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1. General information

All reagents were commercial and were used without further purification. Acetonitrile (MeCN) was
purchased from Damao Chemcal Reagent Company and water comes from municipal water. Column
chromatography was performed on silica gel (300-400 mesh) and reactions were monitored by thin-layer
chromatography (TLC) using 254 nm UV light for visualization, and phosphomolybdic acid heat as
developing agents. 'H NMR (400 MHz or 600MHz), 3C NMR (101 MHz or 150 MHz), '°F (376 MHz),
3P (162 MHz) and ''B (128 MHz) were measured on Bruker Avance III 400 or 600 spectrometer.
Chemical shifts are expressed in parts per million (ppm) with respect to tetramethylsilane. Coupling
constants were reported as Hertz (Hz), signal shapes and splitting patterns were indicated as follows: s =
singlet; d = doublet; t = triplet; q = quartet; m = multiplet. High-resolution mass spectra (HRMS) were
recorded on Agilent mass spectrometer equipped with the ESI or APCI source and a Q-TOF detector.



2. General procedures of electrochemical reduction of methyl benzoates
2.1. General procedure for methyl benzoates with electron-withdrawing group (General procedure
A):

O
o CF(+) I CF(-), 10 mA, cc /©/\OH
R "BuyNOAc, H,0, MeCN, rt R
R=EWG

To a 10 mL two-necked heart-shaped flask was charged with the substrate (0.3 mmol), "BusNOAc
(90.4 mg, 0.3 mmol, 1.0 equiv), H,O (1 ml), MeCN (6 ml) and a magnetic stir bar. The bottle was
equipped with a rubber stopper, through which carbon felts (CF, 1.5 cm x 1 cm x 0.5 cm) as anode and
cathode were installed. Two electrodes were attached to a titanium wire and separated with a Teflon film.
A Teflon wire tied around two electrodes. The whole cell was an undivided cell. The mixture was stirred
under room temperature and 10 mA constant current electrolysis, and reacted until the substrates
disappear. The reaction mixture was concentrated under the reduced pressure. The yield was measured
by 'H NMR analysis of crude reaction mixture with mesitylene as an internal standard. The residue was
purified by flash chromatography to afford the desired product. Followings are the photographic guide

for the reaction.

Figure S2. Electrodes and electrochemical cell
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Figure S3. Details and equipment of the electrochemical reaction

2.2. General procedure for methyl benzoates with electron-donating group (General procedure B):

o)
o GF(+) | GF(-), rAP, 9.0V V,p, 2 Hz /@AOH
Me,S, "BusNPFg, H,0, MeCN, it R
R
R = EDG

To a 10 mL two-necked heart-shaped flask was charged with the substrate (0.3 mmol), Me,S (55.8
mg, 0.9 mmol, 3.0 equiv), "BusNPF¢ (116.2 mg, 0.3 mmol, 1.0 equiv), H,O (1 ml), MeCN (6 ml) and a
magnetic stir bar. The bottle was equipped with a rubber stopper, through which graphite felts (GF, 1.5
cm x 1 cm x 0.5 cm) as anode and cathode were installed. Two electrodes were attached to a titanium
wire and separated with a Teflon film. A Teflon wire tied around two electrodes. The whole cell was an
undivided cell. The rAP power supply constituted with a combination of a signal generator and an
amplifier. The rAP waveform was generated from a signal generator (FeelElec, FY6900-20M) and the
output was adjusted by an amplifier (FPA2000-30W). The mixture was stirred under room temperature
and 9.0 V V,, of rAP (detected by oscilloscope, set 0.9 V on signal generator, peak to peak, 0.45 V from
the offset, alternating frequency: 2 Hz, the current was around 60 mA) were applied to the reaction until
the substrates disappear. The reaction mixture was concentrated under the reduced pressure. The yield
was measured by '"H NMR analysis of the crude reaction mixture with mesitylene as an internal standard.
The residue was purified by flash chromatography to afford the desired product. Followings are the
photographic guide for the reaction.

