Supporting Information

Water-Promoted Defluorinative Synthesis of Fluoroalkylated

1,5-Diazapentadienes by Using (NH₄)₂CO₃ as NH₂ and NH Sources

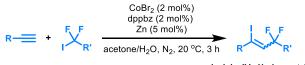
Wei Han,^{a,#} Yu-Lan Chen,^{a,#} Xi Tang,^a Jie Zhou,^{*,b} Mengtao Ma,^c Zhi-Liang Shen^{*,a} Xue-Qiang Chu^{*,a}

^a Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China. E-mails: ias_zlshen@njtech.edu.cn; xueqiangchu@njtech.edu.cn.

^b State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China. E-mail: jayzhou@njtech.edu.cn. ^c Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.

[#] W. H. and Y.-L. C. contributed equally to this work.

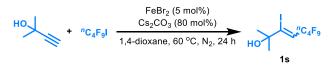
Table of Contents


General information	Page S2			
General procedure for the synthesis of polyfluoroalkylated alkenes 1 Pag				
General procedure for the defluorinative synthesis of fluoroalkylated	Page S3			
1,5-diazapentadienes 2				
Scale-up synthesis of product 2a	Page S4			
Further transformations of product 2a				
Mechanistic studies H				
Optimization of the reaction conditions P				
The X-ray crystal structures of products 2k and Z-10a				
Characterization data for products				
Reference	Page S27			
¹ H, ¹⁹ F, and ¹³ C NMR spectra of products				

General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under N₂ atmosphere using undistilled solvent. Melting points were recorded on an electrothermal digital melting point apparatus. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. ¹H, ¹⁹F, and ¹³C NMR spectra were recorded in CDCl₃ on Bruker Avance or Joel 400 MHz spectrometers. NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), multiplet (m), broad (br), doublet of doublets (dd), doublet of triplets (dt), doublet of quartets (dq), triplet of doublets (td), tt (triplet of triplets), quartet of doublets (qd), and quartet of triplets (qt). The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. High resolution mass spectrometry (HRMS) data were obtained on a Waters LC-TOF mass spectrometer (Xevo G2-XS QTof) using electrospray ionization (ESI) in positive or negative mode. A suitable crystal was selected and recorded on a XtaLAB AFC12 (RINC): Kappa single diffractometer. Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions.

General procedure for the synthesis of polyfluoroalkylated alkenes 1


General procedure A (GPA)^[1]

1a-I-1a-IV, 1b-1r, and 1t-x

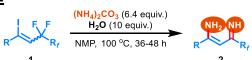
According to Jacobi von Wangelin's reported method, a solution of alkyne (511.0 mg, 5 mmol, 1 equiv.), perfluorobutyl iodide (2594.4 mg, 7.5 mmol, 1.5 equiv.), CoBr₂ (21.9 mg, 0.1 mmol, 0.02 equiv.), 1,2-bis(diphenylphosphino)benzene (44.6 mg, 0.1 mmol, 0.02 equiv., dppbz), and Zn (16.3 mg, 0.25 mmol, 0.05 equiv.) in acetone/H₂O (10 mL, 30/1) was stirred at 20 °C under N₂ for 3 h. The reaction was then quenched by saturated NH₄Cl solution (50 mL) and extracted with EtOAc (50 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (200/1~20/1) as eluent to afford the pure product **1**.

General procedure B (GPB)^[2]

According to Hu's reported method, a solution of 2-methylbut-3-yn-2-ol (420.6 mg, 5 mmol, 1 equiv.), perfluorobutyl iodide (2594.4 mg, 7.5 mmol, 1.5 equiv.), FeBr₂ (53.9 mg, 0.25 mmol, 0.05 equiv.), and Cs₂CO₃ (1303.0 mg, 4 mmol, 0.8 equiv.) in anhydrous 1,4-dioxane (20 mL) was stirred at 60 °C under N₂ for 24 h. The reaction was then quenched by saturated NH₄Cl solution (50 mL) and extracted with EtOAc (50 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was

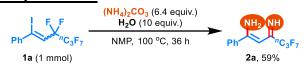
purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate ($100/1 \sim 80/1$) as eluent to afford the pure product **1s** (1978.2 mg, 46% yield).

General procedure C (GPC)^[3]


Step 1:

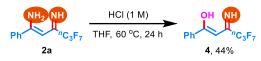
According to Burton's reported method, a solution of 2,2,3,3,4,4,4-heptafluoro-1-phenylbutan-1-ol (1381 mg, 5 mmol, 1 equiv.) in dichloromethane (15 mL) was stirred at -78 °C under N₂. Then, diethylaminosulfur trifluoride (806.0 mg, 5 mmol, 1 equiv., DAST) was added while keeping the temperature around -70 °C. The reaction mixture was allowed to warm to room temperature and stirred for 15 h. The reaction was then quenched by saturated NH₄Cl solution (50 mL) and extracted with Et₂O (50 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (200/1~100/1) as eluent to afford (1,2,2,3,3,4,4,4-octafluorobutyl)benzene in 72% yield (1002.5 mg).

Step 2:

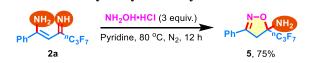

A solution of (1,2,2,3,3,4,4,4-octafluorobutyl)benzene (834.4 mg, 3 mmol, 1 equiv.) in dry THF (6 mL) was stirred at 0 °C under N₂. Then, LiHMDS (2.3 mL, 3 mmol, 1 equiv., 1.3 M in THF) was added while keeping the temperature around 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 15 h. The reaction was then quenched by saturated NH₄Cl solution (50 mL) and extracted with Et₂O (50 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (200/1~100/1) as eluent to afford the product **1y** in 43% yield (333.0 mg).

<u>General procedure for the defluorinative synthesis of fluoroalkylated</u> 1,5-diazapentadienes 2

A solution of allylic fluoride **1** (0.3 mmol, 1 equiv.), $(NH_4)_2CO_3$ (184.5 mg, 1.92 mmol, 6.4 equiv.), and H₂O (54.0 mg, 3 mmol, 10 equiv.) in NMP (4 mL) was stirred at 100 °C (oil bath) under air for 36-48 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (200/1~2/1) as eluent to afford the pure product **2**.


Scale-up synthesis of product 2a

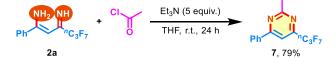
A solution of (3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (448.1 mg, 1 mmol, 1 equiv., **1a**), (NH₄)₂CO₃ (615.0 mg, 6.4 mmol, 6.4 equiv.), and H₂O (180.0 mg, 10 mmol, 10 equiv.) in NMP (10 mL) was stirred at 100 °C (oil bath) under air for 36 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (100/1) as eluent to afford the pure product **2a** (184.2 mg, 59% yield).


Further transformations of product 2a

a) Hydrolysis of product 2a

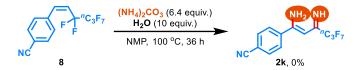
A solution of (*Z*)-4,4,5,5,6,6,6-heptafluoro-3-imino-1-phenylhex-1-en-1-amine (62.8 mg, 0.2 mmol, 1 equiv., **2a**) in HCl (1 M in water, 4 mL, 20 equiv.) and THF (2 mL) was stirred at 60 °C (oil bath) under air for 24 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (10/1~4/1) as eluent to afford the pure product **4** (27.6 mg, 44% yield).

b) The reaction of product 2a with hydroxylamine hydrochloride


A solution of (*Z*)-4,4,5,5,6,6,6-heptafluoro-3-imino-1-phenylhex-1-en-1-amine (62.8 mg, 0.2 mmol, 1 equiv., **2a**) and hydroxylamine hydrochloride (41.7 mg, 0.6 mmol, 3 equiv., NH₂OH·HCl) in pyridine (2 mL) was stirred at 80 °C (oil bath) under N₂ for 12 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (10/1~4/1) as eluent to afford the pure product **5** (49.4 mg, 75% yield).

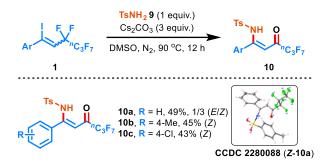
c) The reaction of product 2a with 4-bromobenzaldehyde

A solution of (*Z*)-4,4,5,5,6,6,6-heptafluoro-3-imino-1-phenylhex-1-en-1-amine (62.8 mg, 0.2 mmol, 1 equiv., **2a**), 4-bromobenzaldehyde (37.0 mg, 0.2 mmol, 1 equiv.), and ZnCl₂ (27.3 mg, 0.2 mmol, 1 equiv.) in EtOH (2 mL) was stirred at 80 °C (oil bath) under air for 12 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (10/1~4/1) as eluent to afford the pure product **6** (49.7 mg, 52% yield).


d) The reaction of product 2a with acetyl chloride

A solution of (*Z*)-4,4,5,5,6,6,6-heptafluoro-3-imino-1-phenylhex-1-en-1-amine (62.8 mg, 0.2 mmol, 1 equiv., **2a**), acetyl chloride (69.0 mg, 0.88 mmol, 4.4 equiv.), and Et₃N (101.2 mg, 1 mmol, 5 equiv.) in THF (2 mL) was stirred at room temperature under air for 24 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (100/1~80/1) as eluent to afford the pure product **7** (53.6 mg, 79% yield).

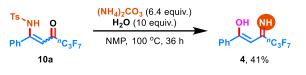
Mechanistic studies


a) The reactivity of perfluoroalkylated alkene 8

A solution of (*Z*)-4-(3,3,4,4,5,5,6,6,6-nonafluorohex-1-en-1-yl)benzonitrile (69.4 mg, 0.2 mmol, 1 equiv., **8**), (NH₄)₂CO₃ (123.0 mg, 1.28 mmol, 6.4 equiv.), and H₂O (36.0 mg, 2 mmol, 10 equiv.) in NMP (4 mL) was stirred at 100 °C (oil bath) under air for 36 h. No desired product **2k** was detected.

<u>The necessity of an iodine atom at the α -position of the fluoroalkyl alkene demonstrated that</u> the initial reaction might go through a C-I bond displacement.

b) The use of TsNH₂(9) as a N-source

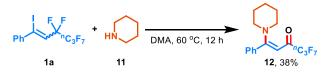


A solution of allylic fluoride **1** (0.45 mmol, 1.5 equiv.), $T_{s}NH_{2}$ (51.4 mg, 0.3 mmol, 1 equiv., **9**), and $Cs_{2}CO_{3}$ (293.2 mg, 0.9 mmol, 3 equiv.) in DMSO (2 mL) was stirred at 90 °C (oil bath) under N_{2} for 12 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (10/1) as eluent to afford the pure products **10a-c** in 43-49% yields.

These results suggested that 1) deiodinative amination takes place first; 2) H_2O is involved in the $C(sp^3)$ -F bond breaking step as a reagent and/or promoter, not merely for increasing the solubility of $(NH_4)_2CO_3$ in NMP; 3) the further condensation of the resulting enaminoketone with $TsNH_2$ is difficult to occur under basic conditions.

c) The reaction of 10a with (NH₄)₂CO₃

A

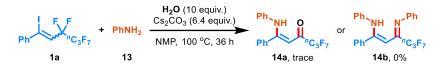

solution

of

N-(4,4,5,5,6,6,6-heptafluoro-3-oxo-1-phenylhex-1-en-1-yl)-4-methylbenzenesulfonamide (93.9 mg, 0.2 mmol, 1 equiv., **10a**), (NH₄)₂CO₃ (123.0 mg, 1.28 mmol, 6.4 equiv.), and H₂O (36.1 mg, 2 mmol, 10 equiv.) in NMP (4 mL) was stirred at 100 °C (oil bath) under air for 36 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (4/1) as eluent to afford the pure product **4** (26.1 mg, 41% yield).

<u>This result suggested that the further condensation of the enaminoketone 10a with $(NH_4)_2CO_3$ is much easier than TsNH₂.</u>

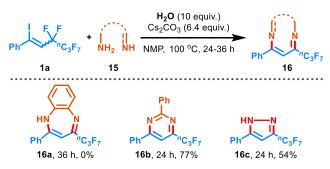
d) The use of piperidine (11) as a N-source



A solution of (3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (134.4 mg, 0.3 mmol, 1 equiv., **1a**) and piperidine (127.7 mg, 1.5 mmol, 5 equiv., **11**) in DMA (2 mL) was stirred at 60 °C

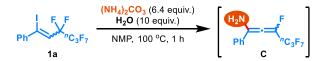
(oil bath) under air for 12 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate ($10/1 \sim 4/1$) as eluent to afford the pure product **12** (43.6 mg, 38% yield).

These results suggested that 1) deiodinative amination takes place first; 2) H_2O is involved in the $C(sp^3)$ -F bond breaking step as a reagent and/or promoter, not merely for increasing the solubility of $(NH_4)_2CO_3$ in NMP; 3) the further condensation of the resulting enaminoketone with the piperidine is difficult to occur under basic conditions.

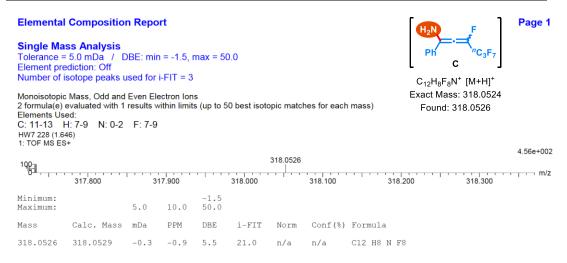

e) The use of aniline (13) as a N-source

A solution of (3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (134.4 mg, 0.3 mmol, 1 equiv., **1a**), aniline (178.8 mg, 1.92 mmol, 6.4 equiv., **13**), Cs₂CO₃ (625.6 mg, 1.92 mmol, 6.4 equiv.), and H₂O (54.0 mg, 3 mmol, 10 equiv.) in NMP (4 mL) was stirred at 100 °C (oil bath) under air for 36 h. A trace amount of product **14a** was formed and no desired product **14b** was obtained.

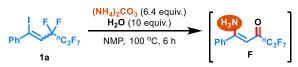
This result suggested that aniline (13) is not a suitable candidate for the present <u>defluoroamination.</u>


f) The use of diamine compounds 15 as dual N-sources

A solution of (3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (62.8 mg, 0.3 mmol, 1 equiv., **1a**), diamine compound (1.92 mmol, 6.4 equiv., **15a-c**), Cs₂CO₃ (625.6 mg, 1.92 mmol, 6.4 equiv.), and H₂O (54.0 mg, 3 mmol, 10 equiv.) in NMP (4 mL) was stirred at 100 °C (oil bath) under air for 24-36 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (200/1~2/1) as eluent to afford the pure product **16b** (92.6 mg, 77% yield) or **16c** (50.8 mg, 54% yield). No desired product **16a** was detected.

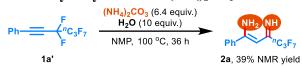

<u>This result suggested that the nucleophilicity of the N-source is a key factor for the success of</u> <u>the defluorinative transformation.</u>

g) Detection of possible intermediate C



A solution of (3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (134.4 mg, 0.3 mmol, 1 equiv., **1a**), (NH₄)₂CO₃ (184.5 mg, 1.92 mmol, 6.4 equiv.), and H₂O (54.0 mg, 3 mmol, 10 equiv.) in NMP (4 mL) was stirred at 100 °C (oil bath) under air for 1 h. Then the vial was cooled to room temperature and the reaction mixture was passed through a short pad of Celite followed by rinse with MeCN. A sample was taken from the filtrate and was directly analyzed by HRMS.

h) Detection of possible intermediate F



A solution of (3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (134.4 mg, 0.3 mmol, 1 equiv., **1a**), (NH₄)₂CO₃ (184.5 mg, 1.92 mmol, 6.4 equiv.), and H₂O (54.0 mg, 3 mmol, 10 equiv.) in NMP (4 mL) was stirred at 100 °C (oil bath) under air for 6 h. Then the vial was cooled to room temperature and the reaction mixture was passed through a short pad of Celite followed by rinse with MeCN. A sample was taken from the filtrate and was directly analyzed by HRMS.

HRMS analysis of the reaction mixture suggested the involvement of aminovinyl ketone F.

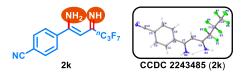
Elemental Composition Repor	t	H ₂ N Q Page 1
Single Mass Analysis Tolerance = 5.0 mDa / DBE: min Element prediction: Off	·	Ph ⁿ C ₃ F ₇ F
Number of isotope peaks used for i	FIT = 3	Calcd for C ₁₂ H ₉ F ₇ NO ⁺ [M+H] ⁺
Monoisotopic Mass, Even Electron Ions 107 formula(e) evaluated with 1 results Elements Used:	within limits (up to 50 best isotopic m	atches for each mass) Exact Mass: 316.0567 Found: 316.0566
C: 11-13 H: 8-10 N: 1-3 O: 0-3 740 58 (0.433) 1: TOE MS ES+	F: 7-11 K: 0-1	
1. TOF MS ES+		9.10e+001
102	316.0566	
315.800 315	900 316.000	316.100 316.200 316.300
Minimum: Maximum: 5.0	-1.5 10.0 50.0	
Mass Calc. Mass mDa	PPM DBE i-FIT Norm	Conf(%) Formula
316.0566 316.0572 -0.6	-1.9 5.5 16.3 n/a	n/a C12 H9 N O F7

i) The reaction of perfluorobutyl alkyne 1a' with $(NH_4)_2CO_3$

A solution of (perfluorohex-1-yn-1-yl)benzene (96.1 mg, 0.3 mmol, 1 equiv., **1a'**), $(NH_4)_2CO_3$ (184.5 mg, 1.92 mmol, 6.4 equiv.), and H₂O (54.0 mg, 3 mmol, 10 equiv.) in NMP (4 mL) was stirred at 100 °C (oil bath) under air for 36 h. The yield of **2a** was determined by ¹⁹F NMR analysis with 1-fluoro-4-methoxybenzene (0.1 mmol) as an internal standard.

