.30-7.26 (2H, m, ArH), 7.15-7.08 (2H, m, ArH), 6.56 (2H, dd, \(J = 2.4\) and 0.8 Hz, ArH), 5.93 (1H, s, CH); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 142.5, 136.5, 131.7, 130.0, 128.3, 126.8, 123.6, 122.0, 119.7, 119.3, 118.9, 111.1, 39.5; MS (ESI) m/z 379 [M+Na]\(^+\).

3,3’-((4-Methoxyphenyl)methylene)bis(1H-indole) (4q)\(^8\)

Orange solid; 75% yield; mp 188-190 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.89 (2H, br s, 2 x NH), 7.43 (2H, d, \(J = 7.9\) Hz, ArH), 7.37 (2H, d, \(J = 7.9\) Hz, ArH), 7.29-7.27 (2H, m, ArH), 7.20 (2H, t, \(J = 7.9\) Hz, ArH), 7.04 (2H, t, \(J = 7.9\) Hz, ArH), 6.85 (2H, d, \(J = 8.6\) Hz, ArH), 6.66 (2H, d, \(J = 1.6\) Hz, ArH), 5.87 (1H, s, CH), 3.81 (3H, s, OCH\(_3\)); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 157.9, 136.7, 136.2, 129.6, 127.1, 123.5, 121.9, 120.0, 119.2, 113.6, 111.0, 55.2, 39.3; MS (ESI) m/z 375 [M+Na]\(^+\).
3,3’-((4-Nitrophenyl)methylene)bis(1H-indole) (4r)15

Pink solid; 88% yield; reaction time 18 h; mp 217-219 °C; 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \): 8.16 (2H, d, \(J = 8.6 \) Hz, ArH), 8.04 (2H, br s, 2 x NH), 7.53 (2H, d, \(J = 8.6 \) Hz, ArH), 7.41 (2H, d, \(J = 7.6 \) Hz, ArH), 7.36 (2H, d, \(J = 7.6 \) Hz, ArH), 7.23 (2H, t, \(J = 7.6 \) Hz, ArH), 7.05 (2H, t, \(J = 7.6 \) Hz, ArH), 6.71 (2H, d, \(J = 1.6 \) Hz, ArH), 6.02 (1H, s, CH); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta \): 151.9, 146.6, 136.7, 132.0, 129.5, 128.6, 126.7, 123.6, 122.3, 119.5, 118.1, 111.3, 40.2; MS (ESI) m/z 390 [M+Na]+.

3,3’-(Cyclohexane-1,1-diyl)bis(1H-indole) (4s)19

Brown foam; 96% yield; reaction time 18 h; mp 76-78 °C; 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \): 7.81 (2H, br s, 2 x NH), 7.65 (2H, d, \(J = 7.6 \) Hz, ArH), 7.32 (2H, d, \(J = 7.6 \) Hz, ArH), 7.15 (4H, t, \(J = 7.6 \) Hz, ArH), 7.05 (2H, s, ArH), 7.00 (2H, t, \(J = 7.6 \) Hz, ArH), 2.67-2.58 (4H, m, 4 x CH\textsubscript{2}H), 1.78-1.62 (6H, m, 6 x CH\textsubscript{2}H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta \): 137.0, 126.2, 123.5, 122.1, 121.4, 121.1, 118.4, 111.1, 39.5, 36.8, 26.7, 22.9; MS (ESI) m/z 337 [M+Na]+.
3,3’-(3-Phenylpropane-1,1-diyl)bis(2-methyl-1H-indole) (4t)

Brown solid; 75% yield; mp 188-190 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.69 (2H, d, \(J = 7.6\) Hz, ArH), 7.63 (2H, br s, 2 x NH), 7.29 (2H, d, \(J = 7.6\) Hz, ArH), 7.23 (3H, d, \(J = 7.6\) Hz, ArH), 7.19 (2H, d, \(J = 7.6\) Hz, ArH), 7.10 (2H, t, \(J = 7.6\) Hz, ArH), 7.04 (2H, t, \(J = 7.6\) Hz, ArH), 4.48 (1H, t, \(J = 7.4\) Hz, CH), 2.85-2.71 (4H, m, 2 x CH\(_2\)), 2.27 (6H, s, 2 x CH\(_3\)) ; \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 142.5, 135.1, 130.9, 128.5, 128.4, 128.2, 125.6, 120.4, 119.3, 119.0, 114.5, 110.1, 36.2, 34.9, 34.3, 12.6; MS (ESI) m/z 401 [M+Na]^+.