2.3. General procedure for methyl benzoates with electron-withdrawing group using D,O as

hydrogen source (General procedure C):
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0 D D
o~ CF(+) | CF(-), 10 mA, cc /©)<OH
R "BuyNOAc, D,O, MeCN, Ar, rt R

R=EWG

To a 10 mL two-necked heart-shaped flask under Ar atmosphere was charged with the substrate (0.3
mmol), "BuyNOAc (90.4 mg, 0.3 mmol, 1.0 equiv), D,O (300 mg, 1.5 mmol, 50 equiv), MeCN (6.5 ml,
extra dry with molecular sieves, water <30 ppm) and a magnetic stir bar. The equipment was same as in
General procedure A. The mixture was stirred under room temperature and 10 mA constant current
electrolysis, and reacted until the substrates disappear. The reaction mixture was concentrated under the

reduced pressure. The residue was purified by flash chromatography to afford the desired product.

2.4. General procedure for methyl benzoates with electron-donating group using D,O as hydrogen

source (General procedure D):

Q D
o GF()IGF(). AP, 90V Vp, 2 Hz gH
MeZS, nBU4NPF6, Dzo, MeCN, rt
R R
R =EDG

To a 10 mL two-necked heart-shaped flask under Ar atmosphere was charged with the substrate (0.3
mmol), Me,S (55.8 mg, 0.9 mmol, 3.0 equiv), "BuyNPF; (116.2 mg, 0.3 mmol, 1.0 equiv), D,O (300 mg,
1.5 mmol, 50 equiv), MeCN (6.5 ml, extra dry with molecular sieves, water < 30 ppm) and a magnetic
stir bar. The equipment was same as in General procedure B. The mixture was stirred under room
temperature and 9.0 V V,,, of rAP (detected by oscilloscope, set 0.9 V on signal generator, peak to peak,
0.45 V from the offset, alternating frequency: 2 Hz, the current was around 60 mA), and reacted until
substrates disappear. The reaction mixture was concentrated under the reduced pressure. The residue was

purified by flash chromatography to afford the desired product.

2.5 Gram scale reaction of electrochemical reduction of dimethyl terephthalate:
O
o~ CF(+)ICF(), cc, 500 mA o 7‘/©/\ OH
_0 "Bu,NOAC, H,O/MeCN, rt, 4h  ~
© | ° 1a

To a 250 mL glass beaker was charged with dimethyl terephthalate (5.82 g, 30 mmol), "BusNOAc
(2.26 g, 7.5 mmol, 0.25 equiv), H,O (25 ml), MeCN (150 ml) and a magnetic stir bar. The bottle was
equipped with a paper case cover, through which carbon felts (4 cm x 18 cm x 0.5 cm) as anode and
cathode were installed. Two electrodes were attached to a titanium wire and separated with polypropene
foam (pore diameter: 200 um aperture). A Teflon wire tied around two electrodes. The whole cell was
an undivided cell. The mixture was stirred under room temperature and 500 mA constant current
electrolysis, and reacted for 4 h. The reaction mixture was concentrated under the reduced pressure, and
the residue was purified by flash chromatography (PE/EtOAc = 2/1) to afford the desired product as a
white solid with 62.7% yield (3.12 g). Followings are the photographic guide for the reaction.
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Figure S5. Details and the equipment for the gram scale reaction of dimethyl terephthalate

2.6 Gram scale reaction of electrochemical reduction of methyl 4-phenylbenzoate:

/©)\o/ GF(+) I GF(-), AP, 11V Vyp, 1 Hz /©/\OH /@Ao
+
Ph Me,S, "BusNPFg, H,0, MeCN, 1t, 11h  Ph Ph