Optimization of the reaction conditions

Table S1. Optimization of the reaction conditions^a


	Ph	κ _{"C₃F₇ + (}	H ₂ O (y equiv.) sol., temp., time		ⁿ C ₃ F ₇		
	1a	(x ec	- 1 I, 2 F juiv.)		2a		
Entry	<i>N</i> -source	H ₂ O	H2O (y equiv.)	Temp.	Time (h)	Yield of	Yield o
	(x equiv)	(y equiv.)		(°C)	Time (II)	1a (%) ^b	2a (%)
1	(NH ₄) ₂ CO ₃ (6.4)	5	DMA	70	12	68	11
2	(NH4)2CO3 (6.4)	5	DMA	90	12	37	33
3	(NH ₄) ₂ CO ₃ (6.4)	5	DMA	100	12	38	35
4	(NH4)2CO3 (6.4)	5	DMA	100	24	18	48
5	(NH4)2CO3 (6.4)	5	DMSO	100	24	0	33
6	(NH ₄) ₂ CO ₃ (6.4)	5	DMF	100	24	25	8
7	(NH4)2CO3 (6.4)	5	NMP	100	24	10	66
6	(NH ₄) ₂ CO ₃ (6.4)	5	Toluene	100	24	0	0
7	(NH ₄) ₂ CO ₃ (6.4)	5	1,4-dioxane	100	24	0	0
8	(NH ₄) ₂ CO ₃ (6.4)	5	MeCN	80	24	0	0
9	(NH ₄) ₂ CO ₃ (6.4)	5	^t BuOH	85	24	0	0
10	(NH ₄) ₂ CO ₃ (6.4)	5	EtOAc	80	24	0	0
11	(NH ₄) ₂ CO ₃ (6.4)	0	NMP	100	24	23	44
12	(NH ₄) ₂ CO ₃ (6.4)	5	NMP	80	24	27	49
13	(NH4)2CO3 (6.4)	5	NMP	120	24	0	54
14	(NH ₄) ₂ CO ₃ (6.4)	8	NMP	100	24	11	67
15	(NH4)2CO3 (6.4)	10	NMP	100	24	10	71 (55
16	(NH ₄) ₂ CO ₃ (6.4)	15	NMP	100	24	9	62
17	(NH ₄) ₂ CO ₃ (6.4)	20	NMP	100	24	10	63
18	(NH ₄) ₂ CO ₃ (4.4)	10	NMP	100	24	5	45
19	(NH4)2CO3 (2.4)	10	NMP	100	24	11	34
20	NH_3 (aq. 6.4) +						
	20	Cs ₂ CO ₃ (6.4)	10	NMP	100	24	trace
21	NH4OAc (6.4) +						
	Cs ₂ CO ₃ (6.4)	10	NMP	100	24	trace	trace
22	NH4Cl (6.4) + Cs ₂ CO ₃ (6.4)	10	NMP	100	24	trace	26
23	(NH4)2CO3 (6.4)	10	NMP	100	24	$17^{d,e}$	32 ^{<i>d</i>,<i>e</i>}
24	(NH ₄) ₂ CO ₃ (6.4)	10	NMP	100	24	12^{f}	74 ^f
25	(NH ₄) ₂ CO ₃ (6.4)	10	NMP	100	24	13 ^g	79 ^g (64
26	(NH ₄) ₂ CO ₃ (6.4)	10	NMP	100	36	7 ^g	91 ^g (82
27		10	NMP	100	36	83 ^g	0

^{*a*} Reaction conditions: **1a** (0.3 mmol), *N* source (0.72-1.92 mmol), and H₂O (0-20 mmol) in solvent (1-4 mL) at 70-120 °C under air for 12-36 h.^{*b*} Yields were determined by ¹⁹F NMR analysis with 1-fluoro-4-methoxybenzene (0.1 mmol) as an internal standard. ^{*c*} Isolated yield. ^{*d*} Under N₂. ^{*e*} In 1 mL of NMP. ^{*f*} In 3 mL of NMP. ^{*g*} In 4 mL of NMP.

The X-ray crystal structures of products 2k and Z-10a

The single crystals were grown from the mixed solution of EtOAc/EtOH/H2O by slowly evaporating the above solvents at room temperature.

(Z)-4-(1-Amino-4,4,5,5,6,6,6-heptafluoro-3-iminohex-1-en-1-yl)benzonitrile (2k; displacement ellipsoids are drawn at the 50% probability levels):

CCDC number: 2243485

Table S2. Crystal data and structure refinement for 2k.		
Identification code	2k	
Empirical formula	$C_{13}H_8F_7N_3$	
Formula weight	339.22	
Temperature/K	199.99(10)	
Crystal system	monoclinic	
Space group	P2 ₁ /c	
a/Å	11.5372(11)	
b/Å	11.7335(9)	
c/Å	10.3893(9)	
α/°	90	
β/°	104.132(9)	
$\gamma/^{\circ}$	90	
Volume/Å ³	1363.9(2)	
Z	4	
$\rho_{calc}g/cm^3$	1.652	
µ/mm ⁻¹	0.168	
F(000)	680.0	
Crystal size/mm ³	0.14 imes 0.12 imes 0.11	
Radiation	Mo Ka ($\lambda = 0.71073$)	
2Θ range for data collection/	° 5.03 to 49.998	
Index ranges	$-13 \le h \le 13, -11 \le k \le 13, -12 \le l \le 10$	
Reflections collected	5493	
Independent reflections	2399 [$R_{int} = 0.0239, R_{sigma} = 0.0324$]	
Data/restraints/parameters	2399/0/221	
Goodness-of-fit on F ²	1.069	
Final R indexes [I>= 2σ (I)]	$R_1=0.0395,wR_2=0.0986$	
Final R indexes [all data]	$R_1=0.0479,wR_2=0.1047$	
Largest diff. peak/hole / e Å-	³ 0.19/-0.28	

 Table S2
 Crystal data and structure refinement for 2k

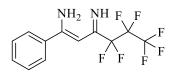
Crystal structure determination of [2k]

Crystal Data for C₁₃H₈F₇N₃ (M = 339.22 g/mol): monoclinic, space group P2₁/c (no. 14), a = 11.5372(11) Å, b = 11.7335(9) Å, c = 10.3893(9) Å, $\beta = 104.132(9)$ °, V = 1363.9(2) Å³, Z = 4, T = 199.99(10) K, μ (Mo K α) = 0.168 mm⁻¹, *Dcalc* = 1.652 g/cm³, 5493 reflections measured ($5.03^{\circ} \le 2\Theta \le 49.998^{\circ}$), 2399 unique ($R_{int} = 0.0239$, $R_{sigma} = 0.0324$) which were used in all calculations. The final R_1 was 0.0395 (I > 2 σ (I)) and wR_2 was 0.1047 (all data).

(*Z*)-*N*-(4,4,5,5,6,6,6-Heptafluoro-3-oxo-1-phenylhex-1-en-1-yl)-4-methylbenzenesulfonamide (*Z*-10a; displacement ellipsoids are drawn at the 50% probability levels):

CCDC number: 2280088

Table S3. Crystal data and structure refinement for Z-10a.


···· J	
Identification code	Z-10a
Empirical formula	$C_{19}H_{14}F_7NO_3S$
Formula weight	469.37
Temperature/K	150.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	6.2755(10)
b/Å	8.1410(9)
c/Å	19.0094(12)
α/°	81.051(7)
β/°	85.123(9)
γ/°	84.276(11)
Volume/Å ³	952.2(2)
Z	2
$\rho_{calc}g/cm^3$	1.637
µ/mm ⁻¹	2.365
F(000)	476.0
Crystal size/mm ³	$0.16 \times 0.13 \times 0.11$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/	^{°°} 4.718 to 133.198
Index ranges	$-7 \le h \le 7, -9 \le k \le 9, -22 \le l \le 14$
Reflections collected	5808
Independent reflections	3370 [$R_{int} = 0.0882$, $R_{sigma} = 0.0801$]
Data/restraints/parameters	3370/0/281

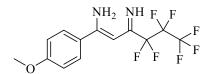
 $\begin{array}{ll} Goodness-of-fit \ on \ F^2 & 1.087 \\ \\ Final \ R \ indexes \ [I>=2\sigma \ (I)] & R_1 = 0.0955, \ wR_2 = 0.2680 \\ \\ Final \ R \ indexes \ [all \ data] & R_1 = 0.1060, \ wR_2 = 0.2865 \\ \\ Largest \ diff. \ peak/hole \ / \ e \ Å^{-3} \ 0.91/-1.19 \end{array}$

Crystal structure determination of [Z-10a]

Crystal Data for C₁₉H₁₄F₇NO₃S (*M* =469.37 g/mol): triclinic, space group P-1 (no. 2), *a* = 6.2755(10) Å, *b* = 8.1410(9) Å, *c* = 19.0094(12) Å, *a* = 81.051(7) °, *β* = 85.123(9) °, *γ* = 84.276(11) °, *V* = 952.2(2) Å³, *Z* = 2, *T* = 150.00(10) K, μ (Cu K α) = 2.365 mm⁻¹, *Dcalc* = 1.637 g/cm³, 5808 reflections measured (4.718° $\leq 2\Theta \leq 133.198°$), 3370 unique (*R*_{int} = 0.0882, R_{sigma} = 0.0801) which were used in all calculations. The final *R*₁ was 0.0955 (I > 2 σ (I)) and *wR*₂ was 0.2865 (all data).

Characterization data for products

(Z)-4,4,5,5,6,6,6-Heptafluoro-3-imino-1-phenylhex-1-en-1-amine (2a):


Yield = 82% (77.0 mg). Green oil.

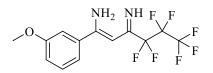
Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

¹**H** NMR (400 MHz, CDCl₃): δ = 9.56 (brs, 2H), 7.61–7.53 (m, 2H), 7.50–7.42 (m, 3H), 5.84 (brs, 1H), 5.33 (s, 1H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.32 (t, *J* = 9.4 Hz, 3F), -120.07 (q, *J* = 9.7 Hz, 2F), -126.48 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 160.8, 160.7 (t, J_{C-F} = 22.9 Hz), 138.2, 130.5, 129.1, 126.3, 87.8 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₁₂H₁₀F₇N₂ [M+H]⁺ 315.0727, found: 315.0721.

(Z)-4,4,5,5,6,6,6-Heptafluoro-3-imino-1-(4-methoxyphenyl)hex-1-en-1-amine (2b):


Yield = 69% (71.1 mg). Green oil.

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

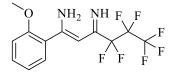
¹**H NMR (400 MHz, CDCl₃):** δ = 9.51 (brs, 2H), 7.60–7.45 (m, 2H), 7.08–6.87 (m, 2H), 5.81 (brs, 1H), 5.29 (s, 1H), 3.85 (s, 3H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.33 (t, *J* = 9.7 Hz, 3F), -120.01 (q, *J* = 8.9 Hz, 2F), -126.49 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 161.4$, 160.7 (t, $J_{C-F} = 23.2$ Hz), 160.4, 130.4, 127.7, 114.4, 87.1, 55.5 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₁₃H₁₂F₇N₂O [M+H]⁺ 345.0832, found: 345.0825.

(Z)-4,4,5,5,6,6,6-Heptafluoro-3-imino-1-(3-methoxyphenyl)hex-1-en-1-amine (2c):

Yield = 69% (71.3 mg). Green oil.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 9.42 (brs, 2H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.15 (ddd, *J* = 7.7, 1.8, 1.0 Hz, 1H), 7.09–7.07 (m, 1H), 7.00 (ddd, *J* = 8.2, 2.6, 1.0 Hz, 1H), 5.86 (brs, 1H), 5.33 (s, 1H), 3.86 (s, 3H) ppm.

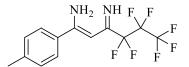
¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.34 (t, *J* = 9.7 Hz, 3F), -120.09 (q, *J* = 9.3 Hz, 2F), -126.49 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 160.7$ (t, $J_{C-F} = 24.3$ Hz), 160.4, 160.0, 139.7, 130.2, 118.6, 115.6, 112.1, 87.8, 55.5 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₃H₁₂F₇N₂O [M+H]⁺ 345.0832, found: 345.0831.

(Z)-4,4,5,5,6,6,6-Heptafluoro-3-imino-1-(2-methoxyphenyl)hex-1-en-1-amine (2d):

Yield = 27% (27.9 mg, 36 h); 29% (30.2 mg, 48 h). Green oil.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

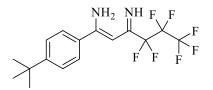
¹**H NMR (400 MHz, CDCl₃):** δ = 9.46 (brs, 2H), 7.50–7.36 (m, 2H), 7.08–6.95 (m, 2H), 6.61 (brs, 1H), 5.24 (s, 1H), 3.88 (s, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.32 (t, *J* = 9.7 Hz, 3F), -119.98 (q, *J* = 10.4 Hz, 2F), -126.50 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 160.1, 159.9 (t, J_{C-F} = 22.2 Hz), 156.8, 131.3, 129.6, 126.3, 121.2, 111.7, 89.2, 55.8 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₃H₁₂F₇N₂O [M+H]⁺ 345.0832, found: 345.0829.

(Z)-4,4,5,5,6,6,6-Heptafluoro-3-imino-1-(*p*-tolyl)hex-1-en-1-amine (2e):


Yield = 34% (33.9 mg, 36 h); 64% (62.7 mg, 48 h). Yellow oil.

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

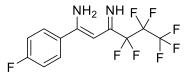
¹**H NMR (400 MHz, CDCl₃):** δ = 9.49 (brs, 2H), 7.49–7.44 (m, 2H), 7.28–7.23 (m, 2H), 5.82 (brs, 1H), 5.31 (s, 1H), 2.41 (s, 3H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.31 (t, *J* = 9.7 Hz, 3F), -120.03 (q, *J* = 10.4 Hz, 2F), -126.47 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 160.8 (t, J_{C-F} = 23.2 Hz), 160.7, 140.8, 135.2, 129.8, 126.3, 87.4, 21.5 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₁₃H₁₂F₇N₂ [M+H]⁺ 329.0883, found: 329.0873.

(Z)-1-(4-(*tert*-Butyl)phenyl)-4,4,5,5,6,6,6-heptafluoro-3-iminohex-1-en-1-amine (2f):

Yield = 48% (53.5 mg). Yellow oil.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 200/1).

¹**H NMR (400 MHz, CDCl₃):** *δ* = 9.55 (brs, 2H), 7.49 (q, *J* = 8.4 Hz, 4H), 5.82 (brs, 1H), 5.32 (s, 1H), 1.35 (s, 9H) ppm.

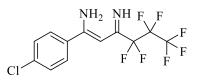
¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.36 (s, 3F), -120.00 (s, 2F), -126.47 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 160.8$ (t, $J_{C-F} = 23.7$ Hz), 160.7, 153.9, 135.2, 126.7 (d, $J_{C-F} = 188.8$ Hz), 126.0, 87.5, 35.0, 31.3 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₆H₁₈F₇N₂ [M+H]⁺ 371.1353, found: 371.1348.

(Z)-4,4,5,5,6,6,6-Heptafluoro-1-(4-fluorophenyl)-3-iminohex-1-en-1-amine (2g):

Yield = 61% (61.2 mg). Yellow oil.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

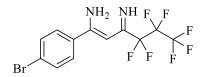
¹**H NMR (400 MHz, CDCl₃):** *δ* = 9.79 (brs, 2H), 7.59–7.51 (m, 2H), 7.17–7.09 (m, 2H), 5.79 (brs, 1H), 5.26 (s, 1H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.37 (s, 3F), -110.08 (s, 1F), -120.15 (s, 2F), -126.48 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 164.0$ (d, $J_{C-F} = 251.5$ Hz), 160.6 (t, $J_{C-F} = 23.2$ Hz), 159.8, 134.4 (d, $J_{C-F} = 3.0$ Hz), 128.3 (d, $J_{C-F} = 9.1$ Hz), 116.1 (d, $J_{C-F} = 22.2$ Hz), 87.9 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₂H₁₁F₈N₂ [M+H]⁺ 333.0633, found: 333.0626.

(Z)-1-(4-Chlorophenyl)-4,4,5,5,6,6,6-heptafluoro-3-iminohex-1-en-1-amine (2h):


Yield = 81% (84.6 mg). Green oil.

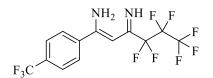
Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 40/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 9.43 (brs, 2H), 7.53–7.46 (m, 2H), 7.45–7.39 (m, 2H), 5.79 (brs, 1H), 5.28 (s, 1H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.31 (t, *J* = 9.7 Hz, 3F), -120.13 (q, *J* = 8.9 Hz, 2F), -126.47 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 160.6$ (t, $J_{C-F} = 23.7$ Hz), 159.6, 136.6, 136.5, 129.3, 127.7, 88.0 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₁₂H₉ClF₇N₂ [M+H]⁺ 349.0337, found: 349.0331.

(Z)-1-(4-Bromophenyl)-4,4,5,5,6,6,6-heptafluoro-3-iminohex-1-en-1-amine (2i):


Yield = 83% (98.2 mg). Yellow oil.

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

¹**H NMR (400 MHz, CDCl₃):** *δ* = 9.42 (brs, 2H), 7.62–7.53 (m, 2H), 7.47–7.39 (m, 2H), 5.79 (brs, 1H), 5.27 (s, 1H) ppm.

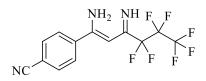
¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.31 (t, *J* = 9.7 Hz, 3F), -120.13 (q, *J* = 8.9 Hz, 2F), -126.46 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 160.6$ (t, $J_{C-F} = 24.2$ Hz), 159.6, 137.1, 132.3, 127.9, 124.7, 88.0 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₁₂H₉BrF₇N₂ [M+H]⁺ 392.9832, found: 392.9825.

(Z) - 4, 4, 5, 5, 6, 6, 6 - Heptafluoro - 3 - imino - 1 - (4 - (trifluoromethyl) phenyl) hex - 1 - en - 1 - amine (2j) :

Yield = 28% (32.1 mg). Yellow oil.

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).


¹**H NMR (400 MHz, CDCl₃):** δ = 9.41 (brs, 2H), 7.69 (q, *J* = 8.5 Hz, 4H), 5.85 (brs, 1H), 5.31 (s, 1H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -62.74 (s, 3F), -80.31 (t, J = 9.7 Hz, 3F), -120.21 (q, J = 8.9 Hz,

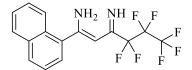
2F), -126.47 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 160.6 (t, J_{C-F} = 24.2 Hz), 159.3, 141.7, 132.1 (q, J_{C-F} = 32.3 Hz), 126.8, 126.1 (q, J_{C-F} = 4.0 Hz), 125.2 (q, J_{C-F} = 248.5 Hz), 88.6 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₃H₉F₁₀N₂ [M+H]⁺ 383.0601, found: 383.0608.

