Supplementary Material

Manufacture of olefins by the selective hydrodeoxygenation of lignocellulosic ketones over the cobalt molybdate catalyst

Fengan Han^{a,b}, Guangyi Li^a, Yanting Liu^a, Aiqin Wang^{a,d}, Feng Wang^d, Tao Zhang^{a,b,d} and Ning Li^a*

- ^a CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- ^b Department of Chemical Physics, School of Chemistry and Materials Science,
 University of Science and Technology of China, Hefei 230026, China.
- ^c University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China.
- ^d State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- * Corresponding author's E-mail address: lining@dicp.ac.cn (Ning Li).

Fig. S1. N_2 adsorption-desorption isotherms of the CoO, MoO₃, MoO₃/CoO and CoMoO₄ catalysts.

Fig. S2. XRD patterns of the $Fe_2(MoO_4)_3$, NiMoO₄ and CuMoO₄ catalysts

Fig. S3. XRD patterns of the cobalt molybdate catalysts with different Co/Mo atomic ratios.

Fig. S4. XPS survey of the reduced MoO₃, MoO₃/CoO and CoMoO₄ catalysts.

Fig. S5. XPS Mo 3d core level spectra of the unreduced (a) MoO₃, (b) MoO₃/CoO and (c) CoMoO₄ catalysts.

Fig. S6. Gas chromatogram of the products from the selective hydrodeoxygenation (HDO) of 4-heptanone over the CoMoO₄ catalyst. Reaction conditions: T = 673 K, $P_{H_2} = 0.1$ MPa, WHSV = 15 h⁻¹, initial H₂/4-heptanone molar ratio = 50:1.

Fig. S7. Mass spectrogram of the heptene from the selective HDO of 4-heptanone over

the CoMoO₄ catalyst.

Fig. S8. Conversions of 4-heptanone and the carbon yields of heptene over the $Fe_2(MoO_4)_3$, CuMoO₄, NiMoO₄ and CoMoO₄ catalysts. Reaction conditions: T = 673 K, $P_{H_2} = 0.1$ MPa, WHSV = 15 h⁻¹, initial H₂/4-heptanone molar ratio = 50:1.

Fig. S9. TG-MS profile of the fresh CoMoO₄-0.8 catalyst.

Fig. S10. TG-MS profile of the spent CoMoO₄-0.8 catalyst.

Fig. S11. Gas chromatogram of the products from the reaction of acetone and hydrogen over the CoMoO₄-0.8 catalyst. Reaction conditions: T = 673 K, $P_{H_2} = 0.1$ MPa, WHSV = 3 h⁻¹, initial H₂/acetone molar ratio = 31:1.

Fig. S12. Mass spectrogram of isobutene from the reaction of acetone and hydrogen over the $CoMoO_4$ -0.8 catalyst under H₂ atmosphere.

Fig. 13. Mass spectrogram of the methyl pentene from the reaction of acetone and hydrogen over the $CoMoO_4$ -0.8 catalyst under H₂ atmosphere.

Fig. S14. Mass spectrogram of the methyl pentadiene from the reaction of acetone and hydrogen over the $CoMoO_4$ -0.8 catalyst.

Fig. S15. Gas chromatogram of the products from the selective HDO of butanone over the CoMoO₄-0.8 catalyst. Reaction conditions: T = 673 K, $P_{H_2} = 0.1$ MPa, WHSV = 3 h^{-1} , initial H₂/butanone molar ratio = 32:1.

Fig. S16. Mass spectrogram of butene from the selective HDO of butanone over the $CoMoO_4$ -0.8 catalyst.

Fig. S17. Gas chromatogram of the products from the selective HDO of 2-pentanone over the CoMoO₄-0.8 catalyst. Reaction conditions: T = 673 K, $P_{H_2} = 0.1$ MPa, WHSV = 6 h⁻¹, initial H₂/2-pentanone molar ratio = 79:1.

Fig. S18. Mass spectrogram of pentene from the selective HDO of 2-pentanone over

the CoMoO₄-0.8 catalyst.

Fig. S19. Gas chromatogram of the products from the selective HDO of 3-pentanone over the CoMoO₄-0.8 catalyst. Reaction conditions: T = 673 K, $P_{H_2} = 0.1$ MPa, WHSV = 6 h⁻¹, initial H₂/3-pentanone molar ratio = 77:1.

Fig. S20. Mass spectrogram of pentene from the selective HDO of 3-pentanone over the $CoMoO_4$ -0.8 catalyst.

Fig. S21. Gas chromatogram of the products from the selective HDO of cyclopentanone over the CoMoO₄-0.8 catalyst. Reaction conditions: T = 723 K, $P_{H_2} = 0.1$ MPa, WHSV $= 2 h^{-1}$, initial H₂/ cyclohexanone molar ratio = 64:1.

Fig. S22. Mass spectrogram of cyclopentene from the selective HDO of cyclopentanone

over the CoMoO₄-0.8 catalyst.

Fig. S23. Mass spectrogram of cyclopentadiene from the selective HDO of cyclopentanone over the $CoMoO_4$ -0.8 catalyst.

Fig. S24. Gas chromatogram of the products from the selective HDO of cyclohexanone over the CoMoO₄-0.8 catalyst. Reaction conditions: T = 673 K, $P_{H_2} = 0.1$ MPa, WHSV = 8 h⁻¹, initial H₂/ cyclohexanone molar ratio = 73:1.

Fig. S25. Mass spectrograms of the benzene and cyclohexene from the selective HDO of cyclohexanone over the $CoMoO_4$ -0.8 catalyst.

Fig. S26. Gas chromatogram of the products from the selective HDO of acetophenone over the CoMoO₄-0.8 catalyst. Reaction conditions: T = 633 K, $P_{H_2} = 0.1$ MPa, WHSV = 5 h⁻¹, initial H₂/acetophenone molar ratio = 38:1.

Fig. S27. Mass spectrograms of the styrene and ethylbenzene from the selective HDO of acetophenone over the $CoMoO_4$ -0.8 catalyst.

Fig. S28. Gas chromatogram of the products from the selective HDO of 5-nonanone over the CoMoO₄-0.8 catalyst. Reaction conditions: T = 673 K, $P_{H_2} = 0.1$ MPa, WHSV = 10 h⁻¹, initial H₂/5-nonanone molar ratio = 125:1.

Fig. S29. Mass spectrogram of nonene from the selective HDO of 5-nonanone over the

CoMoO₄-0.8 catalyst.

Fig. S30. Conversions of aryl ethers (anisole and guaiacol) and the carbon yields of different products over the CoMoO₄-0.8 catalyst.

Fig. S31. Gas chromatogram of the products from the selective HDO of anisole over the CoMoO₄-0.8 catalyst. Reaction conditions: T = 723 K, $P_{H_2} = 0.1$ MPa, WHSV = 4.2 h^{-1} , initial H₂/5-nonanone molar ratio = 78:1.

Fig. S32. Gas chromatogram of the products from the selective HDO of guaiacol over the CoMoO₄-0.8 catalyst. Reaction conditions: T = 723 K, $P_{H_2} = 0.1$ MPa, WHSV = 3.8 h^{-1} , initial H₂/5-nonanone molar ratio = 78:1.

Fig. S33. Mass spectrograms of the benzene and toluene from the selective HDO of anisole or guaiacol over the $CoMoO_4$ -0.8 catalyst.

Fig. S34. Mass spectrograms of the xylene and mesitylene from the selective HDO of anisole or guaiacol over the $CoMoO_4$ -0.8 catalyst.