n 2j E

To a250 mL eggplant shaped bottle was charged with the methyl 4-phenylbenzoate (1.27 g, 6 mmol),
Me,S (744 mg, 12 mmol, 2.0 equiv), "BusNPF¢ (2.32 g, 6 mmol, 1.0 equiv), H,O (20 ml), MeCN (120
ml) and a magnetic stir bar. The bottle was equipped with a rubber stopper, through which graphite felts
(1.5ecmx 2 em x 0.5 cm) as anode and cathode were installed. Two electrodes were attached to a titanium
wire and separated with a Teflon film. A Teflon wire tied around two electrodes. The whole cell was an
undivided cell. The rAP power supply constituted with a combination of a signal generator and an
amplifier. The rAP waveform was generated from a signal generator (FeelElec, FY6900-20M) and the
output was adjusted by an amplifier (FPA2000-30W). The mixture was stirred under room temperature
and 11V V,, of rAP (detected by oscilloscope, set 1.1 V on signal generator, peak to peak, 0.55 V from
the offset, alternating frequency: 1 Hz, the current was around 150 mA), and reacted for 11 h. The
reaction mixture was concentrated under the reduced pressure, and residue was purified by flash
chromatography (PE/EtOAc = 4/1) to afford the desired product as a white solid with 71% yield (780
mg). 4-Biphenylcarboxaldehyde (41 mg) was obtained as a white solid (PE/EtOAc = 50/1). 'H NMR
(400 MHz, chloroform-d) 6 10.04 (s, 1H), 7.99 — 7.89 (m, 2H), 7.77 — 7.70 (m, 2H), 7.68 — 7.59 (m, 2H),
7.51 — 7.45 (m, 2H), 7.43 — 7.38 (m, 1H). 3C NMR (151 MHz, chloroform-d) & 192.2, 147.2, 139.7,
135.2,130.4, 129.1, 128.6, 127.8, 127.5. Followings are the photographic guide for the reaction.
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Figure S6. Details and the equipment for the gram scale reaction of methyl 4-phenylbenzoate



3. Synthesis of substrates (new compounds)

3.1. General procedure for the synthesis of methyl 3-alkoxyl-4-cyanobenzoates:

O (0]

o~ o~

NC NC
OH OR

Method A: To a solution of methyl 4-cyano-3-hydroxybenzoate (442.5 mg, 2.5 mmol) in DMF (10
ml) was added NaH (60%, 150 mg, 3.75 mmol, 1.5 equiv), and the mixture was stirred for 10 min. Alkyl
halide (3.75 mmol, 1.5 equiv) was added to the solution and the mixture was stirred for 10 h. After the
reaction was completed (monitored by TLC), the reaction solution was quenched by adding aq. NH,Cl
(50 ml), extracted by EtOAc (50 ml x 2). The organic layers were combined, washed by H,O (50 ml x
3) and aq. NaCl (50 ml x 1), dried over Na,SOy, filtered and concentrated. The residue was purified by
flash chromatography to afford the desired product.

Method B: To a solution of methyl 4-cyano-3-hydroxybenzoate (442.5 mg, 2.5 mmol) in acetone (10
ml) was added K,CO; (659 mg, 5 mmol, 2 equiv) and alkyl halide (3.25 mmol, 1.3 equiv). The solution
was stirred at reflux for 6 h. After the reaction was completed (monitored by TLC), the reaction solution
was cooled to room temperature, filtered and concentrated. The residue was diluted with EtOAc (50 ml),
washed by aq. NaCl (50 ml x 1), dried over Na,SOy, filtered and concentrated. The solid residue was
washed by PE/EtOAc (10:1) to afford the desired product.

Methyl 3-(but-3-en-1-yloxy)-4-cyanobenzoate
o) Following the method A with 4-bromobut-1-ene, the desired product was obtained
o) as a white solid in 57% yield (330 mg). Melting point: 64 — 66 °C. "H NMR (400
NG MHz, chloroform-d) 6 7.79 — 7.50 (m, 3H), 5.98 — 5.88 (m, 1H), 5.40 — 5.07 (m,
O~ 2H),4.19(t,J=6.7 Hz, 2H), 3.95 (s, 3H), 2.64 (q, J = 6.7 Hz, 2H). 3C NMR (101
MHz, chloroform-d) 6 165.6, 160.5, 135.4, 133.8, 133.4, 121.6, 118.0, 115.6, 112.9, 106.2, 68.6, 52.8,
33.2. HRMS m/z (ESI) called for C;3H3NO;Na* (M + Na)* 254.0793, found 354.0789.
Methyl 4-cyano-3-((5-cyanopentyl)oxy)benzoate
0 Following the method A with 6-bromohexanenitrile, the desired product
o was obtained as a yellow solid in 60% yield (485 mg). Melting point: 62 —
NC | 64 °C. '"H NMR (400 MHz, chloroform-d) & 7.76 — 7.54 (m, 3H), 4.19 (t, J
O ~_~_CN =6.1Hz 2H), 3.97 (s, 3H), 2.44 (t, J = 6.9 Hz, 2H), 2.00 — 1.91 (m, 2H),
1.86 — 1.78 (m, 2H), 1.78 — 1.69 (m, 2H). 3C NMR (101 MHz, chloroform-d) 8 165.5, 160.5, 135.5,
133.8, 121.7, 119.6, 115.6, 112.8, 106.1, 68.9, 52.8, 28.1, 25.3, 25.1, 17.2. HRMS m/z (ESI) called for
CisHisN,OsNa™ (M + Na)* 295.1059, found 295.1058.