(Z)-4-(1-Amino-4,4,5,5,6,6,6-heptafluoro-3-iminohex-1-en-1-yl)benzonitrile (2k):

Yield = 55% (55.9 mg). Yellow solid. M.p. 109.5-110.9 °C.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 9.41 (brs, 2H), 7.78–7.63 (m, 4H), 5.84 (brs, 1H), 5.30 (s, 1H) ppm.

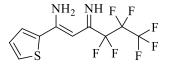
¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.25 (t, *J* = 9.7 Hz, 3F), -120.22 (q, *J* = 8.9 Hz, 2F), -126.43 (s, 2F) ppm.

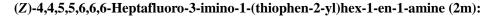
¹³C NMR (100 MHz, CDCl₃): $\delta = 160.5$ (t, $J_{C-F} = 23.7$ Hz), 158.6, 142.4, 132.9, 127.1, 118.3, 113.9, 88.9 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₃H₉F₇N₃ [M+H]⁺ 340.0679, found: 340.0675.

(Z)-4,4,5,5,6,6,6-Heptafluoro-3-imino-1-(naphthalen-1-yl)hex-1-en-1-amine (2l):

Yield = 48% (52.9 mg). Yellow oil

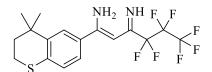

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).


¹**H NMR (400 MHz, CDCl₃):** δ = 9.74 (brs, 2H), 8.23–8.17 (m, 1H), 7.94–7.88 (m, 2H), 7.58–7.48 (m, 4H), 6.03 (brs, 1H), 5.28 (s, 1H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.31 (s, 3F), -120.08 (s, 2F), -126.44 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 161.4$, 159.9 (t, $J_{C-F} = 23.5$ Hz), 136.9, 133.8, 130.3, 129.9, 128.6, 127.0, 126.5, 125.7, 125.3, 125.3, 91.0 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₆H₁₂F₇N₂ [M+H]⁺ 365.0883, found: 365.0877.


Yield = 50% (48.0 mg). Yellow oil.

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

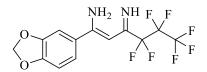
¹**H** NMR (400 MHz, CDCl₃): δ = 9.11 (brs, 2H), 7.45–7.36 (m, 2H), 7.10 (dd, *J* = 5.1, 3.7 Hz, 1H), 6.09 (brs, 1H), 5.45 (s, 1H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.29 (t, *J* = 8.9 Hz, 3F), -120.08 (q, *J* = 8.9 Hz, 2F), -126.52 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 159.2$ (t, $J_{C-F} = 23.2$ Hz), 154.3, 140.9, 128.2, 127.8, 126.0, 87.9 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₁₀H₈F₇N₂S [M+H]⁺ 321.0291, found: 321.0292.

(Z)-1-(4,4-Dimethylthiochroman-6-yl)-4,4,5,5,6,6,6-heptafluoro-3-iminohex-1-en-1-amine (2n):

Yield = 74% (91.8 mg). Yellow oil.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 9.47$ (brs, 2H), 7.53 (d, J = 2.0 Hz, 1H), 7.22 (dd, J = 8.2, 2.0 Hz, 1H), 7.14 (d, J = 8.2 Hz, 1H), 5.79 (brs, 1H), 5.27 (s, 1H), 3.09–3.03 (m, 2H), 2.00–1.95 (m, 2H), 1.37 (s, 6H) ppm.

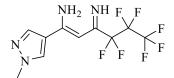
¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.29 (t, *J* = 9.7 Hz, 3F), -120.08 (q, *J* = 9.4 Hz, 2F), -126.47 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 160.8, 160.6 (t, J_{C-F} =23.7 Hz), 142.6, 135.5, 133.8, 127.1, 124.1, 123.8, 87.2, 37.2, 33.2, 30.1, 23.2 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₇H₁₈F₇N₂S [M+H]⁺ 415.1073, found: 415.1071.

(Z)-1-(Benzo[d][1,3]dioxol-5-yl)-4,4,5,5,6,6,6-heptafluoro-3-iminohex-1-en-1-amine (20):

Yield = 69% (74.1 mg). Green oil.

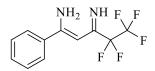

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 9.43 (brs, 2H), 7.08 (dd, *J* = 8.1, 1.9 Hz, 1H), 7.02 (d, *J* = 1.8 Hz, 1H), 6.85 (d, *J* = 8.1 Hz, 1H), 6.02 (s, 2H), 5.78 (brs, 1H), 5.25 (s, 1H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.38 (s, 3F), -120.02 (s, 2F), -126.50 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 160.5$ (t, $J_{C-F} = 23.2$ Hz), 160.3, 149.5, 148.3, 132.3, 120.5, 108.7, 106.8, 101.8, 87.4 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₃H₁₀F₇N₂O₂ [M+H]⁺ 359.0625, found: 359.0621.


(Z) - 4, 4, 5, 5, 6, 6, 6 - Heptafluoro - 3 - imino - 1 - (1 - methyl - 1H - pyrazol - 4 - yl) hex - 1 - en - 1 - amine (2p):

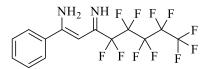
Yield = 44% (41.5 mg). Yellow solid. M.p. 71.6-72.7 °C.

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 9.12$ (brs, 2H), 7.70 (d, J = 0.8 Hz, 1H), 7.63 (d, J = 0.8 Hz, 1H), 5.86 (brs, 1H), 5.23 (s, 1H), 3.93 (s, 3H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -79.99 – -80.78 (m, 3F), -120.08 (s, 2F), -126.59 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 159.9 (t, *J*_{C-F} = 23.2 Hz), 153.3, 137.0, 128.5, 120.8, 86.4, 39.4 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₁₀H₁₀F₇N₄ [M+H]⁺ 319.0788, found: 319.0789.

(Z)-4,4,5,5,5-Pentafluoro-3-imino-1-phenylpent-1-en-1-amine (2t):


Yield = 42% (33.2 mg). Yellow oil.

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

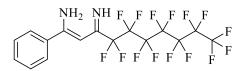
¹**H NMR (400 MHz, CDCl₃):** δ = 9.47 (brs, 2H), 7.63–7.40 (m, 5H), 5.89 (brs, 1H), 5.33 (s, 1H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -83.29 (s, 3F), -122.92 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 161.0, 160.7 (t, J_{C-F} = 22.2 Hz), 138.2, 130.4, 129.1, 126.3, 87.5 ppm, carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₁₁H₁₀F₅N₂ [M+H]⁺ 265.0759, found: 265.0757.

(Z)-4,4,5,5,6,6,7,7,8,8,8-Undecafluoro-3-imino-1-phenyloct-1-en-1-amine (2u):

Yield = 40% (49.0 mg). Yellow oil.

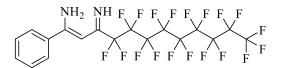

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 9.41 (brs, 2H), 7.60–7.53 (m, 2H), 7.49–7.41 (m, 3H), 5.82 (brs, 1H), 5.32 (s, 1H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.66 (t, *J* = 9.7 Hz, 3F), -119.15 (t, *J* = 14.2 Hz, 2F), -122.19 (t, *J* = 16.4 Hz, 2F), -121.82 - -122.42 (m, 2F), -126.03 - -126.23 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 160.9$ (t, $J_{C-F} = 9.1$ Hz), 160.6, 138.1, 130.4, 129.1, 126.3, 87.9

ppm, carbons corresponding to the C_5F_{11} group cannot be identified due to C-F coupling. **HRMS (m/z):** calcd for $C_{14}H_{10}F_{11}N_2$ [M+H]⁺ 415.0663, found: 415.0657.

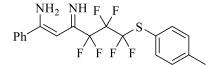

(Z)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Pentadecafluoro-3-imino-1-phenyldec-1-en-1-amine (2v): Yield = 49% (76.4 mg). Yellow oil.

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 9.43 (brs, 2H), 7.59–7.41 (m, 5H), 5.82 (brs, 1H), 5.33 (s, 1H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.69 (t, *J* = 10.1 Hz, 3F), -119.13 (t, *J* = 14.2 Hz, 2F), -121.32 - -121.61 (m, 2F), -121.96 (s, 4F), -122.67 (dq, *J* = 21.2, 10.8 Hz, 2F), -125.94 - -126.27 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 160.9 (t, J_{C-F} = 24.2 Hz), 160.6, 138.2, 130.4, 129.1, 126.3, 87.9 ppm, carbons corresponding to the C₇F₁₅ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₁₆H₁₀F₁₅N₂ [M+H]⁺ 515.0599, found: 515.0593.


(*Z*)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Nonadecafluoro-3-imino-1-phenyldodec-1-en-1 -amine (2w):

Yield = 33% (59.8 mg). White solid. 79.6-80.8 °C.

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 100/1).

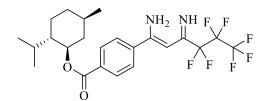
¹**H NMR (400 MHz, CDCl₃):** δ = 9.47 (brs, 2H), 7.74–7.33 (m, 5H), 5.82 (brs, 1H), 5.32 (s, 1H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -80.71 (t, J = 9.7 Hz, 3F), -119.15 (t, J = 14.2 Hz, 2F), -121.45 (s, 2F), -121.59 – -122.10 (m, 8F), -122.67 (d, J = 20.1 Hz, 2F), -125.97 – -126.24 (m, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 160.63 (t, $J_{C-F} = 23.7$ Hz), 160.62, 138.2, 130.4, 129.1, 126.3, 87.9 ppm, carbons corresponding to the C₉F₁₉ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₁₈H₁₀F₁₉N₂ [M+H]⁺ 615.0535, found: 615.0543.

(Z)-4,4,5,5,6,6-Hexafluoro-3-imino-1-phenyl-6-(*p*-tolylthio)hex-1-en-1-amine (2x):

Yield = 61% (76.6 mg). Green oil.

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl


acetate, 10/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 9.54 (s, 2H), 7.60–7.52 (m, 4H), 7.47–7.41 (m, 3H), 7.24–7.18 (m, 2H), 5.78 (s, 1H), 5.37 (s, 1H), 2.39 (s, 3H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -86.03 (tt, *J* = 10.8, 4.9 Hz, 2F), -118.06 (t, *J* = 10.8 Hz, 2F), -119.69 (t, *J* = 4.9 Hz, 2F) ppm.

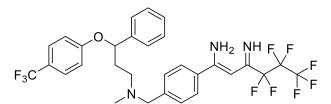
¹³C NMR (100 MHz, CDCl₃): δ = 161.9 (t, J_{C-F} = 23.5 Hz), 160.3, 141.5, 138.4, 137.5, 130.3, 130.2, 129.0, 126.3, 119.8, 88.3, 21.5 ppm, carbons corresponding to the C₃F₆ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₉H₁₇F₆N₂S [M+H]⁺ 419.1011, found: 419.1013.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl

4-((Z)-1-amino-4,4,5,5,6,6,6-heptafluoro-3-iminohex-1-en-1-yl)benzoate (3a):

Yield = 33% (33.1 mg, 0.2 mmol scale). Yellow oil.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 9.47$ (brs, 2H), 8.13–8.09 (m, 2H), 7.62 (dd, J = 8.4, 1.7 Hz, 2H), 5.86 (brs, 1H), 5.33 (s, 1H), 4.99–4.90 (m, 1H), 2.17–2.12 (m, 1H), 1.94 (tt, J = 7.1, 3.6 Hz, 1H), 1.76–1.71 (m, 2H), 1.15–1.08 (m, 2H), 0.93 (td, J = 6.7, 1.7 Hz, 9H), 0.79 (dd, J = 6.9, 1.6 Hz, 4H) ppm.

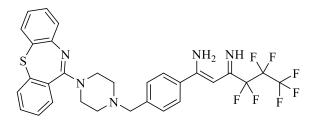
¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.34 (s, 3F), -120.13 (s, 2F), -126.44 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 165.5, 159.6 (t, J_{C-F} = 22.7 Hz), 142.1, 132.5, 130.3, 126.3, 88.5, 75.4, 47.4, 41.1, 34.4, 31.6, 26.7, 23.8, 22.2, 20.9, 16.7 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₃H₂₈F₇N₂O₂ [M+H]⁺ 497.2034, found: 497.2036.

(*Z*)-4,4,5,5,6,6,6-Heptafluoro-3-imino-1-(4-((methyl(3-phenyl-3-(4-(trifluoromethyl)phenoxy) propyl)amino)methyl)phenyl)hex-1-en-1-amine (3b):

Yield = 63% (80.7 mg, 0.2 mmol scale). Yellow oil.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 9.42$ (brs, 2H), 7.46–7.38 (m, 4H), 7.35–7.27 (m, 7H), 6.92–6.80 (m, 2H), 5.77 (brs, 1H), 5.37 (dd, J = 8.5, 4.5 Hz, 1H), 5.32 (s, 1H), 3.61–3.43 (m, 2H), 2.71–2.62 (m, 1H), 2.45 (ddd, J = 12.3, 7.0, 5.1 Hz, 1H), 2.27 (s, 3H), 2.24–2.15 (m, 1H), 2.03 (dtd, J = 14.4, 7.4, 4.5 Hz, 1H) ppm.

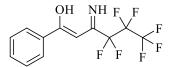
¹⁹**F NMR (376 MHz, CDCl₃):** δ = -61.35 (d, *J* = 18.2 Hz, 3F), -80.29 (s, 3F), -120.02 (s, 2F), -126.45 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 160.8$, 160.7 (t, $J_{C-F} = 23.2$ Hz), 160.4, 141.9, 141.4, 136.7, 129.5, 128.9, 127.9, 126.8 (q, $J_{C-F} = 3.7$ Hz), 126.1, 125.9, 122.8 (q, $J_{C-F} = 32.4$ Hz), 121.8 (q, $J_{C-F} = 269.8$ Hz), 115.8, 87.5, 78.0, 62.3, 53.2, 42.4, 36.8 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₃₀H₂₈F₁₀N₃O [M+H]⁺ 636.2067, found: 636.2071.

(Z)-1-(4-((4-(Dibenzo[*b*,*f*][1,4]thiazepin-11-yl)piperazin-1-yl)methyl)phenyl)-4,4,5,5,6,6,6-hep tafluoro-3-iminohex-1-en-1-amine (3c):

Yield = 72% (134.9 mg). Yellow oil.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 2/1).

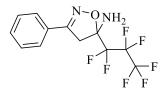
¹**H** NMR (400 MHz, CDCl₃): $\delta = 9.37$ (brs, 2H), 7.51 (td, J = 3.7, 1.6 Hz, 5H), 7.41 (s, 3H), 7.41–7.38 (m, 1H), 7.35–7.27 (m, 5H), 7.20–7.15 (m, 1H), 7.07 (dd, J = 8.0, 1.6 Hz, 1H), 6.91–6.86 (m, 1H), 5.87 (brs, 1H), 5.32 (s, 1H), 3.60 (s, 3H), 2.52–2.48 (m, 2H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.29 (t, *J* = 9.7 Hz, 3F), -119.99 (q, *J* = 10.4 Hz, 2F), -126.41 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 160.92, 160.91, 160.7, 160.5, 149.0, 140.5, 140.0, 137.0, 134.2, 132.33, 132.29, 130.9, 129.8, 129.3, 129.1, 128.4, 128.1, 126.3, 125.4, 123.0, 87.7, 62.7, 53.0 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{30}H_{27}F_7N_5S$ [M+H]⁺ 622.1870, found: 622.1874.

(Z)-4,4,5,5,6,6,6-Heptafluoro-3-imino-1-phenylhex-1-en-1-ol (4):


Yield = 44% (28.2 mg, 0.2 mmol scale). White solid. M.p. 69.3-70.7 °C.

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

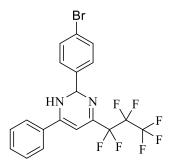
¹**H NMR (400 MHz, CDCl₃):** δ = 10.31 (brs, 1H), 7.65–7.47 (m, 5H), 6.14 (brs, 1H), 5.85 (s, 1H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.47 (t, *J* = 8.9 Hz, 3F), -120.96 (q, *J* = 9.7 Hz, 2F), -126.79 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 179.1$ (t, $J_{C-F} = 25.5$ Hz), 167.3, 135.4, 132.2, 129.5, 126.6, 89.8 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₁₂H₉F₇NO [M+H]⁺ 316.0567, found: 316.0566.

5-(2,2,3,3,4,4,4-Heptafluorobutyl)-3-phenyl-4,5-dihydroisoxazol-5-amine (5):

Yield = 75% (49.4 mg, 0.2 mmol scale). Yellow solid. M.p. 122.6-122.9 °C.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.67–7.62 (m, 2H), 7.48–7.39 (m, 3H), 3.80 (d, *J* = 18.2 Hz, 1H), 3.25 (d, *J* = 18.2 Hz, 1H), 2.46 (brs, 2H) ppm.

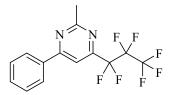
¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.85 (s, 3F), -120.54 (d, *J* = 23.8 Hz, 1F), -122.36 (dd, *J* = 292.0, 17.9 Hz, 1F), -123.32 (d, *J* = 286.1 Hz, 1F), -124.43 - -125.37 (m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 155.7, 131.0, 129.1, 128.4, 126.8, 96.5 (t, *J*_{C-F} = 25.8 Hz), 43.0 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{12}H_{10}F_7N_2O$ [M+H]⁺ 331.0676, found: 331.0667.

2-(4-Bromophenyl)-4-(perfluoropropyl)-6-phenyl-1,2-dihydropyrimidine (6):

Yield = 52% (49.7 mg, 0.2 mmol scale). Yellow solid. M.p. 83.5-84.9 °C.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.60 (dd, J = 7.0, 1.7 Hz, 2H), 7.56–7.50 (m, 3H), 7.50–7.43 (m, 4H), 5.95 (s, 1H), 5.79 (s, 1H), 4.36 (brs, 1H) ppm.

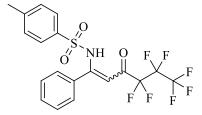
¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.20 (t, *J* = 14.1 Hz, 3F), -114.64 - -117.86 (m, 2F), -126.45 (d, *J* = 10.4 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 157.3$ (t, $J_{C-F} = 14.1$ Hz), 153.7, 139.1, 132.9, 131.93, 131.90, 129.3, 129.1, 127.4, 122.9, 92.7, 71.5 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₉H₁₃BrF₇N₂ [M+H]⁺ 481.0145, found: 481.0144.

