Supporting Information

Enhancing Sensitivity in Miniature Mass Spectrometry Analysis via Dicationic Ionic Liquid-Based Matrix-Assisted Ionization and Charge Inversion Reactions

Xiangyu Guo^a, Yuncheng Ge^{a,b}, Hua Bai^a, Qiang Ma^{a,*}

^a Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China

^b School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China

* Corresponding Author:

Qiang Ma

Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine Beijing 100176, China E-mail: maqiang@caiq.org.cn Phone: +86 10 53897463 Fax: +86 10 53897454

Table of Contents

Supplementary Scheme

Scheme S1: Complexation of the imidazolium-based dicationic ionic liquid (DIL) with deprotonated per- and polyfluoroalkyl substances (PFAS).

Supplementary Tables

Chemical information of four investigated PFAS.
Chemical information of eight investigated DIL.
Instrument parameters for the analysis of four PFAS using a miniature mass spectrometer.
Comparison of the developed method with other approaches reported in the
literature for the analysis of PFAS in water samples.
The F-test and T-test results along with their corresponding p-values for
assessing the consistency of results between our method and traditional
UHPLC-MS/MS method.
Greenness assessment of the developed method using three well-established
metric tools (GAPI, AGREE, and BAGI).
Comparison of greenness assessment results of the developed method and
other traditional analytical methods using three well-established metric tools
(GAPI, AGREE, and BAGI).

Supplementary Figures

Photo of the wax-printing sample microspot array after pattern fixation.
Photo of the Disperse Blue 1 solution confined by the waxed surrounding
area.
Optimization of the concentration of $C_4(MIM)_2F_2$.
Optimization of four matrix-assisted ionization (MAI) matrices.
Optimization of the concentration of 3-nitrobenzonitrile (3-NBN).
MS spectra of PFOS (a), PFOA (b), PFNA (c), and PFDA (d) in negative ion mode without DILs.
Calibration curves of four investigated PFAS.
Geographical map of the sampling sites.

References

Supplementary Scheme

Scheme S1. Complexation of the imidazolium-based dicationic ionic liquid (DIL) with deprotonated per- and polyfluoroalkyl substances (PFAS).

Supplementary Tables

PFAS	Abbreviation	Formula	CAS	MW	LogKow
Perfluorooctanesulfonic acid	PFOS	$C_8HF_{17}O_3S$	1763-23-1	500.13	4.49
Perfluorooctanoic acid	PFOA	$C_8HF_{15}O_2$	335-67-1	414.07	4.81
Perfluorononanoic acid	PFNA	$C_9HF_{17}O_2$	375-95-1	464.08	5.48
Perfluorodecanoic acid	PFDA	$C_{10}HF_{19}O_2$	335-76-2	514.08	6.15

Table S1. Chemical information of four investigated PFAS.

No.	DIL	Structure	Formula	MW
1	1,1'-Diheptyl-4,4'-bipyridinium dibromide	Br N Br	$C_{24}H_{38}Br_2N_2$	512.14
2	1,1'-Diphenyl-4,4'-bipyridinium dichloride		$C_{22}H_{18}Cl_2N_2$	380.08
3	1,1'-Dibenzyl-4,4'-bipyridinium dichloride		$C_{24}H_{22}Cl_2N_2$	408.12
4	1,1'-Dioctyl-4,4'-bipyridinium dibromide	Br N Br	C ₂₆ H ₄₂ Br ₂ N ₂	540.17

Table S2. Chemical information of eight investigated DIL.

PFAS	Injection size	CID AC	Precursor ion	Product ion 1	Product ion 2	
	(ms)	amplitude (V)	(m/z)	(m/z)	(m/z)	
PFOS	39	1.56	719.1	636.8	219.1	
PFOA	39	1.75	633.1	219.1	138.1	
PFNA	41	1.98	683.1	219.1		
PFDA	40	2.23	733.1	219.1		

Table S3. Instrument parameters for the analysis of four PFAS using a miniature mass spectrometer.