Methyl 4-cyano-3-(prop-2-yn-1-yloxy)benzoate

Following the method B with 3-bromoprop-1-yne, the desired product was obtained
as a yellow solid in 93% yield (500 mg). Melting point: 137 — 139 °C.'"H NMR (400
MHz, chloroform-d) 6 7.79 (d, J = 1.3 Hz, 1H), 7.73 (dd, J = 8.0, 1.3 Hz, 1H), 7.67
(d, J=8.0 Hz, 1H), 4.90 (d, J = 2.4 Hz, 2H), 3.97 (s, 3H), 2.61 (d, J = 2.4 Hz, 1H).
3C NMR (101 MHz, chloroform-d) 8 165.4, 159.0, 135.4, 133.9, 115.3, 113.7, 106.6, 77.4, 77.3 (d, J =

NC

b

(0]
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12.3 Hz), 76.6 (d, J=2.5 Hz), 56.8, 52.9. HRMS m/z (ESI) called for C;;HsNOs;Na* (M + Na)* 238.0480,
found 238.0478.
Methyl 4-cyano-3-(2-fluoroethoxy)benzoate
Following the method A with 1-fluoro-2-iodoethane, the desired product was
o obtained as a white solid in 61% yield (340 mg). Melting point: 142 — 144 °C. 'H
| NMR (400 MHz, chloroform-d) § 7.76 — 7.60 (m, 3H), 4.95 — 4.86 (m, 1H), 4.83 —
4.74 (m, 1H), 4.51 —4.43 (m, 1H), 4.42 — 4.36 (m, 1H), 3.96 (s, 3H). *C NMR (101
MHz, chloroform-d) § 165.4, 160.0, 135.5, 134.0, 122.3, 115.3, 113.1, 106.5, 81.3
(d, J=172.5Hz), 68.5 (d, J=21.2 Hz), 52.8. '°F NMR (376 MHz, chloroform-d) § -223.59. HRMS m/z
(ESI) called for C;;H;(FNOs;Na* (M + Na)* 246.0542, found 246.0540.

0

NC
O\/\F

Methyl 4-cyano-3-(4-(methoxycarbonyl)phenethoxy)benzoate

0 Following the method B with methyl 4-(2-bromoethyl)benzoate, the

o desired product was obtained as a yellow solid in 9.4 % yield (80 mg).

NG | Melting point: 169 — 171 °C. '"H NMR (400 MHz, chloroform-d) 6 8.01 (d,
O\/\Q\(O J=8.2Hz, 2H), 7.68 — 7.59 (m, 2H), 7.56 (d, /= 1.3 Hz, 1H), 7.43 (d, J =

o 8.2 Hz, 2H), 4.34 (t, /= 6.5 Hz, 2H), 3.93 (s, 3H), 3.91 (s, 3H), 3.24 (t, J

= 6.5 Hz, 2H). 3C NMR (101 MHz, chloroform-d) & 167.0, 165.5, 160.3, 142.9, 135.4, 133.8, 129.9,
129.4, 128.8, 121.8, 115.5, 112.7, 106.2, 69.5, 52.8, 52.1, 35.5. HRMS m/z (ESI) called for
CioH17;NOsNa* (M + Na)* 362.1004, found 362.1004.

3.2. Synthesis of methyl 4-(butyryloxy)benzoate

CsH,COCI, TEA
DCM, tt, 10 h
HO /\)Lo

To a solution of methyl 4-hydroxybenzoate (761 mg, 5 mmol) and Et;N (758 mg, 7.5 mmol, 1.5 equiv)