2-Methyl-4-(perfluoropropyl)-6-phenylpyrimidine (7):

Yield = 79% (53.6 mg, 0.2 mmol scale). Colorless oil.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.16–8.12 (m, 2H), 7.83 (s, 1H), 7.58–7.51 (m, 3H), 2.89 (s, 3H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.06 (d, J = 35.8 Hz, 3F), -116.89 (t, J = 23.8 Hz, 2F), -126.09 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 169.5, 166.4, 156.4 (t, J_{C-F} = 25.3 Hz), 135.9, 132.0, 129.3, 127.6, 111.6, 26.4 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₄H₁₀F₇N₂ [M+H]⁺ 339.0727, found: 339.0727.

N-(4,4,5,5,6,6,6-Heptafluoro-3-oxo-1-phenylhex-1-en-1-yl)-4-methylbenzenesulfonamide (10a):

Yield = 49% (69.0 mg, E/Z = 1/3). Yellow oil.

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H** NMR (400 MHz, CDCl₃) of *E*- and *Z*-isomers: $\delta = 11.68$ (s, 0.3H), 9.51 (s, 0.7H), 7.67–7.63 (m, 1.5H), 7.54–7.50 (m, 0.4H), 7.47–7.44 (m, 1.9H), 7.43–7.41 (m, 0.4H), 7.40–7.34 (m, 2.6H), 7.28 (s, 0.3H), 7.20–7.18 (m, 1.9H), 5.79 (s, 0.3H), 5.36 (s, 0.7H), 2.41 (s, 0.8H), 2.38 (s, 2.2H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃) of *E*- and *Z*-isomers: δ = -80.09 (t, *J* = 9.7 Hz, 2.1F), -80.46 (t, *J* = 8.9 Hz, 0.9F), -119.43 (q, *J* = 10.4 Hz, 1.5F), -121.49 (q, *J* = 8.9 Hz, 0.5F), -126.44 (s, 1.5F), -126.61 (s, 0.5F) ppm.

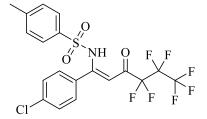
¹³C NMR (100 MHz, CDCl₃) of *E*- and *Z*-isomers: $\delta = 182.4$, 177.3, 163.4, 147.1 (t, $J_{C-F} = 24.5$ Hz), 145.4, 143.3, 139.4, 138.5, 136.0, 132.3, 132.0, 130.6, 129.8, 129.5, 129.3, 128.3, 128.2, 127.7, 127.6, 127.0, 100.7, 97.2, 21.7, 21.6 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₉H₁₅F₇NO₃S [M+H]⁺ 470.0655, found: 470.0662.

(Z)-N-(4,4,5,5,6,6,6-Heptafluoro-3-oxo-1-(p-tolyl)hex-1-en-1-yl)-4-methylbenzenesulfonamide

(10b):

Yield = 45% (65.4 mg). Green oil.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 11.74 (s, 1H), 7.40–7.35 (m, 2H), 7.23–7.15 (m, 6H), 5.78 (s, 1H), 2.42 (s, 3H), 2.41 (s, 3H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -80.46 (t, *J* = 8.7 Hz, 3F), -121.50 (q, *J* = 8.7 Hz, 2F), -126.65 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 182.3$ (t, $J_{C-F} = 25.5$ Hz), 163.6, 145.3, 143.0, 136.1, 129.8, 129.7, 129.4, 129.0, 127.7, 100.8, 21.7 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₇F₇NO₃S [M+H]⁺ 484.0812, found: 484.0812.

(*Z*)-*N*-(1-(4-Chlorophenyl)-4,4,5,5,6,6,6-heptafluoro-3-oxohex-1-en-1-yl)-4-methylbenzenesul fonamide (10c):

Yield = 43% (64.8 mg). Green oil.

Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 10/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 11.68 (s, 1H), 7.41–7.33 (m, 4H), 7.25–7.22 (m, 4H), 5.77 (s, 1H), 2.42 (s, 3H) ppm.

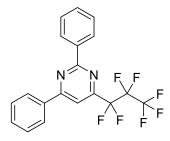
¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.42 (t, *J* = 8.7 Hz, 3F), -121.49 (q, *J* = 8.7 Hz, 2F), -126.58 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 182.5$ (t, $J_{C-F} = 25.5$ Hz), 161.8, 145.5, 138.5, 135.9, 130.8, 130.6, 129.9, 128.6, 127.6, 100.9, 21.7 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₉H₁₄ClF₇NO₃S [M+H]⁺ 504.0266, found: 504.0270.

(Z)-4,4,5,5,6,6,6-Heptafluoro-1-phenyl-1-(piperidin-1-yl)hex-1-en-3-one (12):

Yield = 38% (43.6 mg). Yellow oil.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 4/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.89 (dd, *J* = 7.4, 2.0 Hz, 2H), 7.53 (dd, *J* = 8.4, 6.1 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 6.32 (s, 1H), 3.10 (s, 4H), 1.62 (s, 6H) ppm.

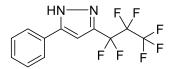
¹⁹**F** NMR (**376** MHz, CDCl₃): δ = -80.27 (s, 3F), -109.37 (s, 2F), -124.83 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ =188.0, 148.8 (t, J_{C-F} = 21.7 Hz), 139.1, 132.6, 128.7, 128.4, 105.6, 53.3, 26.3, 23.7 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₇H₁₇F₇NO [M+H]⁺ 384.1193, found: 384.1195.

4-(Perfluoropropyl)-2,6-diphenylpyrimidine (16b):

Yield = 77% (92.6 mg). Colorless oil.


Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 200/1~100/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.69–8.63 (m, 2H), 8.32–8.25 (m, 2H), 7.92 (s, 1H), 7.61–7.53 (m, 6H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -79.95 (t, *J* = 9.2 Hz, 3F), -116.50 (q, *J* = 9.8 Hz, 2F), -126.04 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 166.4, 165.2, 156.9 (t, J_{C-F} = 26.0 Hz), 136.7, 136.0, 132.0, 131.8, 129.3, 128.9, 128.8, 127.6, 111.7 (t, J_{C-F} = 4 Hz) ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₉H₁₂F₇N₂ [M+H]⁺ 401.0883, found: 401.0886.

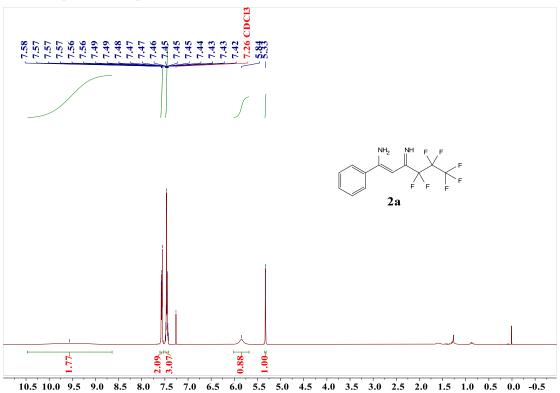
3-(Perfluoropropyl)-5-phenyl-1*H*-pyrazole (16c):

Yield = 54% (50.8 mg). Yellow oil.

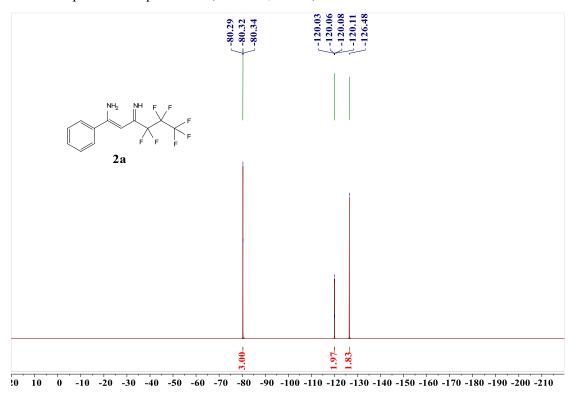
Purified by flash silica gel column chromatography through silica gel (petroleum ether/ethyl acetate, 20/1~10/1).

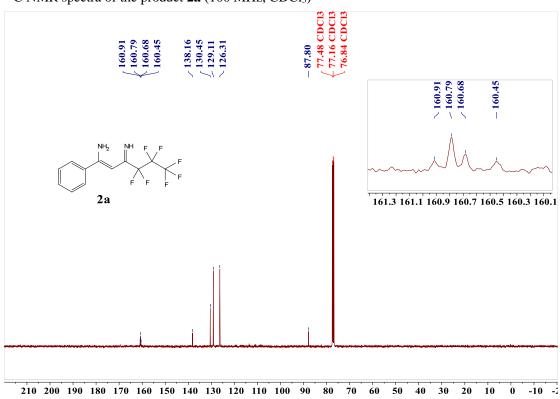
¹**H NMR (400 MHz, CDCl₃):** δ = 12.46 (s, 1H), 7.63–7.56 (m, 2H), 7.50–7.38 (m, 3H), 6.78 (s, 1H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.10 (t, J = 9.8 Hz, 3F), -110.91 (dd, J = 9.2, 8.7 Hz, 2F), -126.93 (s, 2F) ppm.

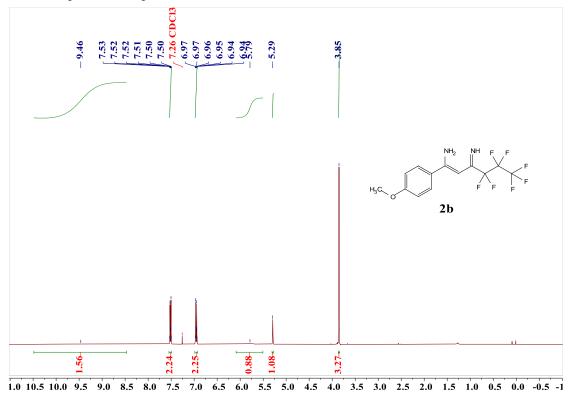

¹³C NMR (100 MHz, CDCl₃): δ = 145.5, 142.2 (t, J_{C-F} = 24.0 Hz), 129.6, 129.4, 128.0, 125.8, 102.8 ppm, carbons corresponding to the C₃F₇ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₁₂H₈F₇N₂ [M+H]⁺ 313.0570, found: 313.0571.

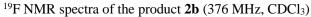
<u>Reference</u>

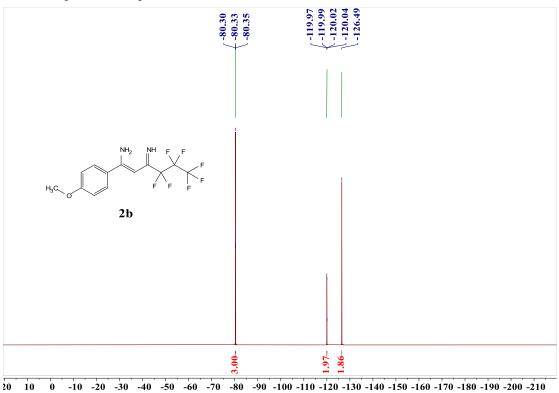

- [1] G. Wu, A. Jacobi von Wangelin, Chem. Sci. 2018, 9, 1795-1802.
- [2] T. Xu, C. W. Cheung, X. Hu, Angew. Chem. Int. Ed. 2014, 53, 4910-4914.
- [3] R. Anilkumar, D. J. Burton, J. Fluorine Chem. 2005, 126, 1174-1184.

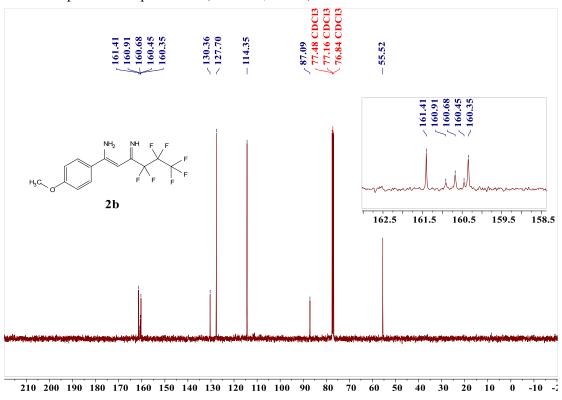

¹H, ¹⁹F, and ¹³C NMR spectra of products

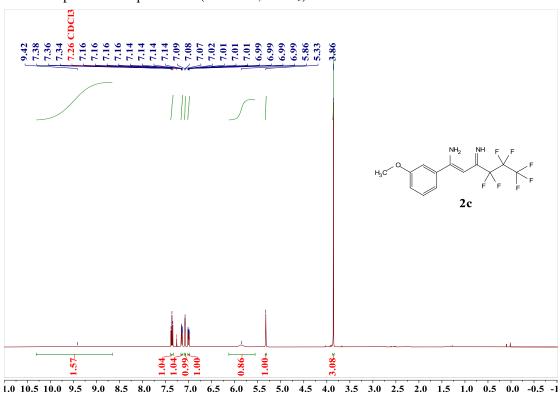
¹H NMR spectra of the product **2a** (400 MHz, CDCl₃)

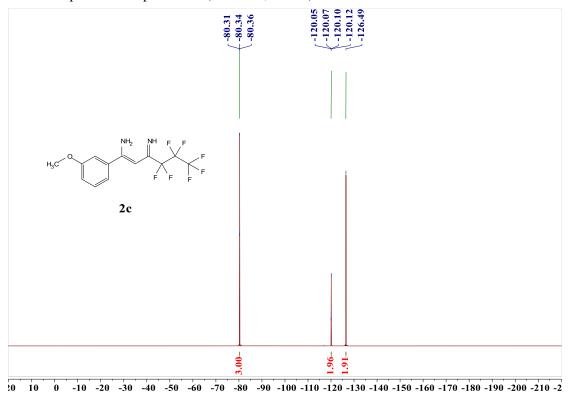


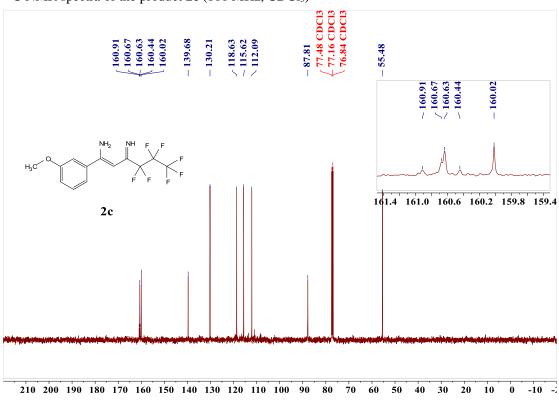

 ^{19}F NMR spectra of the product 2a (376 MHz, CDCl₃)

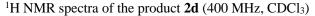


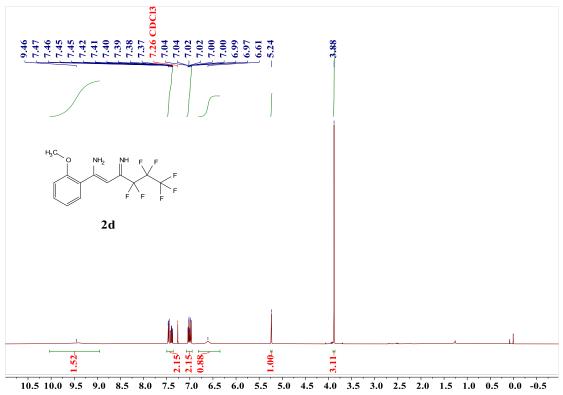

¹H NMR spectra of the product **2b** (400 MHz, CDCl₃)

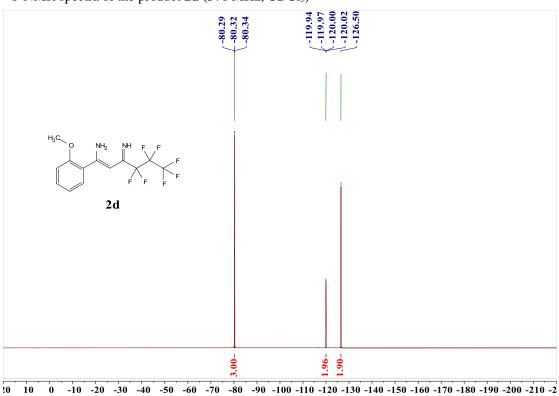


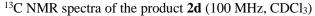

¹³C NMR spectra of the product **2b** (100 MHz, CDCl₃)

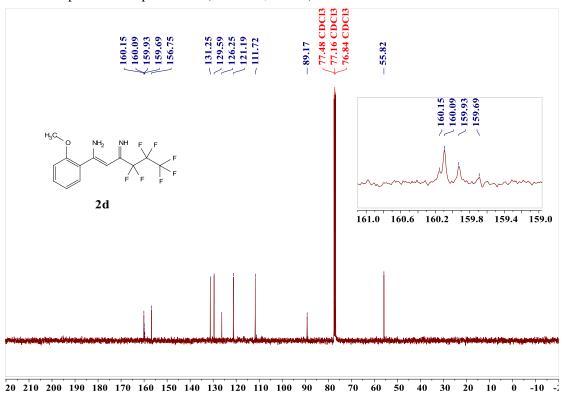


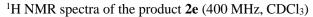

¹H NMR spectra of the product **2c** (400 MHz, CDCl₃)

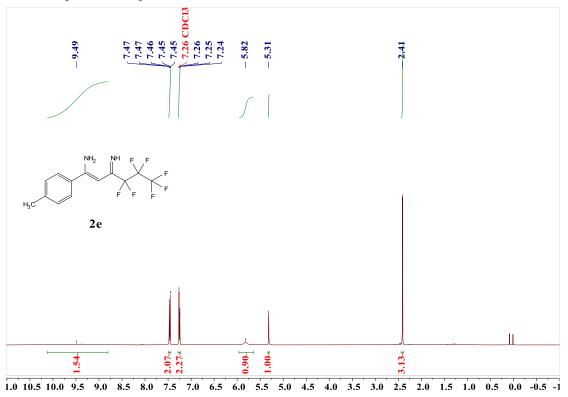

¹⁹F NMR spectra of the product **2c** (376 MHz, CDCl₃)



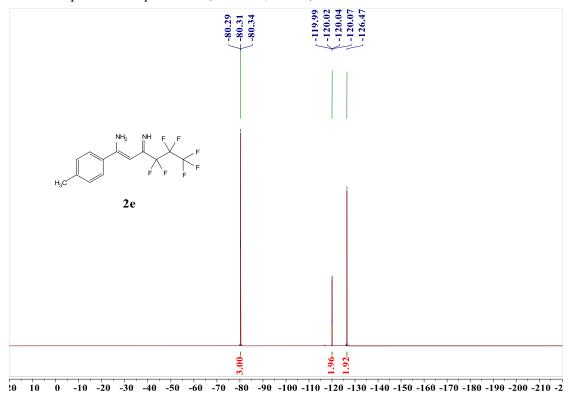

¹³C NMR spectra of the product **2c** (100 MHz, CDCl₃)