No.	Sample	Analyte	Method	LOD	LOQ	Recovery/%	RSD/%	Time	Reference
1	Environmental water,	4 PFAS	MAI-Mini MS	5 μg/L	10 µg/L	86.6–106.3	3.5–7.2	< 1 min	This work
	tap water, and								
	swimming pool water								
2	Lake water	11 PFAS	SPE-UHPLC-MS/MS	0.03-1.9 ng/L	0.09–5.8 ng/L	97.3–113.0	1.0–9.0	> 5 min	1
3	Superficial and	12 PFAS	SPE-HPLC-MS/MS	/	0.2–5 ng/L	81.0-107.2	8.3–13.8	> 10 min	2
	underground water								
4	Estuarine water	23 PFAS	SPE-UHPLC-MS/MS	0.48–1.68 pg/5µL	1.71–5.40 pg/5µL	78.54–112.61	/	> 8 min	3
5	Tap water, river water,	4 PFAS	SPE-UHPLC-MS/MS	0.04–0.05 ng/L	0.15-0.20 ng/L	94.5-101.5	1.1-8.3	> 30 min	4
	and waste water								
6	Reservoir water	12 PFAS	UHPLC-MS/MS	0.02-0.48ng/L	0.08-1.58ng/L	51.1-122.3	0.1-17.5	> 30 min	5
7	Textiles and food	10 PFAS	UHPSFC-MS/MS	0.2–1.6 µg/kg	0.6–3.2 μg/kg	71.3–110.7	0.9–8.6	> 30 min	6
	packaging materials								

Table S4. Comparison of the developed method with other approaches reported in the literature for the analysis of PFAS in water samples.

MethodDetected concentration
($\mu g/L$, n=3)F-test resultTwo-tailed T-test resultThis work13.0, 14.2, 13.8P = 0.9372 > 0.05P = 0.1557 > 0.05UHPLC-MS/MS12.1, 12.8, 13.4insignificantinsignificant

Table S5. The F-test and T-test results along with their corresponding p-values for assessing the consistency of results between the developed method and traditional UHPLC-MS/MS method.

Table S6. Greenness assessment of the developed method using three well-established metric tools (GAPI, AGREE, and BAGI).

Table S7. Comparison of greenness assessment results of the developed method and other traditional analytical methods using three well-established metric tools (GAPI, AGREE, and BAGI).

Supplementary Figures

Figure S1. Photo of the wax-printing sample microspot array after pattern fixation.

Figure S2. Photo of the Disperse Blue 1 solution confined by the waxed surrounding area.

Figure S3. Optimization of the concentration of $C_4(MIM)_2F_2$.

Figure S4. Optimization of four matrix-assisted ionization (MAI) matrices.

Figure S5. Optimization of the concentration of 3-nitrobenzonitrile (3-NBN).

Figure S6. MS spectra of PFOS (a), PFOA (b), PFNA (c), and PFDA (d) in negative mode without DILs.

Figure S7. Calibration curves of four investigated PFAS.

Figure S8. Geographical map of the sampling sites. GPS coordinates of the sampling sites are as follow:

- 1: Longitude 116.314474, Latitude 40.132104
- 2: Longitude 116.705309, Latitude 40.119746
- 3: Longitude 116.284614, Latitude 39.990074
- 4: Longitude 116.633157, Latitude 39.923817
- 5: Longitude 116.526654, Latitude 39.779353
- 6: Longitude 116.387956, Latitude 39.982224
- 7: Longitude 116.192053, Latitude 39.913136
- 8: Longitude 116.514437, Latitude 39.906274
- 9: Longitude 116.394567, Latitude 39.861759
- 10: Longitude 116.517599, Latitude 39.816773
- 11: Longitude 116.307467, Latitude 39.936597
- 12: Longitude 116.323278, Latitude 39.880587
- 13: Longitude 116.550944, Latitude 39.949431

References

1. P. Zhu, X. Ling, W. Liu, L. Kong and Y. Yao, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2016, 1031, 61-67.

2. B. M. Barreca S., Vitelli M., Colzani L., Clerici L., Dellavedova P., Journal of Chemistry, 2018, 6, 9.

3. V. Mulabagal, L. Liu, J. Qi, C. Wilson and J. S. Hayworth, Talanta, 2018, 190, 95-102.

4. X. He, Y. He, S. Huang, Z. Fang, J. Liu, M. Ma and B. Chen, Journal of chromatography. A, 2019, 1601, 79-85.

5. S. Li, J. Ma, G. Wu, J. Li, A. Ostovan, Z. Song, X. Wang and L. Chen, Journal of hazardous materials, 2022, 429, 128333.

6. G. Li, Y. Lv, M. Chen, X. Ye, Z. Niu, H. Bai, H. Lei and Q. Ma, Anal Chem, 2021, 93, 1771-1778.