in DCM (10 ml) was added butyryl chloride (586 mg, 5.5 mmol, 1.1 equiv) dropwise. The mixture was
stirred at room temperature for 10 h. After the reaction was completed (monitored by TLC), the reaction
solution was diluted with DCM (50 ml), washed by aq. NaHCOj; (50 ml x 1) and aq. NaCl (50 ml x 1),
dried over Na,SO,, filtered and concentrated. The residue was purified by flash chromatography
(PE/EtOAc = 10/1) to give pure product as a colorless oil in 95% yield (1.05 g). '"H NMR (400 MHz,
chloroform-d) 6 8.07 (d, /= 8.7 Hz, 2H), 7.16 (d, J = 8.7 Hz, 2H), 3.91 (s, 3H), 2.56 (t,J= 7.4 Hz, 2H),
1.79 (q, J = 7.4 Hz, 2H), 1.05 (t, J = 7.4 Hz, 3H). 3C NMR (101 MHz, chloroform-d) 8 171.5, 166.3,
154.4, 131.1, 127.6, 121.6, 52.2, 36.1, 18.4, 13.6. HRMS m/z (ESI) called for C;,H40,Na* (M + Na)*
245.0790, found 245.0788.

3.3. Synthesis of methyl 5-acetamido-2-(2-chloroethoxy)benzoate.

0} 0 o
HoN — AcCl (1.05 eq), TEA(1.5 AcHN A Cl(5eq) AcHN ~
o .05 eq), (1.5 eq) cl o~ Br 0
0 K DMF, 80°C, 16h cl
OH DCM, 0°C, 1h oH 2CO3 (3 eq), , 80°C, 16 o>

To a solution of methyl 5-amino-2-hydroxybenzoate (836 mg, 5 mmol) and Et3N (755 mg, 7.5 mmol,

1.05 equiv) in DCM (25 ml) was added acetyl chloride (412 mg, 5.25 mmol, 1.01 equiv) dropwise at 0
oC. The mixture was stirred at 0 oC for 1 h. After the reaction was completed (monitored by TLC), the

reaction solution was diluted with DCM (50 ml), washed by aq. NaHCOj; (50 ml x 1) and aq. NaCl (50
10



ml x 1), dried over Na,SQy, filtered and concentrated. The residue was washed by PE/EtOAc = 10/1 to
give methyl 5-acetamido-2-hydroxybenzoate as a brown solid in 92% yield (0.97 g). '"H NMR (400 MHz,
chloroform-d) 610.62 (s, 1H), 8.02 (d, J = 2.6 Hz, 1H), 7.49 (dd, ] = 9.0, 2.7 Hz, 1H), 7.33 (s, 1H), 6.94
(d, J =8.9 Hz, 1H), 3.93 (s, 3H), 2.16 (s, 3H).

A solution of methyl 5-acetamido-2-hydroxybenzoate (530 mg, 2.54 mmol), K,CO; (1.05 g, 7.62
mmol, 3 equiv) and 1-bromo-2-chloroethane (1.82 g, 12.7 mmol, 5 equiv) in DMF (10 ml) was stirred at
80 °C for 16 h. After the reaction was completed (monitored by TLC), the reaction solution was diluted
with EA (50 ml), washed by aq. NaCl (30 ml x 3), dried over Na,SOy,, filtered and concentrated. The
residue was purified by flash chromatography (PE/EtOAc = 10/1) to give pure product as a white solid
in 55% yield (375 mg).'"H NMR (400 MHz, chloroform-d) 87.81 — 7.74 (m, 2H), 7.38 (d, J = 13.7 Hz,
1H), 6.95 (d, J=8.7 Hz, 1H), 4.27 (t,J = 6.0 Hz, 2H), 3.88 (s, 3H), 3.83 (t, /= 6.1 Hz, 2H), 2.17 (s, 3H).
BC NMR (101 MHz, Chloroform-d) & 168.4, 166.1, 154.5, 131.7, 125.7, 123.4, 121.4, 115.6, 70.1, 52.2,
41.7,24.4.
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4. Optimization of reaction conditions

4.1 Optimization of the electrochemical reduction of methyl benzoate with electron withdrawing

o~ OH
0 _0

(0] (0]
| 1a

group

4.1.1 Screen of the cathode

cathode yield cathode yield cathode yield cathode yield

CF 65% RVC 15% Ag 46% Zn 15%

carbon Fe 61% Al 19% Pb 11%
36%

rod Cu 30% Ni 0% Pt 32%

Condition: I (0.3 mmol), E;N (2.4 mmol), Zn(OTf), (0.06 mmol), H,O (15 mmol), "BuyNI (0.3 mmol),
MeCN (7 mL), carbon felt (1 cm x 1.5 cm x 0.5 cm) as anode, 13.3 mA/cm?, rt, 8 h. Yields were
determined by HNMR with mesitylene as an internal standard.