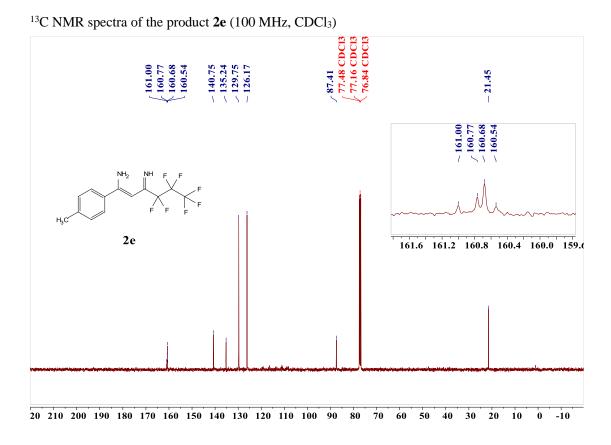


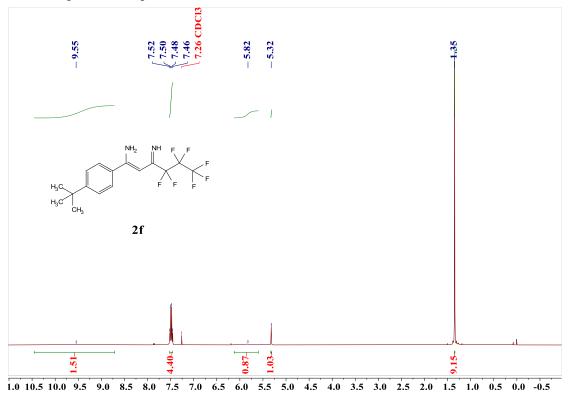




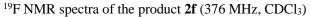
¹⁹F NMR spectra of the product **2d** (376 MHz, CDCl₃)

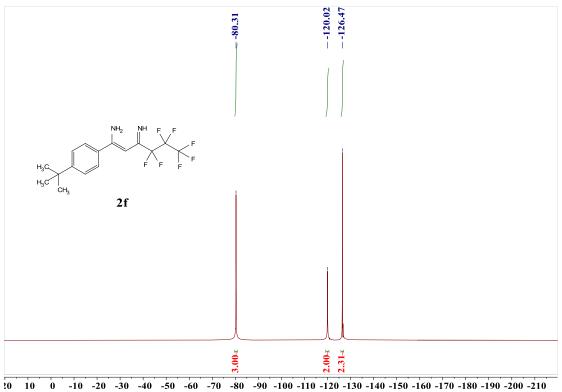




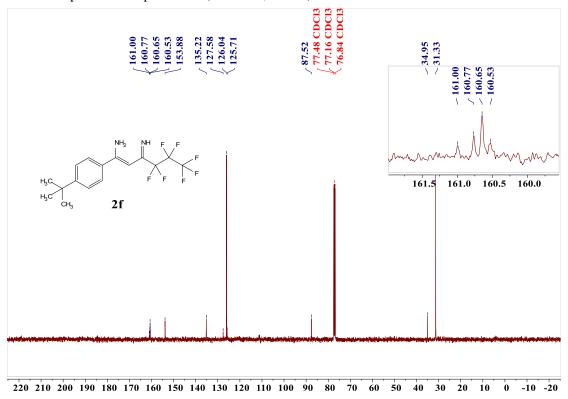


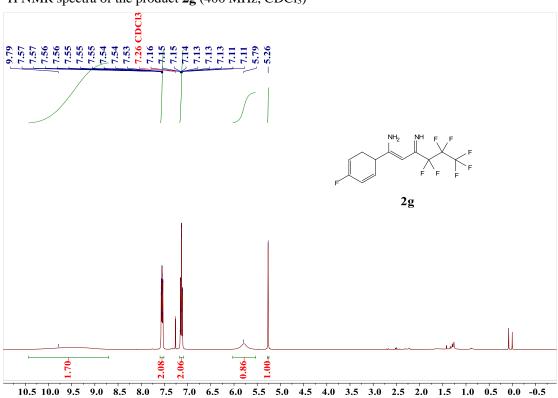
¹⁹F NMR spectra of the product **2e** (376 MHz, CDCl₃)

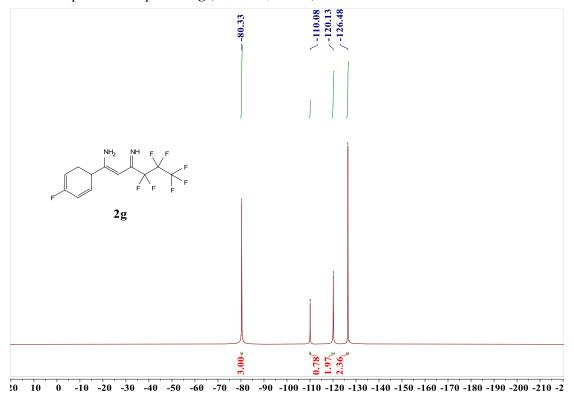




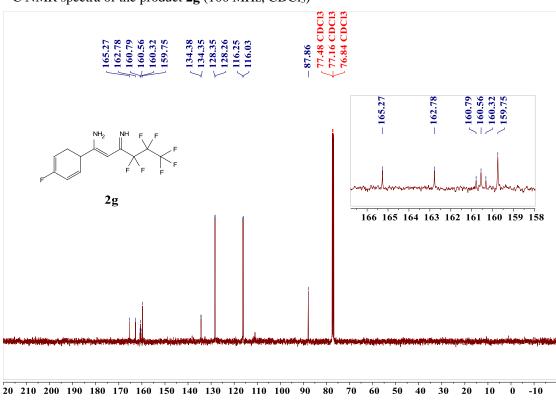
¹H NMR spectra of the product **2f** (400 MHz, CDCl₃)



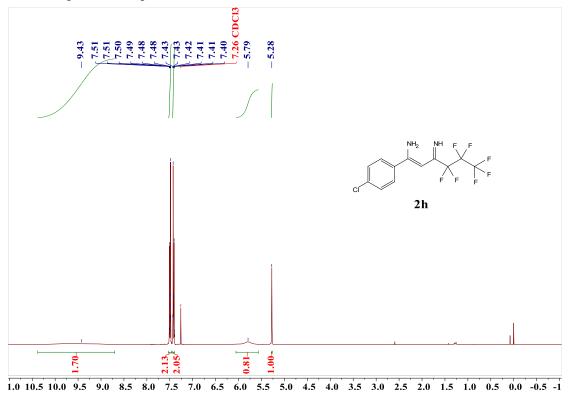

S35

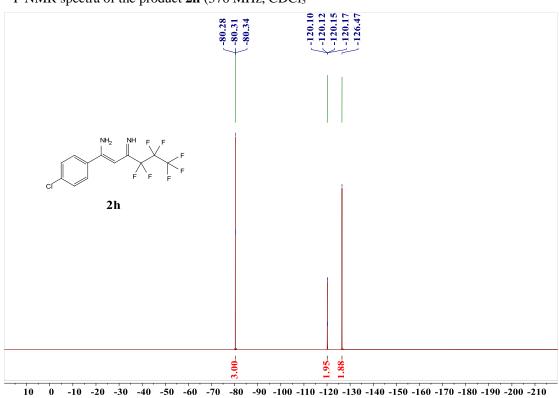


¹³C NMR spectra of the product **2f** (100 MHz, CDCl₃)

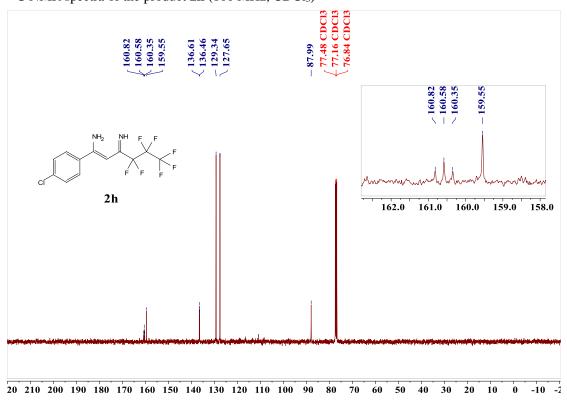


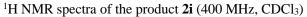
 ^{19}F NMR spectra of the product 2g (376 MHz, CDCl₃)

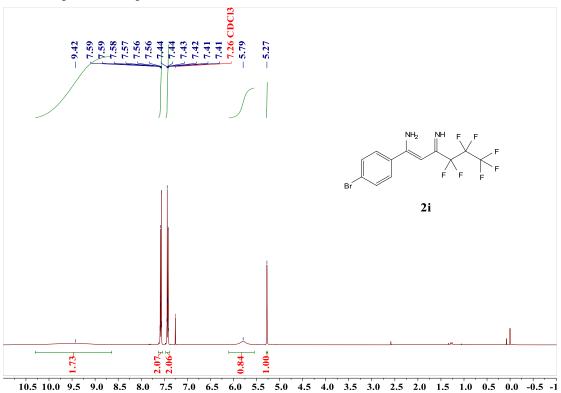



 ^1H NMR spectra of the product $\mathbf{2g}~(400~\text{MHz}, \text{CDCl}_3)$

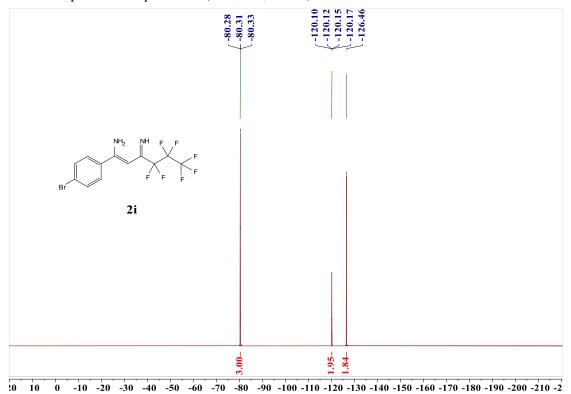
¹³C NMR spectra of the product **2g** (100 MHz, CDCl₃)

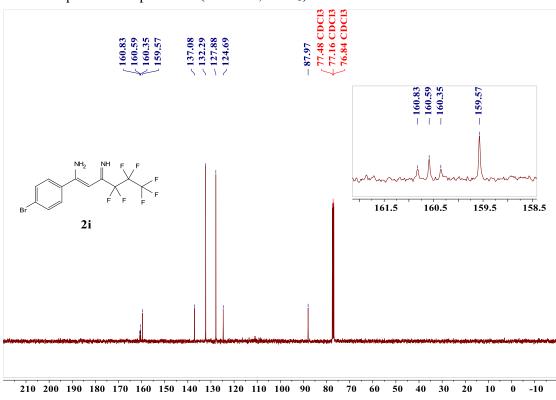

¹H NMR spectra of the product **2h** (400 MHz, CDCl₃)

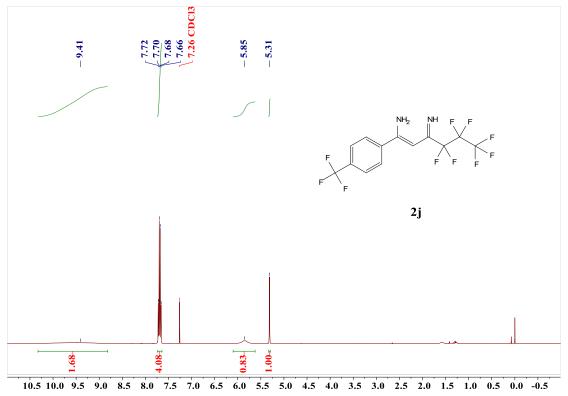


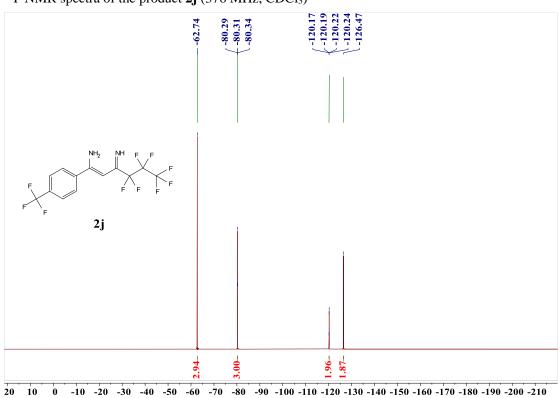


 ^{19}F NMR spectra of the product 2h (376 MHz, CDCl_3

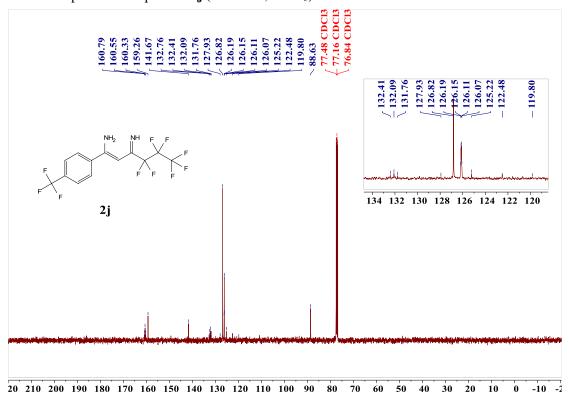

¹³C NMR spectra of the product **2h** (100 MHz, CDCl₃)

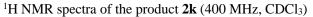


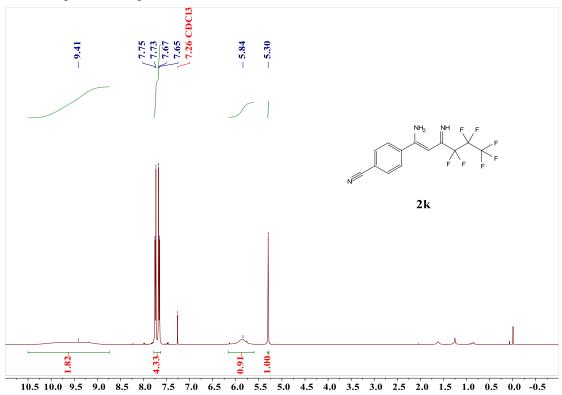

¹⁹F NMR spectra of the product **2i** (376 MHz, CDCl₃)

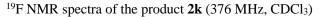


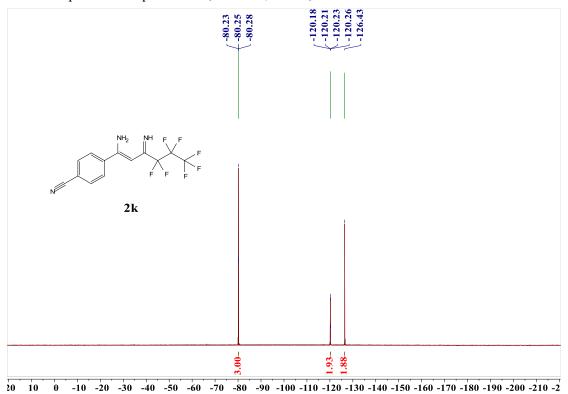
¹³C NMR spectra of the product **2i** (100 MHz, CDCl₃)

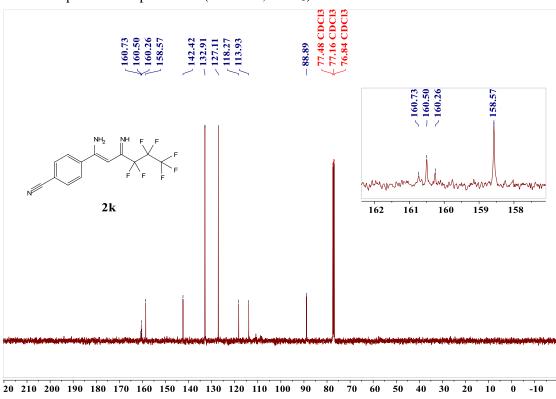

¹H NMR spectra of the product **2j** (400 MHz, CDCl₃)

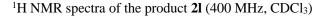


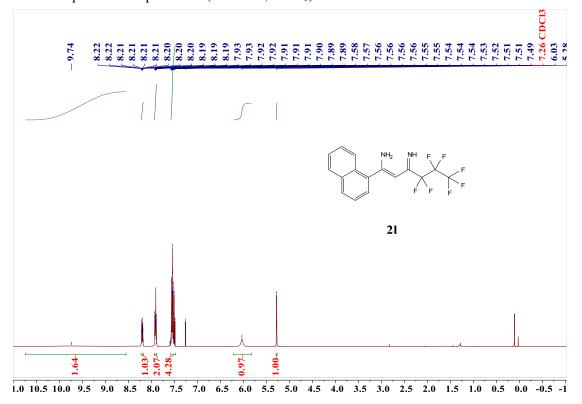


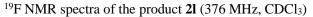

¹⁹F NMR spectra of the product **2j** (376 MHz, CDCl₃)

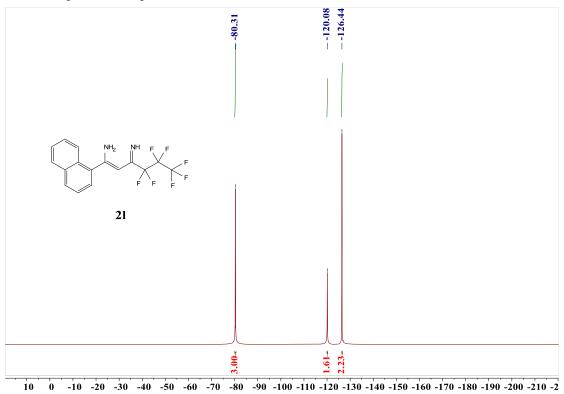

¹³C NMR spectra of the product **2j** (100 MHz, CDCl₃)



