This ESI replaces the previous version published on 08.11.2023 to include Figure S7

Supporting Information

Fluorescent Carbon Dots from Birch Leaves for Sustainable Electroluminescent Devices

Shi Tang^a, Yongfeng Liu^{a,b}, Henry Opoku^a, Märta Gregorsson^a, Peijuan Zhang^c, Etienne Auroux^a, Dongfeng Dang^c, Anja-Verena Mudring^d, Thomas Wågberg^a, Ludvig Edman^{a,e*} and Jia Wang^{1*}

^a Department of Physics, Umeå University, SE-90187 Umeå, Sweden.

^b College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, P. R. China.

^c School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China

^d Intelligent Advanced Materials (iAM), Department of Biological and Chemical Engineering and iNANO, Aarhus University, 8000 Aarhus C, Denmark

^e Wallenberg Initiative Materials Science for Sustainability, Department of Physics, Umeå University, SE-90187 Umeå, Sweden

*Corresponding authors. E-mail: <u>ludvig.edman@umu.se</u> and <u>jia.wang@umu.se</u>

Figure S1. A selection of the biomolecular species commonly present in birch leaves and their chemical structures. The chemical structures of pheophytin a and chlorophyll a are depicted in the lower right-hand part of Figures 1(e) and 1(f), respectively.

Figure S2. The photoluminescence quantum yield (PLQY) of the synthesized bio-CDs: (a) as a function of the reaction time (see x-axis) and the reaction temperature (see inset) in acetone; (b) as a function of extraction solvents when other reaction parameters remain unchanged (i.e., 120 °C for 5h).

Figure S3. The photostability of the bio-CD-in-ethanol solution (solute concentration = 1.6 mg/L) under ambient air, during exposure to (a) daylight and (b) UV irradiation with a power density of 230 W/m² and a peak wavelength of 365 nm.

Figure S4. (a) The absorption and PL spectra, and (b) the PL spectrum as a function of excitation wavelength, for bio-CDs synthesized from leaves from the plant "Clusia rosea".

Figure S5. Photographs of an LEC device in the idle off state (left) and during deep-red and narrow-band light emission (right).

Figure S6. (a) A cross-sectional SEM image of the ITO/blend-host:bio-CD/PEDOT:PSS LEC device structure. (b) The steady-state EL spectrum and (c) the temporal evolution of the

luminance and the voltage for the LEC with a spray-coated PEDOT:PSS top electrode. The device was driven by a constant current density of 154 mA/cm^2 .

Figure S7. The XPS survey spectra of two individual measurements on bio-CD films.