4.1.2 Screen of the anode

anode yield anode yield anode yield anode yield
carbon felt 65% RVC 50% carbon rod 0% Pt 30%
Condition: I (0.3 mmol), Et;N (2.4 mmol), Zn(OTf), (0.06 mmol), H,O (15 mmol), "BuyNI (0.3 mmol),
MeCN (7 mL), carbon felt (1 cm x 1.5 cm x 0.5 c¢cm) as cathode, 13.3 mA/cm?, rt, 8 h. Yields were

determined by HNMR with mesitylene as an internal standard.

4.1.3 Screen of the electrolyte

electrolyte yield | electrolyte yield electrolyte yield
"BuyNOACc 71% "BuyNI 13% "BuyClO,4 50%
LiOAc 0 LiOCl, 0

Condition: I (0.3 mmol), H,O (6 mmol), electrolyte (0.3 mmol), MeCN (7 mL), carbon felt (1 cm X 1.5
cm x 0.5 cm) as anode and cathode, C.V. = 3.8 V, rt, 10 h. Yields were determined by HNMR with
mesitylene as an internal standard.

4.1.4 Screen of the constant voltage (C. V.) and constant current(C. C.)

C.V. yield C.C. yield

40V 53% SmA | 0% (100%)¢
38V 71% 10mA | 53% (24%)°
37V 73% 15mA | 19% (40%)”
3.0V | 0%(100%)¢ | 20mA | 0% (71%)°

Condition: I (0.3 mmol), H,O (6 mmol), "BuyNOAc (0.15 mmol), MeCN (7 mL), carbon felt (1 cm x 1.5
cm X 0.5 cm) as anode and cathode, C.V. or C. C., rt, 6 h. Yields were determined by HNMR with
mesitylene as an internal standard. ¢ SM recovered. ? yields of methyl 4-methylbenzoate.

4.1.5 Screen of the solvent

solvent yield solvent yield solvent yield

12


javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;

MeCN 63% MeOH 32% THF 43% (20%)
DMF 33% (27%)¢ iPrOH 35% (40%)“ HFIP 0%
DMSO 28% DCE 37% acetone 31%

MeCN/H,0=6/1 83%

Condition: I (0.3 mmol), H,O (6 mmol), "BuyNOAc (0.15 mmol), solvent (7 mL), carbon felt (1 cm x
1.5 cm x 0.5 cm) as anode and cathode, 13.3 mA/cm3, rt, 5.5 h. Yields were determined by HNMR with
mesitylene as an internal standard. ¢ yields of methyl 4-methylbenzoate.

4.1.6 Screen of equiv of H,O

H,0 (equiv) yield H,0 (equiv) yield H,0 (equiv) yield
2 52% 20 80% 200 83%
5 57% 50 77%
10 72% 100 80%

Condition: I (0.3 mmol), "BuyNOAc (0.3 mmol), MeCN (7 mL), carbon felt (1 cm x 1.5 cm x 0.5 cm)
as anode and cathode, 13.3 mA/cm?, rt, 10 h. Yields were determined by HNMR with mesitylene as an
internal standard.

4.1.7 Optimization of the reaction of I with H,O as the hydrogen source in undivided cells.

o]
o~ CF(+) Il CF(-), 10 mA, cc OH
- Ox "BuyNOAc, H,0, MeCN, rt, 5h /Oj(©/\
o O
I 1a
Entry Deviation from optimized conditions® Conv.? Yield®

1 None 100% 83%(78%")
2 No electric current 0 0

3 No H,O 99% 15%
4 DMF instead of MeCN 96% 50%
5 iPrOH instead of MeCN 97% 41%
6 THF instead of MeCN 100% 65%
7 iPrOH instead of H,O 98% 34%
8 Et;N instead of H,O 98% 11%
9 "BuyPF¢ supporting electrolyte 94% 73%
10 LiPF¢ supporting electrolyte 44% 0
11 Graphite felt instead of carbon felt 86% 22%