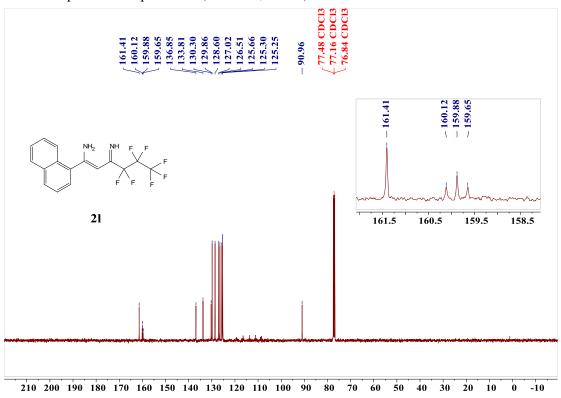


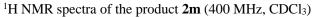


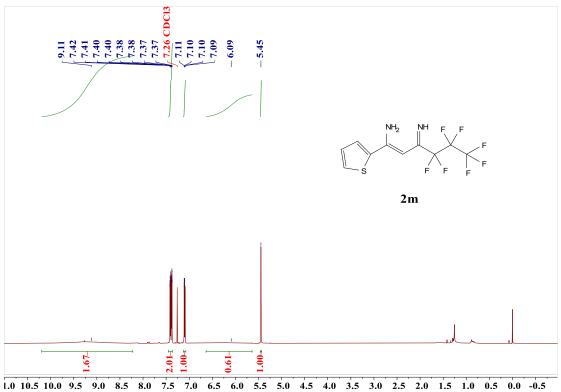


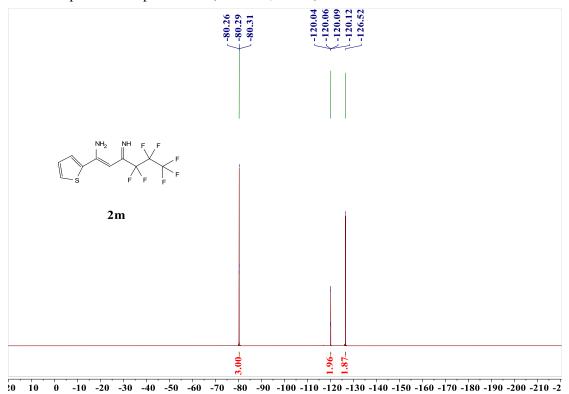


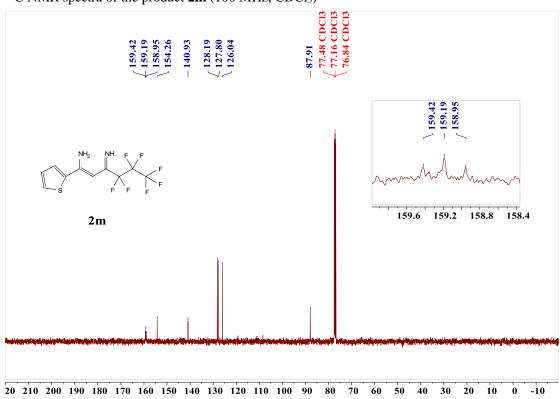
¹³C NMR spectra of the product **2k** (100 MHz, CDCl₃)

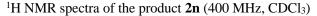


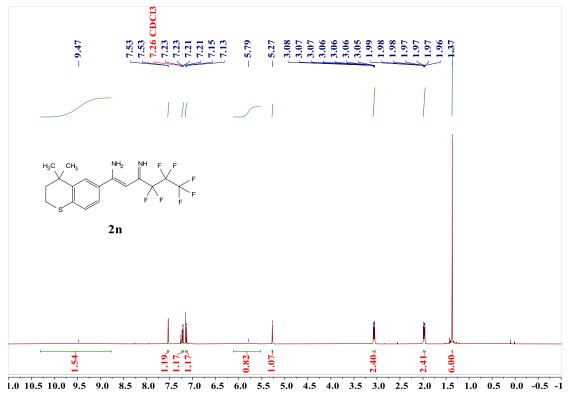


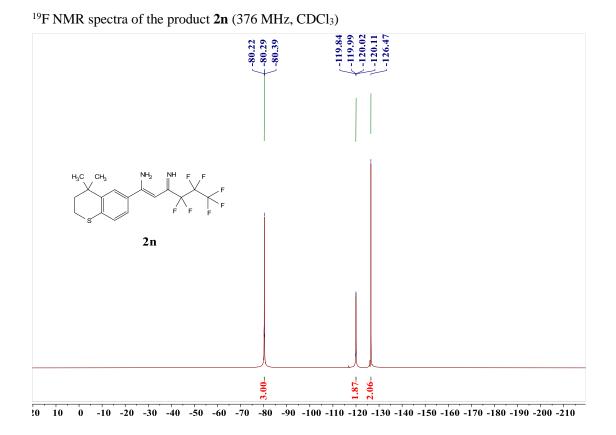


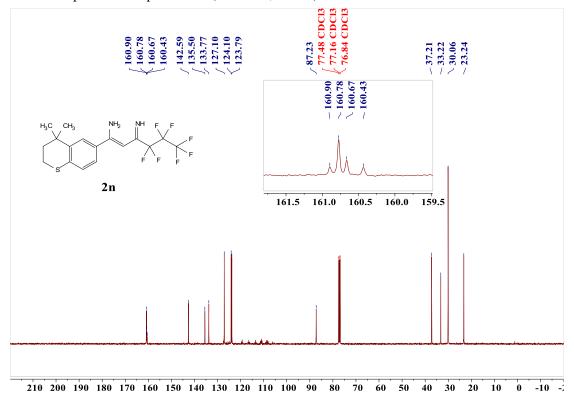

¹³C NMR spectra of the product **2l** (100 MHz, CDCl₃)

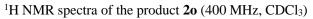


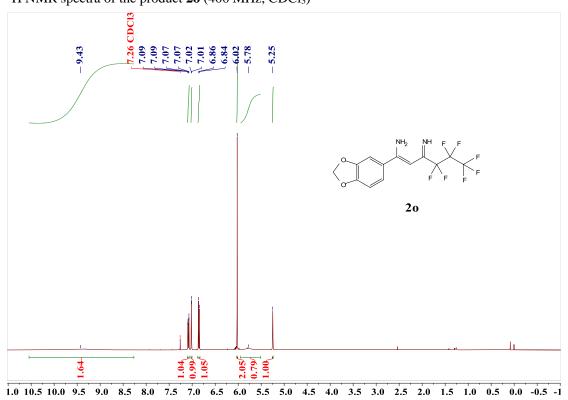



¹⁹F NMR spectra of the product **2m** (376 MHz, CDCl₃)

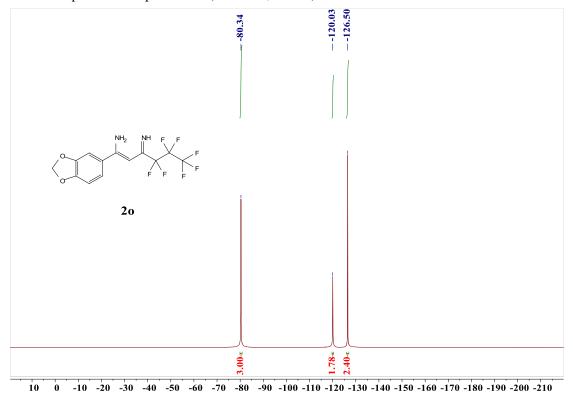


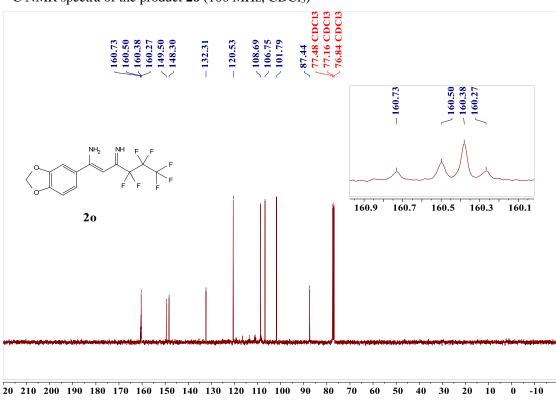

¹³C NMR spectra of the product **2m** (100 MHz, CDCl₃)

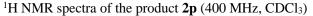


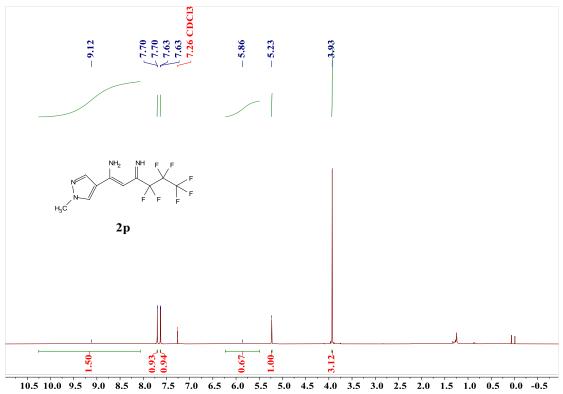


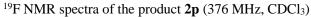
¹³C NMR spectra of the product **2n** (100 MHz, CDCl₃)

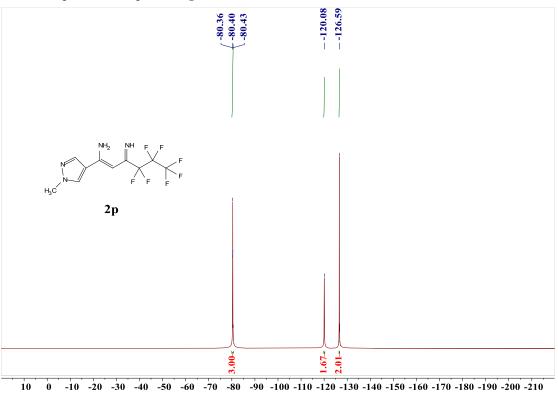



S48

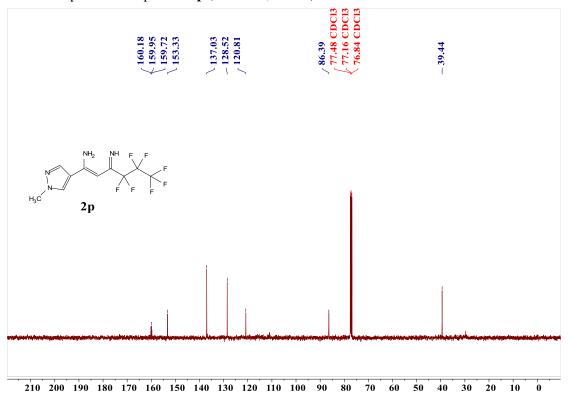


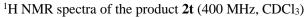

¹⁹F NMR spectra of the product **20** (376 MHz, CDCl₃)

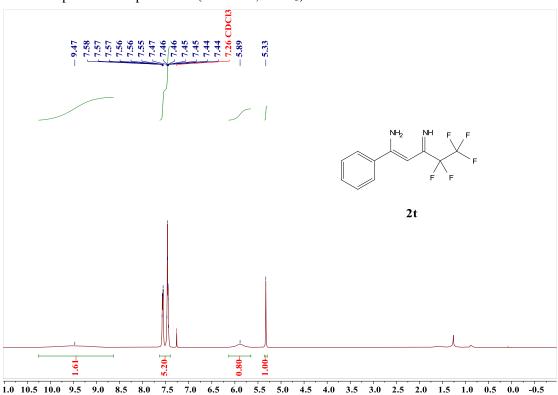


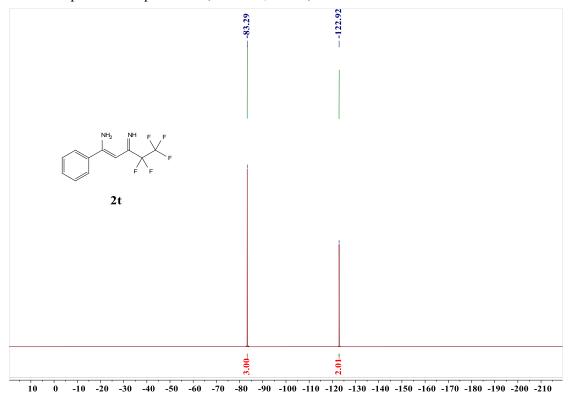


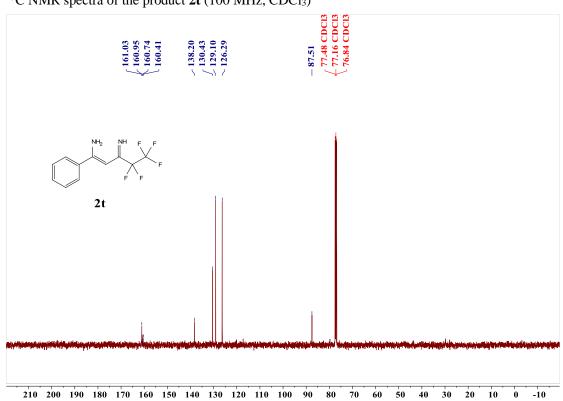
¹³C NMR spectra of the product **20** (100 MHz, CDCl₃)

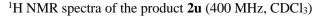


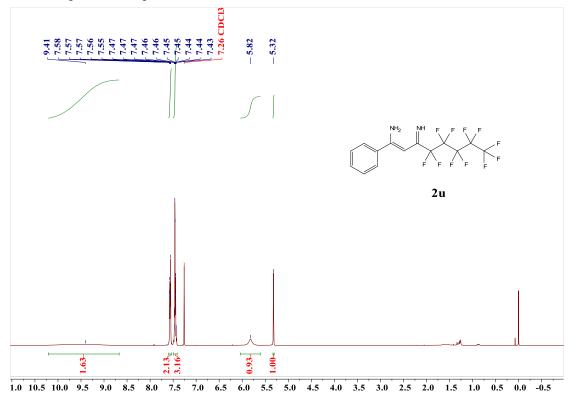


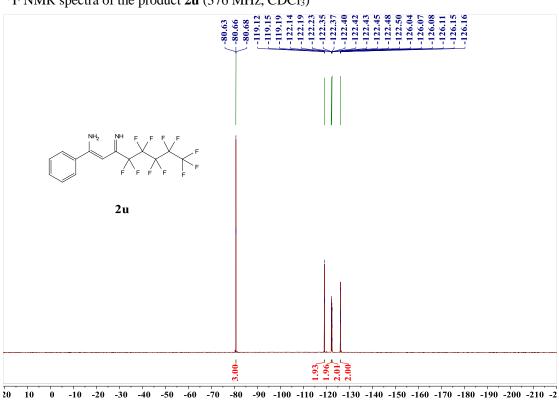



¹³C NMR spectra of the product **2p** (100 MHz, CDCl₃)

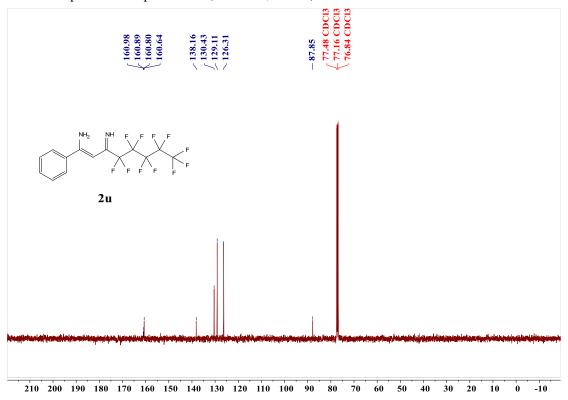


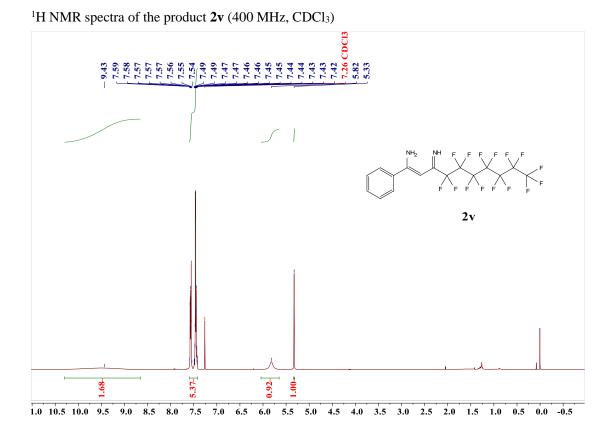


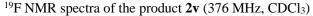

¹⁹F NMR spectra of the product **2t** (376 MHz, CDCl₃)

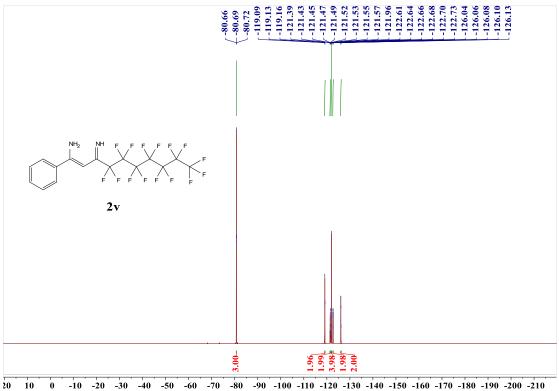


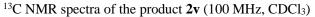
¹³C NMR spectra of the product **2t** (100 MHz, CDCl₃)

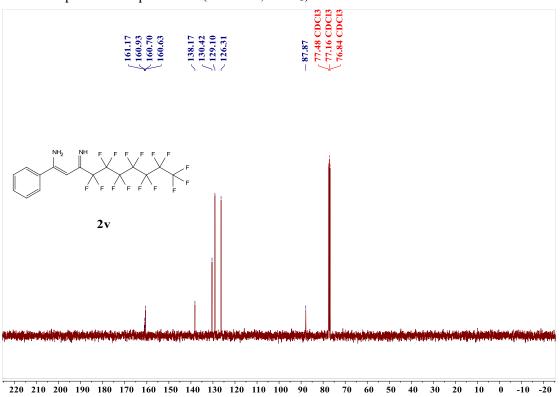


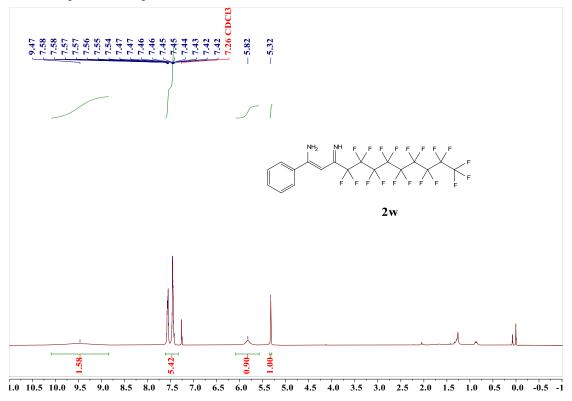


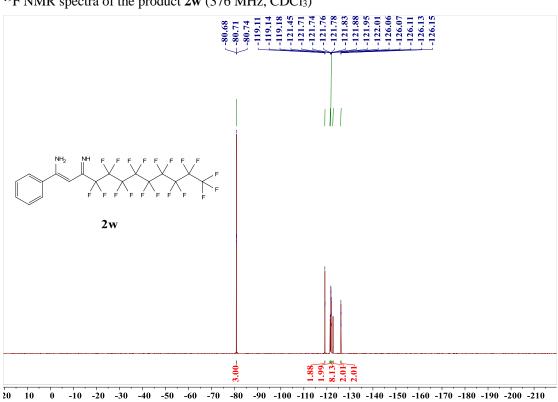


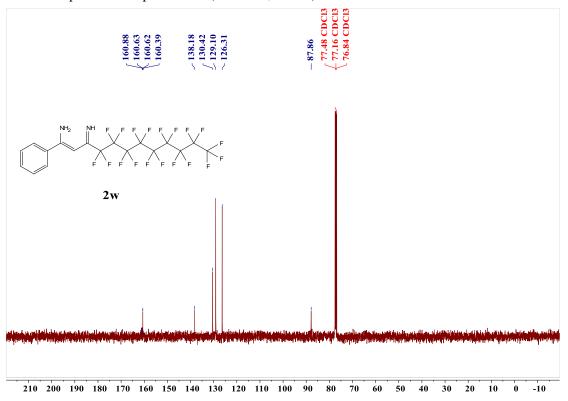

¹⁹F NMR spectra of the product **2u** (376 MHz, CDCl₃)