3,3’-(3-Phenylpropane-1,1-diyl)bis(1-methyl-1H-indole) (4u)

Brown oil; 76% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.61 (2H, d, \(J = 7.9\) Hz, ArH), 7.31 (4H, d, \(J = 7.9\) Hz, ArH), 7.27-7.19 (5H, m, ArH), 7.08 (2H, t, \(J = 7.5\) Hz, ArH), 6.92 (2H, s, ArH), 4.54 (1H, t, \(J = 7.4\) Hz, CH), 3.76 (6H, s, 2 x NCH\(_3\)), 2.80-2.74 (2H, m, CH\(_2\)), 2.62-2.54 (2H, m, CH\(_2\)) ; \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 142.7, 137.3, 128.5, 128.2, 127.5, 126.3, 125.6, 121.3, 119.7, 118.8, 118.5, 109.1, 37.9, 34.5, 33.3, 32.6; MS (ESI) m/z 401 [M+Na]^+.

3,3’ -(3-Phenylpropane-1,1-diyl)bis(1-benzyl-1H-indole) (4v)13

Brown oil; 94% yield; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 7.76-7.67 (2H, m, ArH), 7.46-7.33 (10H, m, ArH), 7.31-7.23 (5H, m, ArH), 7.22-7.12 (8H, m, ArH), 5.36 (4H, s, 2 x NCH\textsubscript{2}), 4.67 (1H, d, J = 6.7 Hz, CH), 2.93-2.82 (2H, m, CH\textsubscript{2}), 2.78-2.66 (2H, m, CH\textsubscript{2}); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 142.6, 137.9, 137.0, 128.6, 128.5, 128.2, 127.4, 126.5, 125.8, 121.5, 119.9, 119.2, 118.7, 109.6, 49.7, 37.4, 34.4, 33.6; MS (ESI) m/z 553 [M+Na]+.

3,3’ -(3-Phenylpropane-1,1-diyl)bis(1-isopropyl-1H-indole) (4w)

Brown oil; 80% yield; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 7.61 (2H, d, J = 7.9 Hz, ArH), 7.40 (2H, d, J = 7.9 Hz, ArH), 7.34 (2H, t, J = 7.9 Hz, ArH), 7.26-7.20 (5H, m, ArH), 7.14 (2H, s, ArH), 7.07 (2H, t, J = 7.9 Hz, ArH), 4.75-4.65 (2H, m, 2 x NCH), 4.56 (1H, t, J = 7.3 Hz, CH), 2.80-2.71 (2H, m, CH\textsubscript{2}), 2.68-2.59 (2H, m, CH\textsubscript{2}), 1.56 (6H, d, J = 7.0 Hz, 2 x CH\textsubscript{3}), 1.54 (6H, d, J = 7.0 Hz, 2 x CH\textsubscript{3}); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 142.8, 136.2, 128.6, 128.2, 127.6, 125.6, 121.1, 120.9, 119.7, 118.7, 118.3, 109.3, 46.8, 37.7, 34.5, 33.9, 22.8, 22.7; HRMS exact mass calculated for [M+Na]+ (C\textsubscript{31}H\textsubscript{34}N\textsubscript{2}Na+) requires m/z 457.2614, found m/z 457.2622.
3,3’-(3-Phenylpropane-1,1-diyl)bis(1-phenyl-1H-indole) (4x)13

Brown oil; 99% yield; 1H NMR (400 MHz, CDCl$_3$) δ: 7.97 (2H, d, $J = 7.9$ Hz, ArH), 7.85 (2H, d, $J = 7.9$ Hz, ArH), 7.72 (4H, d, $J = 7.9$ Hz, ArH), 7.67 (4H, t, $J = 7.9$ Hz, ArH), 7.57-7.54 (4H, m, ArH), 7.52-7.44 (7H, m, ArH), 7.40 (2H, t, $J = 7.9$ Hz, ArH), 4.94 (1H, t, $J = 7.7$ Hz, CH), 3.13 (2H, t, $J = 7.7$ Hz, CH$_2$), 2.97 (2H, q, $J = 7.7$ Hz, CH$_2$); 13C NMR (100 MHz, CDCl$_3$) δ: 142.3, 139.8, 136.4, 129.4, 128.6, 128.5, 128.3, 125.9, 125.7, 125.3, 124.1, 122.3, 120.8, 119.9, 119.8, 110.5, 37.5, 34.5, 33.3; MS (ESI) m/z 525 [M+Na]$^+$.