@ Optimized condition: I (0.3 mmol), "BusNOAc (0.3 mmol), H,O/MeCN (1/6, 7 mL), carbon felt (1 cm
x 1.5 em x 0.5 cm) as anode and cathode, 13.3 mA/cm?, 1t, 5 h. » Conversions were determined by HNMR
with mesitylene as an internal standard. ¢ Yields were determined HNMR with mesitylene as an internal

standard. ¢ Isolated yield.
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4.2 Optimization of the electrochemical reduction of methyl benzoate with electron donating

group.
O
I 2b
4.2.1 Screen of the electrolyte
electrolyte yield electrolyte yield electrolyte yield electrolyte yield
"BuyNPFg 90% "BusOAc 88% "BuyBF, 88% "BuyClO,4 87%

"Bu,Cl 77% LiClO, 90% | Mg(ClO,), | 82%

Condition: II (0.3 mmol), electrolyte (0.3 mmol), H,O/MeCN = 1/6 (7 mL), Me,S (0.9 mmol), graphite
felt (1 cm x 1.5 cm x 0.5 cm) as anode and cathode, 9.0 V V,, of rAP, 2 Hz, t, 10 h. Yields were
determined by HNMR with mesitylene as an internal standard.

4.2.2 Screen of the equiv of electrolyte

equiv yield
2.0 90%
1.0 90%
0.5 71%

Condition: I (0.3 mmol), "BusNPF¢, H,O/MeCN = 1/6 (7 mL), Me,S (0.9 mmol), graphite felt (1 cm x
1.5 cm x 0.5 cm) as anode and cathode, 9.0 V V},, of rAP, 2 Hz, rt, 10 h. Yields were determined by
HNMR with mesitylene as an internal standard.

4.2.3 Screen of the solvent

electrolyte yield | electrolyte | yield electrolyte yield electrolyte yield
MeCN 90% THF 28% DMF 40% DMSO 55%
EtOH 26% Acetone 46% MeOH 49% THF/EtOH=1/1 43%

Condition: IT (0.3 mmol), "BusNPF¢ (0.3 mmol), H,O/solvent = 1/6 (7 mL), Me,S (0.9 mmol), graphite
felt (1 cm x 1.5 cm x 0.5 cm) as anode and cathode, 9.0 V V,, of rAP, 2 Hz, t, 10 h. Yields were
determined by HNMR with mesitylene as an internal standard.

4.2.4 Screen of the additives

additive yield additive yield additive yield | additive yield
Me,S 90% Ph,S 75% 3, 5-diMePhSH 0% Et;N 3%
Et,S 82% Ph;P 84% 1,3-Dithiane 70% DIEA 3%

Condition: IT (0.3 mmol), "BusNPF; (0.3 mmol), H,O/MeCN = 1/6 (7 mL), additive (0.9 mmol), graphite
felt (1 cm x 1.5 cm x 0.5 cm) as anode and cathode, 9.0 V V},, of rAP, 2 Hz, rt, 10 h. Yields were
determined by HNMR with mesitylene as an internal standard.

4.2.5 Screen of the equiv of Me,S.

equiv yield
1.0 44% (46%)*
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Condition: IT (0.3 mmol), "BuyNPFg (0.3 mmol), H,O/MeCN = 1/6 (7 mL), Me,S, graphite felt (1 cm x
1.5 cm x 0.5 cm) as anode and cathode, 9.0 V V},, of rAP, 2 Hz, rt, 10 h. Yields were determined by

2.0

90%

3.0

90%

HNMR with mesitylene as an internal standard. ¢ SM recovered.

4.2.6 Screen of the equiv of H,O.

equiv yield equiv yield equiv yield
2 1% (88%)“ 20 86% 200 90%
5 1.5% (95%)“ 50 88%
10 86% 100 87%

Condition: IT (0.3 mmol), "BusyNPF¢ (0.3 mmol), MeCN (6 mL), Me,S (0.9 mmol), graphite felt (1 cm
x 1.5 cm x 0.5 cm) as anode and cathode, 9.0 V V,, of rAP, 2 Hz, rt, 10 h. Yields were determined by

HNMR with mesitylene as an internal standard. ¢ SM recovered.

4.2.7 Screen of the voltage.

Condition: IT (0.3 mmol), "BusNPFg (0.3 mmol), H;O/MeCN = 6/1 (7 mL), Me,S (0.9 mmol), graphite
felt (1 cm x 1.5 cm x 0.5 cm) as anode and cathode, rAP, 2 Hz, rt, 10 h. Yields were determined by

Voltage (V V) yield
7.0 37% (21%)*

8.0 87%

9.0 90%

10.0 V 70%

HNMR with mesitylene as an internal standard. ¢ SM recovered.