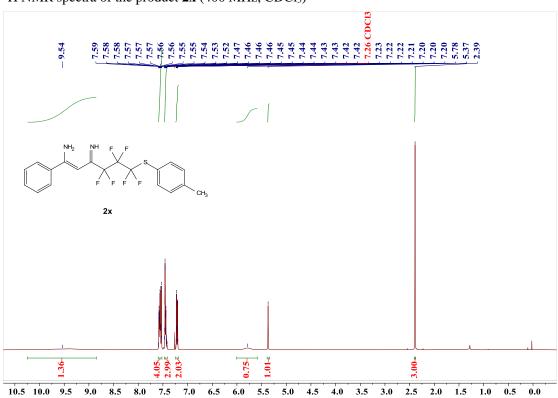

¹³C NMR spectra of the product **2u** (100 MHz, CDCl₃)

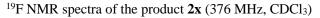


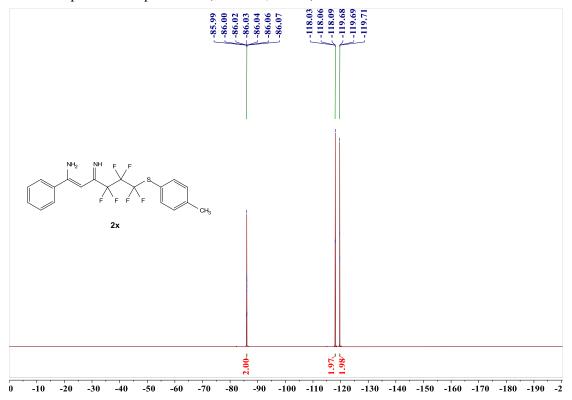


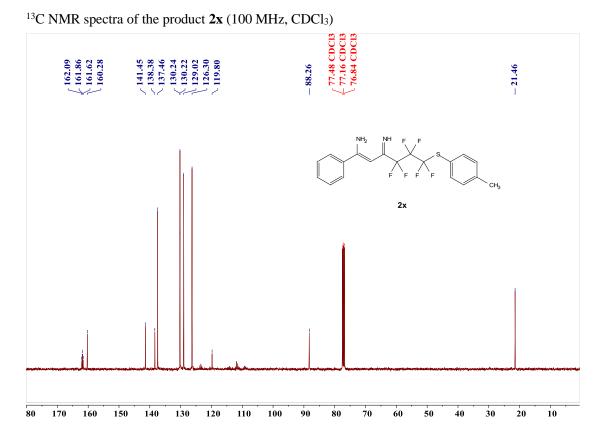


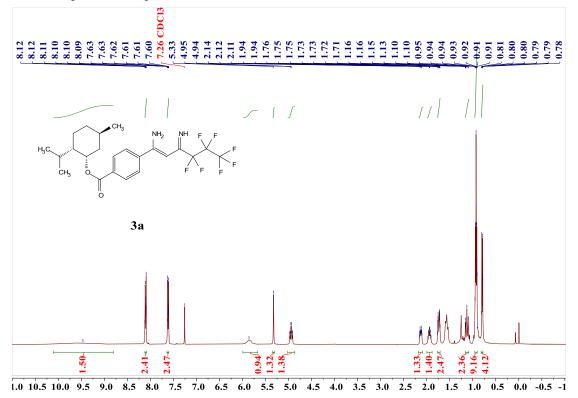

¹H NMR spectra of the product **2w** (400 MHz, CDCl₃)

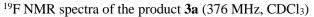


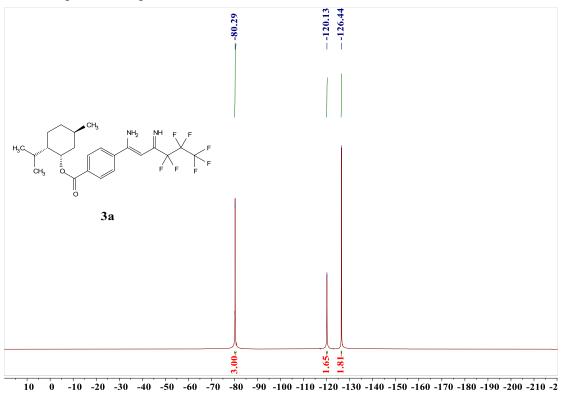

¹⁹F NMR spectra of the product **2w** (376 MHz, CDCl₃)

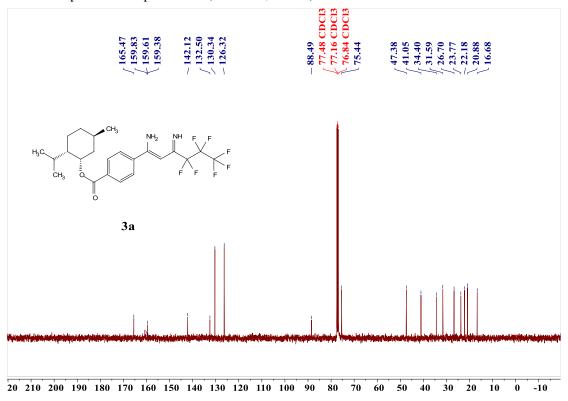

¹³C NMR spectra of the product **2w** (100 MHz, CDCl₃)

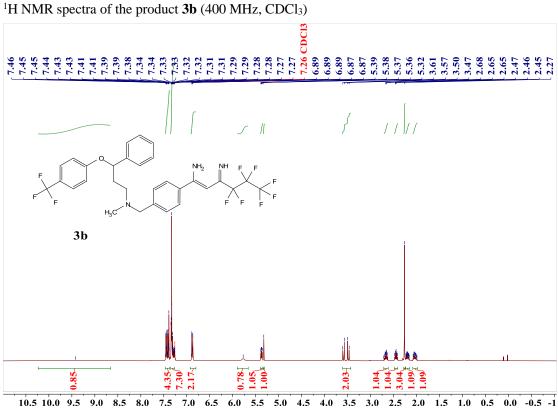


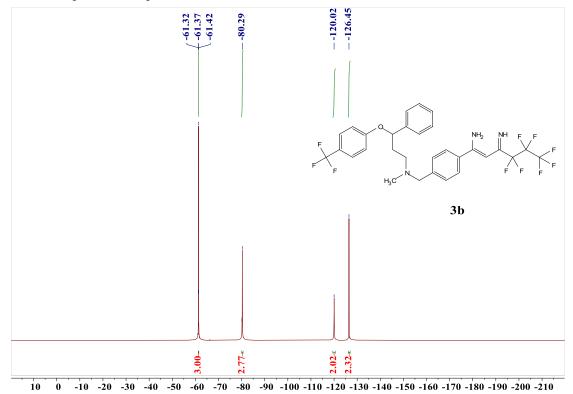

¹H NMR spectra of the product **2x** (400 MHz, CDCl₃)

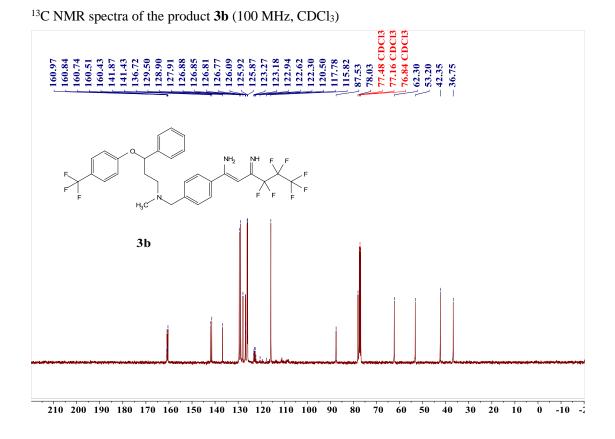


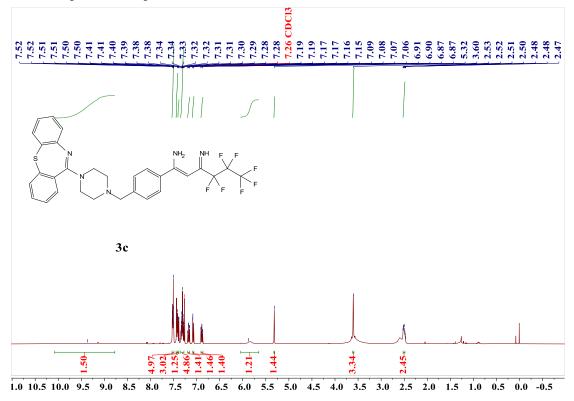


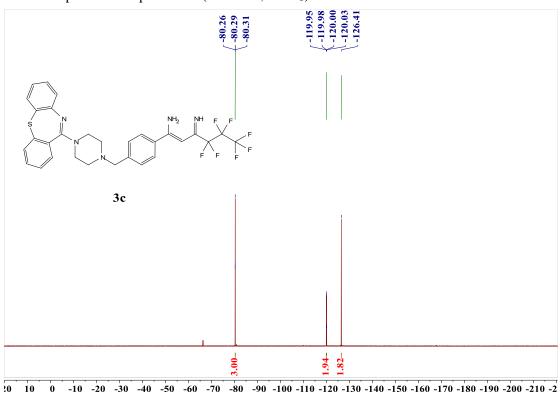

¹H NMR spectra of the product **3a** (400 MHz, CDCl₃)

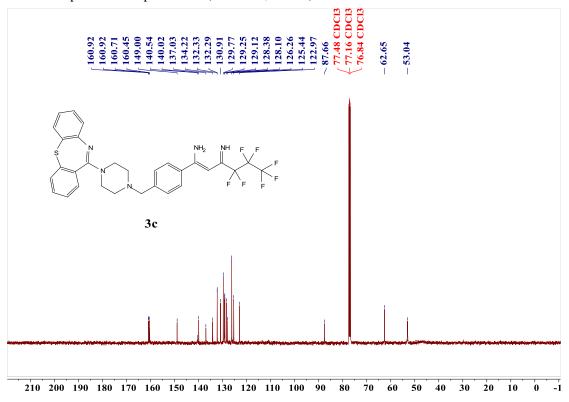


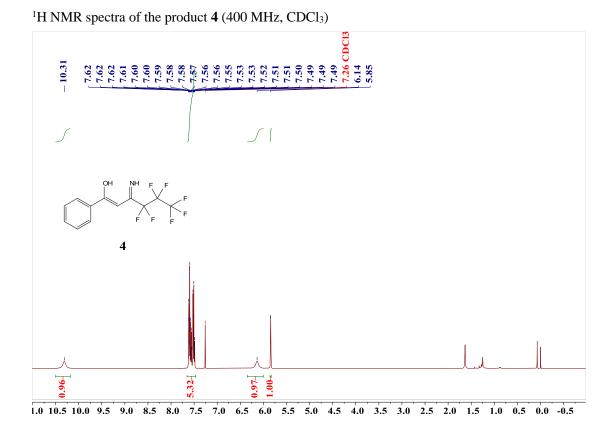


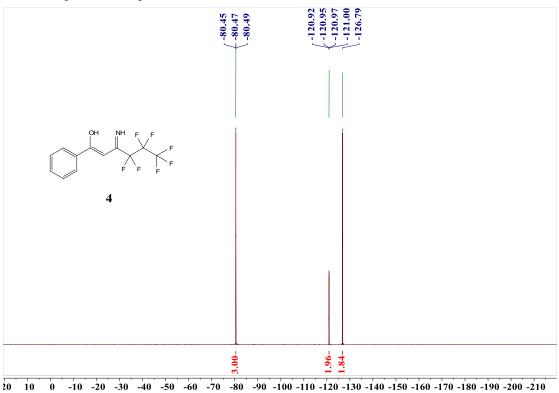

¹³C NMR spectra of the product **3a** (100 MHz, CDCl₃)

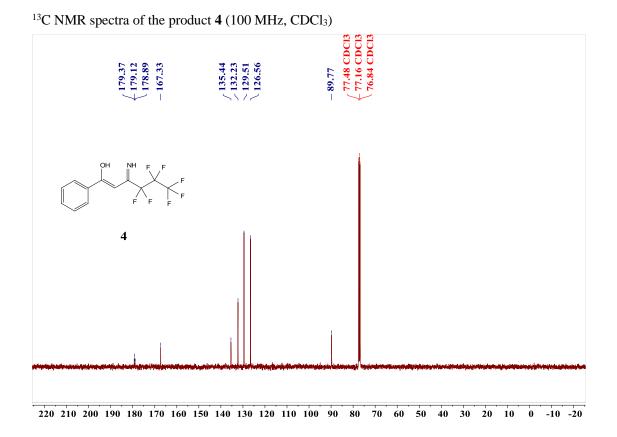


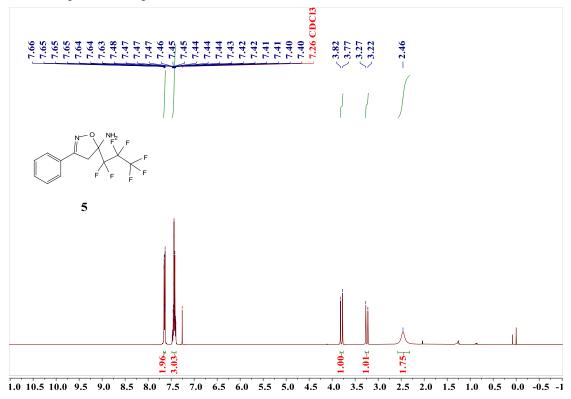

¹⁹F NMR spectra of the product **3b** (376 MHz, CDCl₃)

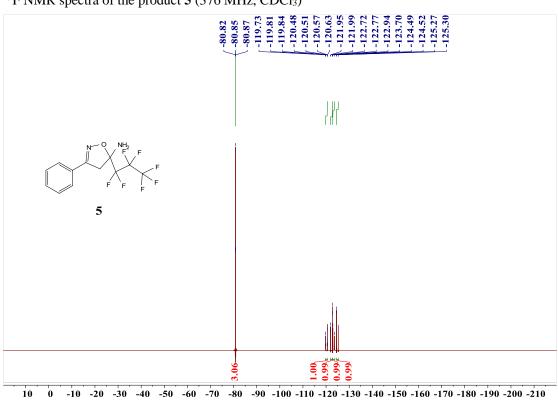

¹H NMR spectra of the product **3c** (400 MHz, CDCl₃)

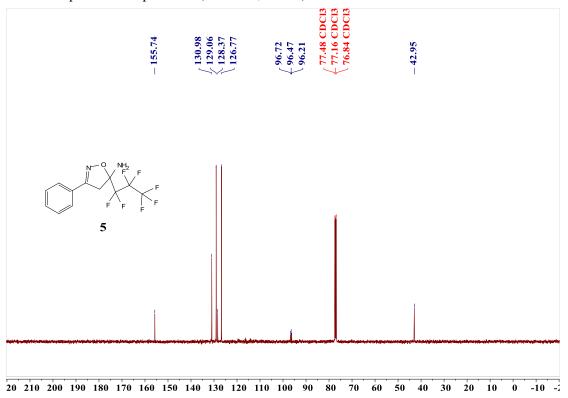


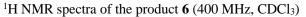

¹⁹F NMR spectra of the product **3c** (376 MHz, CDCl₃)

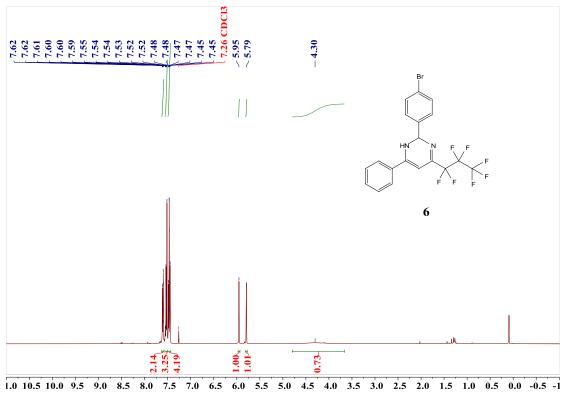

¹³C NMR spectra of the product **3c** (100 MHz, CDCl₃)



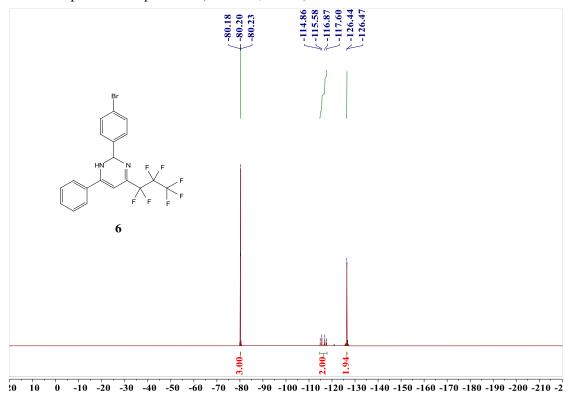

¹⁹F NMR spectra of the product **4** (376 MHz, CDCl₃)