3,3’-(3-Phenylpropane-1,1-diyl)bis(1-butyl-1H-indole) (4y)13

Brown oil; 98% yield; 1H NMR (400 MHz, CDCl$_3$) δ: 7.84 (2H, d, $J = 7.9$ Hz, ArH), 7.53 (4H, t, $J = 7.9$ Hz, ArH), 7.48-7.38 (5H, m, ArH), 7.28 (2H, t, $J = 7.9$ Hz, ArH), 7.20 (2H, s, ArH), 4.78 (1H, t, $J = 7.3$ Hz, CH), 4.26 (4H, t, $J = 7.1$ Hz, 2 x NCH$_2$), 3.05-2.95 (2H, m, CH$_2$), 2.90-2.80 (2H, m, CH$_2$), 2.07-1.94 (4H, m, 2 x CH$_2$), 1.59-1.50 (4H, m, 2 x CH$_2$), 1.17 (6H, t, $J = 7.4$ Hz, 2 x CH$_3$); 13C NMR (100 MHz, CDCl$_3$) δ: 142.8, 136.6, 128.5, 128.2, 127.6, 125.6, 125.4, 121.0, 119.9, 118.5, 118.3, 109.3, 45.9, 37.7, 34.5, 33.6, 32.3, 20.2, 13.7; MS (ESI) m/z 485 [M+Na]$^+$.
3,3’-(3-Phenylpropane-1,1-diyl)bis(1-allyl-1H-indole) (4z)13

![Chemical structure of 4z]

Brown oil; 97\% yield; 1H NMR (100 MHz, CDCl\textsubscript{3}) δ: 7.67 (2H, d, J = 8.0 Hz, ArH), 7.41-7.34 (4H, m, ArH), 7.32-7.23 (5H, m, ArH), 7.13 (2H, t, J = 8.0 Hz, ArH), 7.05 (2H, s, ArH), 6.13-6.00 (2H, m, 2 x =CH), 5.26 (2H, dd, J = 10.3 and 1.5 Hz, 2 x =CHH), 5.14 (2H, dd, J = 17.3 and 1.5 Hz, 2 x =CHH), 4.75 (4H, d, J = 6.1 Hz, 2 x NCH\textsubscript{2}), 4.62 (1H, t, J = 7.4 Hz, CH), 2.87-2.80 (2H, m, CH\textsubscript{2}), 2.72-2.63 (2H, m, CH\textsubscript{2}); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 142.7, 136.7, 133.8, 128.5, 128.2, 127.7, 125.6, 125.3, 121.3, 119.8, 118.6, 116.8, 109.5, 48.6, 37.7, 34.5, 33.5; MS (ESI) m/z 453 [M+Na]+.

3,3’-(3-Phenylpropane-1,1-diyl)bis(1-methyl-2-phenyl-1H-indole) (4aa)

![Chemical structure of 4aa]

Green solid; 78\% yield; mp 130-132 °C; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 7.69 (2H, d, J = 8.0 Hz, ArH), 7.44-7.35 (4H, m, ArH), 7.34-7.25 (7H, m, ArH), 7.24-7.17 (3H, m, ArH), 7.08 (2H, t, J = 7.5 Hz, ArH), 7.02-6.91 (5H, m, ArH), 4.56 (1H, t, J = 7.4 Hz, CH), 3.50 (6H, s, 2 x NCH\textsubscript{3}), 2.72-2.59 (4H, m, 2 x CH\textsubscript{2}); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 142.4, 138.1, 136.9, 132.5, 130.9, 128.4, 128.0, 127.9, 127.6, 127.3, 125.2, 121.0, 120.8, 118.9, 115.8, 109.0, 36.7, 34.4, 34.2, 30.5; HRMS exact mass calculated for [M+Na]+ (C\textsubscript{31}H\textsubscript{34}N\textsubscript{2}Na+) requires m/z 553.2614, found m/z 553.2614.
3,3’-(3-Phenylpropane-1,1-diyl)bis(1H-pyrrole) (4ab)

Brown oil; 60% yield; \(^1\)H NMR (100 MHz, CDCl\(_3\)) \(\delta\): 7.38-7.06 (9H, m, ArH), 5.96 (2H, s, ArH), 3.90-3.78 (1H, m, CH), 2.68-2.55 (2H, m, CH\(_2\)), 2.24-2.13 (2H, m, CH\(_2\)); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 141.9, 132.7, 128.6, 128.5, 128.3, 125.8, 117.7, 108.2, 105.5, 105.4, 105.2, 36.8, 35.2, 33.5; HRMS exact mass calculated for [M+Na]\(^+\) (C\(_{31}\)H\(_{34}\)N\(_2\)Na\(^+\)) requires m/z 273.1362, found m/z 273.1366.
NMR Mechanistic Studies

First, we investigated the halogen-bond (XB) between iodonium catalyst 3e with 3-phenyl-propanal (1a) by 1H- and 13C-NMR (600 MHz and 150 MHz, CD$_2$Cl$_2$). We observed a slight low-field proton and a significant carbon shift, which indicates the halogen bond between 3e and 1a.