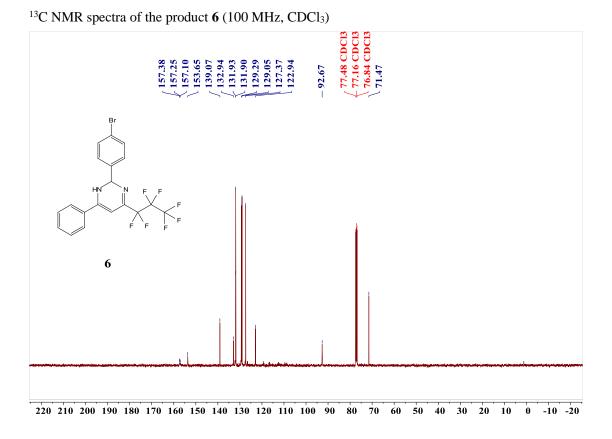

¹H NMR spectra of the product **5** (400 MHz, CDCl₃)

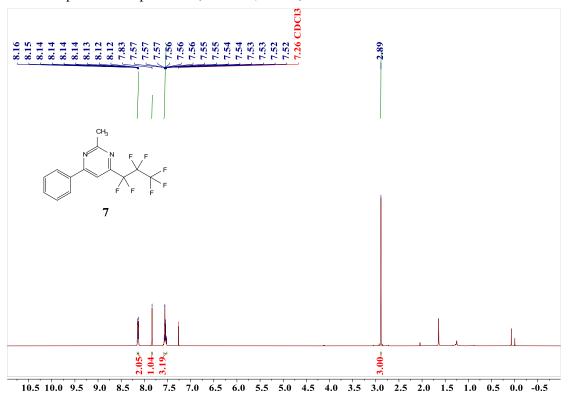


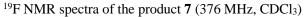


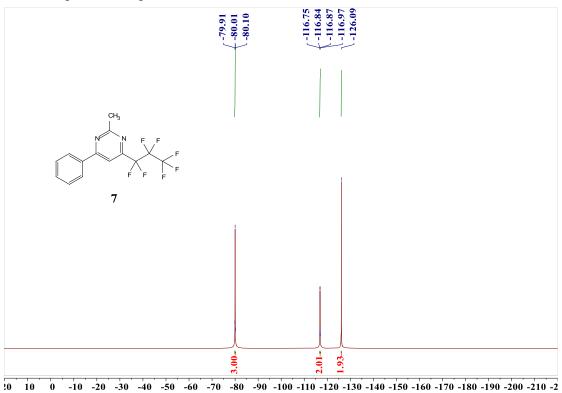
¹⁹F NMR spectra of the product **5** (376 MHz, CDCl₃)

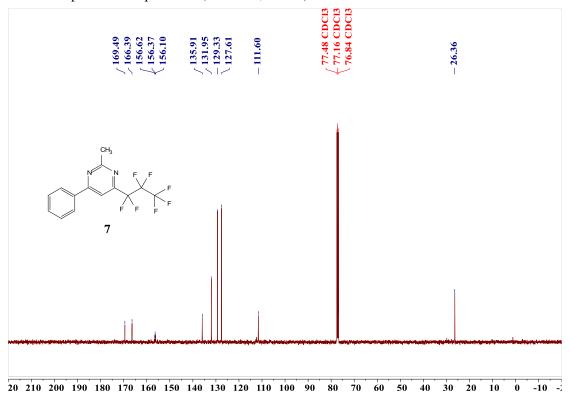

¹³C NMR spectra of the product **5** (100 MHz, CDCl₃)

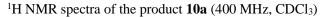


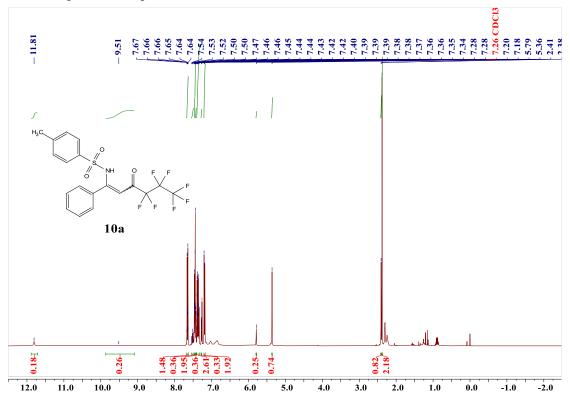


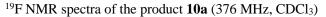

¹⁹F NMR spectra of the product **6** (376 MHz, CDCl₃)

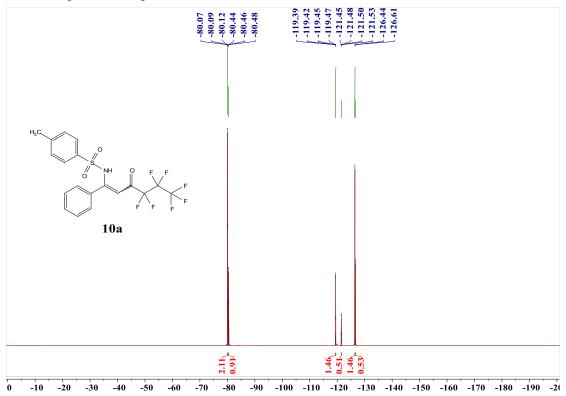


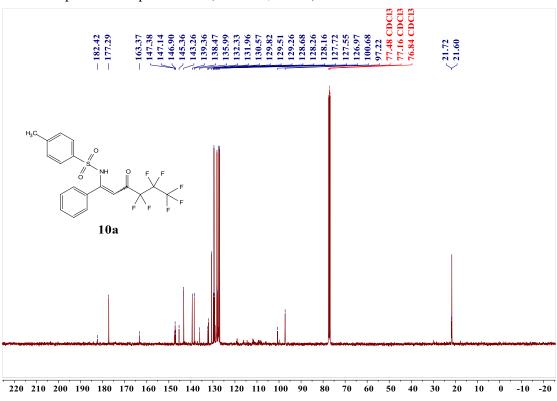

¹H NMR spectra of the product **7** (400 MHz, CDCl₃)

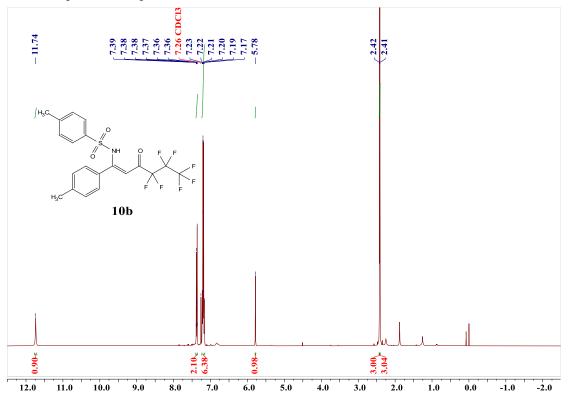


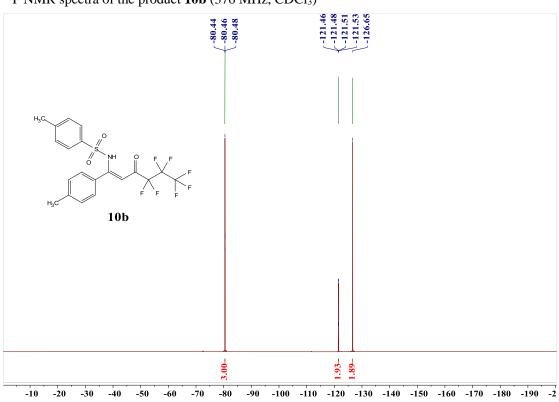


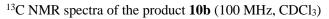


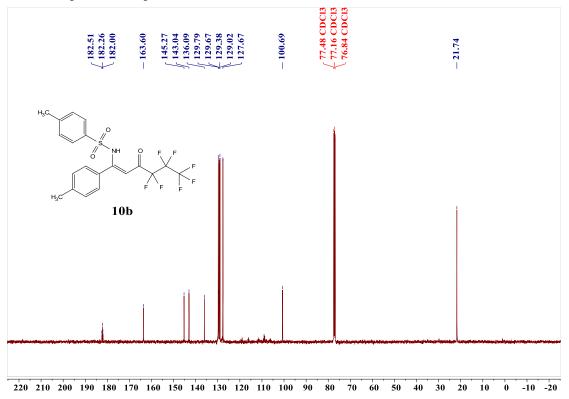

¹³C NMR spectra of the product 7 (100 MHz, CDCl₃)

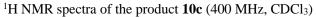


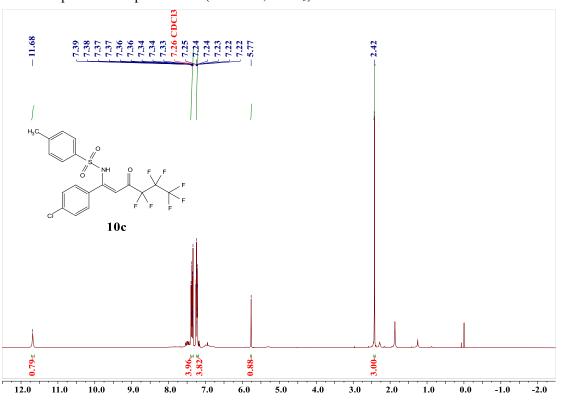




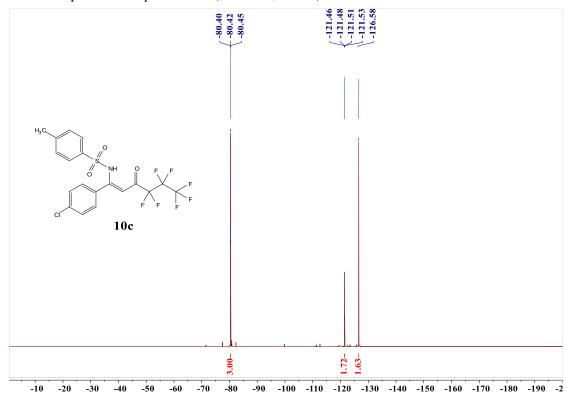

¹³C NMR spectra of the product **10a** (100 MHz, CDCl₃)

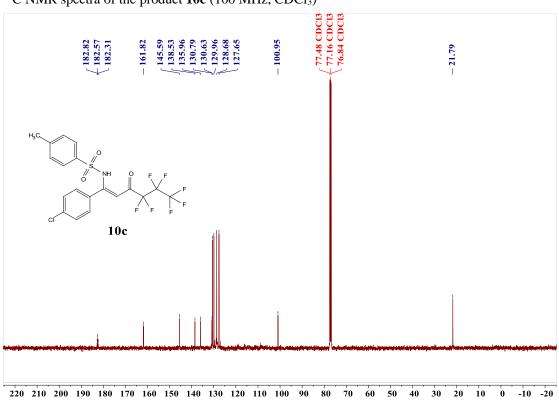

¹H NMR spectra of the product **10b** (400 MHz, CDCl₃)

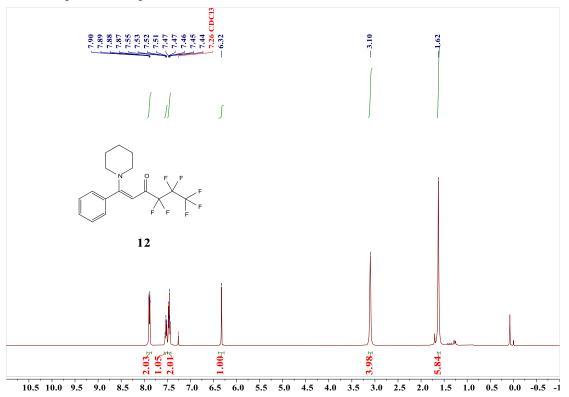


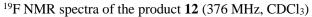


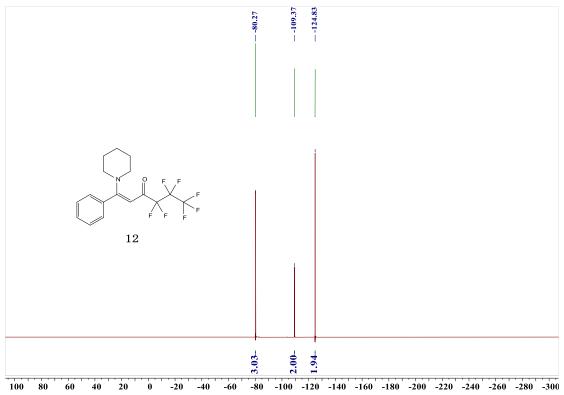
¹⁹F NMR spectra of the product **10b** (376 MHz, CDCl₃)



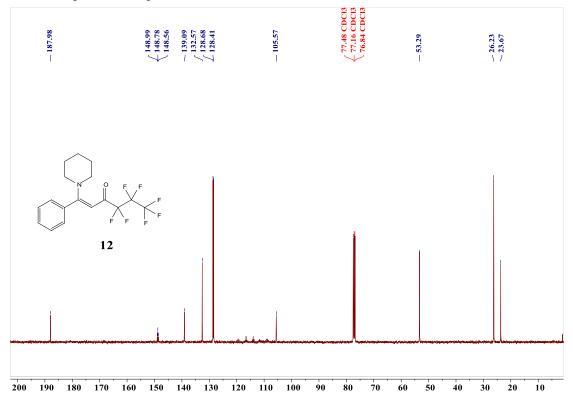


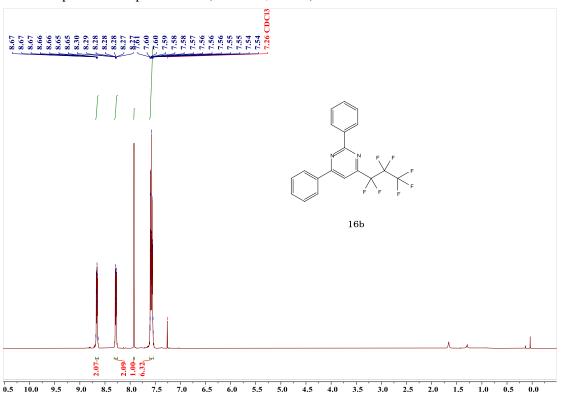

 ^{19}F NMR spectra of the product $10c~(376~MHz,\,CDCl_3)$

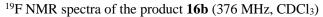


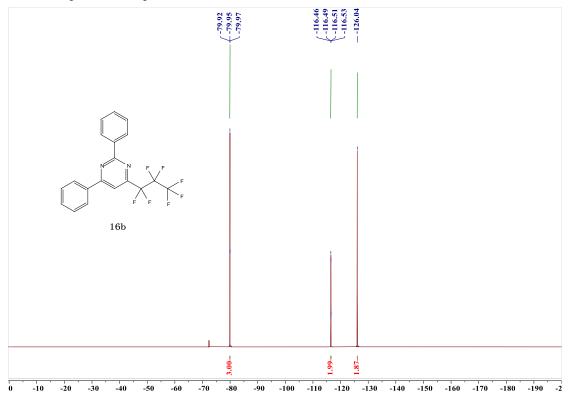


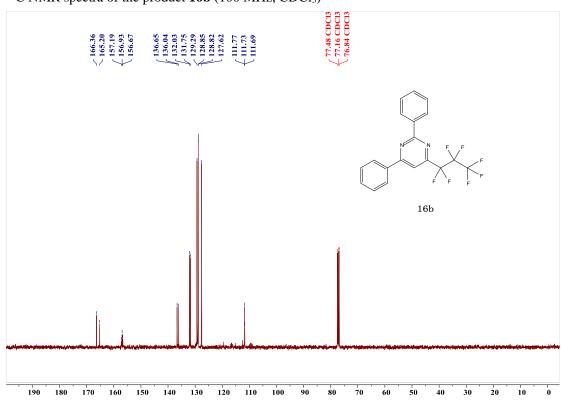
¹³C NMR spectra of the product **10c** (100 MHz, CDCl₃)

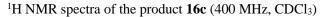

¹H NMR spectra of the product **12** (400 MHz, CDCl₃)

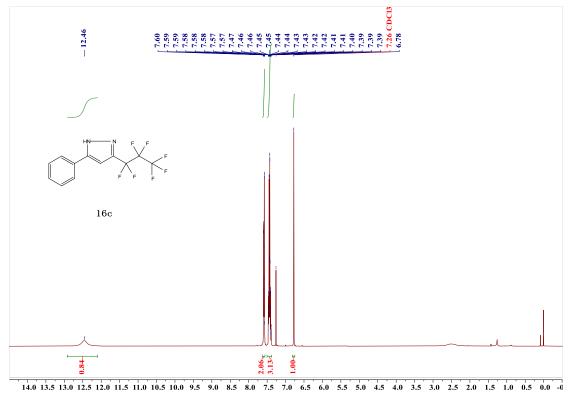


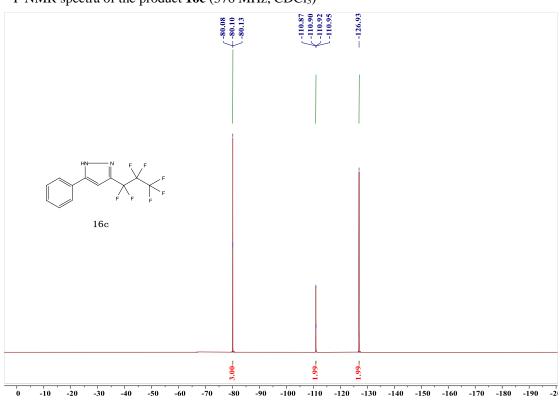



¹³C NMR spectra of the product **12** (100 MHz, CDCl₃)

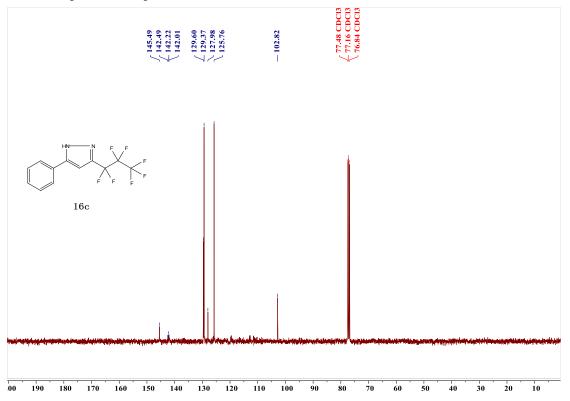



¹H NMR spectra of the product **16b** (400 MHz, CDCl₃)





¹³C NMR spectra of the product **16b** (100 MHz, CDCl₃)



 ^{19}F NMR spectra of the product 16c (376 MHz, CDCl_3)

 ^{13}C NMR spectra of the product 16c (100 MHz, CDCl_3)