1H-NMR spectrum (600 MHz) of 3-phenyl-propanal (1a) and 3-phenylpropanal (1a) with catalyst 3e in CD$_2$Cl$_2$.
13C-NMR spectrum (150 MHz) of 3-phenyl-propanal (1a) and 3-phenylpropanal (1a) with catalyst 3e in CD$_2$Cl$_2$.
Also, we investigated the halogen-bond (XB) between iodonium catalysts 3b or 3a with 3-phenyl-propanal (1a) by 1H- and 13C-NMR (600 MHz and 150 MHz, CD$_2$Cl$_2$). We observed similar low-field proton and carbon shifts, which indicates the halogen bond between 3a and 1a, but between 3b and 1a, we did not observe any significant change.

1H-NMR spectrum (600 MHz) of 3-phenyl-propanal and 3-phenylpropanal with catalyst 3b in CD$_2$Cl$_2$.
13C-NMR spectrum (150 MHz) of 3-phenyl-propanal and 3-phenylpropanal with catalyst 3b in CD$_2$Cl$_2$.
1H-NMR spectrum (600 MHz) of 3-phenyl-propanal and 3-phenylpropanal with catalyst 3a in CD$_2$Cl$_2$.
13C-NMR spectrum (150 MHz) of 3-phenyl-propanal and 3-phenylpropanal with catalyst 3a in CD$_2$Cl$_2$.
Next, we investigated the halogen-bond (XB) between iodonium catalyst 3e with indole (2a) by ^1H- and ^{13}C-NMR (400 MHz and 100 MHz, DMSO-d_6). We did not observe any significant change.

^1H-NMR spectrum (400 MHz) of indole (2a) with catalyst 3e in DMSO-d_6.

13C-NMR spectrum (100 MHz) of indole (2a) with catalyst 3e in DMSO-d_6.
Procedure for Gram Scale Reaction

In a round bottom flask, containing catalyst 3e (2 mg, 1 μmol), in H₂O (25 mL), 3-phenyl-propanal (1.34 g, 10.00 mmol) and indole (2.58 g, 22.00 mmol) were added consecutively. The reaction mixture was stirred for 18 h. After reaction completion, the reaction mixture was extracted in EtOAc (50 mL). The organic layer was concentrated in vacuo. The desired product was isolated after purification by column chromatography, 2.74 g, 79% yield.

Procedure for Green Metrics Reaction

In a glass vial, containing catalyst 3e (0.4 mg, 0.2 μmol) in H₂O (0.5 mL), 3-phenyl-propanal (27 mg, 0.20 mmol) and indole (52 mg, 0.44 mmol) were added consecutively. The reaction mixture was stirred for 18 h. After reaction completion, the reaction mixture was extracted with EtOAc (2 mL). The organic layer was concentrated in vacuo. No further purification was required.

E-factor calculation

After obtaining the desired product, without proceeding in purification by column chromatography, the E-factor was calculated.

\[
E \text{ factor} = \frac{[1804 \text{ (EtOAc)} + 500 \text{ (H₂O)} + 27 \text{ (3-phenyl-propanal)} + 52 \text{ (indole)} + 0.4 \text{ (catalyst 3e)} - 68 \text{ (product)}]}{68 \text{ mg}} = 34.1
\]
1H NMR spectrum (400MHz, CDCl$_3$) of crude reaction mixture after extraction

1H NMR spectrum (400 MHz, CDCl$_3$) of isolated product after purification by column chromatography
Atom economy calculation

\[
\% \text{ Atom econ.} = \frac{\text{Molar mass of Product}}{\text{Molar mass of All reactants}} \times 100\% = \frac{350 \text{ mg/mmol}}{(135 + 117 + 117) \text{ mg/mmol}} \times 100\% = 95\%
\]

Atom efficiency

For the formation of one molecule of product, only one molecule of water is lost.

Carbon efficiency

No carbon atom lost.

Reaction mass efficiency

\[
\frac{\text{Atom mass of desired product}}{\text{Mass of reactants}} \times 100\% = \frac{68 \text{ mg}}{27 \text{ mg} + 52 \text{ mg}} \times 100\% = 86\%
\]
References

E. M. Galathri, T. J. Kuczmera, B. J. Nachtsheim* and C. G. Kokotos*