4.2.8 Screen of the frequency.

frequency yield frequency yield frequency yield

0.5Hz 67% 1 Hz 85% 2 Hz 90%

3Hz 90% 5Hz 88% 10 Hz 81%
20 Hz 53% (15%)¢

Condition: IT (0.3 mmol), "BusNPFg (0.3 mmol), H;O/MeCN = 6/1 (7 mL), Me,S (0.9 mmol), graphite
felt (1 cm x 1.5 cm x 0.5 cm) as anode and cathode, 9.0 V V,, of rAP, t, 10 h. Yields were determined

by HNMR with mesitylene as an internal standard. “ SM recovered.

4.2.9 Control reaction.

Entry yield
No Me,S 8% (53%)“
No H,O 2.5% (75%) ¢
No H,0/Me,S 0% (80%) ¢

Condition: IT (0.3 mmol), "BusNPF¢ (0.3 mmol), H;O/MeCN = 6/1 (7 mL), Me,S (0.9 mmol), graphite
felt (1 cm x 1.5 cm x 0.5 cm) as anode and cathode, 9.0 V V,, of rAP, t, 10 h. Yields were determined
by HNMR with mesitylene as an internal standard. “ SM recovered.

4.2.10 Optimization of the reduction of II with H,O as the hydrogen source in undivided cells.

15
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0]

/@)Lo/ GF(+) | GF(-), rAP, 2Hz, 9.0 V V,,, /@/\OH
Me,S, "BusNPFg, H,O, MeCN, rt, 10h

Il 2b

Entry Deviation from optimized conditions? Conv.? Yield¢
1 None 100% 90%(86%%)
2 No Me,S 47% 8%
3 No H,O 25% 2.5%
4 DMF instead of MeCN 97% 40%
5 EtOH instead of MeCN 72% 26%
6 THF instead of MeCN 82% 28%
7 Ph;P instead of Me,S 100% 84%
8 Et;N instead of Me,S 100% 3%
9 "BuyNOACc supporting electrolyte 100% 88%
10 LiClO4 supporting electrolyte 100% 90%
11 0.5 Hz 100% 67%
12 10 Hz 99% 81%
13 8.0V Vy 100 74%
14 Carbon felt instead of graphite felt 86% 22%
15 Pb as cathode, 20 mA, cc 94% 8
16 DC,4.5V(C.V.) 100% 0%

4Optimized condition: IT (0.3 mmol), Me,S (0.9 mmol), "BuyNPF; (0.3 mmol), H,O/MeCN (1/6, 7 mL),
graphite felt (1 cm x 1.5 cm % 0.5 cm) as anode and cathode, 9.0 V V;,, of TAP, 2 Hz, rt, 10 h. b Conversions
were determined by HNMR with mesitylene as an internal standard. ¢ Yields were determined HNMR

with mesitylene as an internal standard. ¢ Isolated yield.

4.2.11 Measuring the consumption of electricity

O
GF(+) I GF(-), rAP, 2Hz, 9.0 V V,, OH
OMe
Me2S, nBU4NPF6, Hzo, MeCN, rt, 2h
2b
IKA Electrasyn 2.0 22 F/mol 69% NMR yield

This reaction was conducted with IKA Electrasyn 2.0 with the function measuring the

consumption of electricity of rAP.
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5. Mechanism Study
5.1 Cyclic voltammetry experiments of reactants

5.1.1. Cathodic reduction: MeCN + "BuyNOAc (Blank-1)

MeCN + "Bu,NOAc

-4 .I3 -2 -1 0
E (V vs SCE)

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode,

0.1 V/S, "BuyNOACc (0.3 mmol), MeCN (6 mL).
5.1.2. Cathodic reduction: Blank-1 + Dimethyl terephthalate (I)

Blank + Dimethyl terephthalate

-4 -3 2 -1 0
E (V vs SCE)

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode,

0.1 V/S, 1(0.3 mmol), n-BuyNOAc (0.3 mmol), MeCN (6 mL).

17



5.1.3. Cathodic reduction: Blank-1 + Methyl 4-methylbenzoate (II)

0 -

14
<
S
T2

—— Blank-1 + Methyl 4-methylbenzoate
-3
-4 T T T T T T T T
-4 3 -2 -1 0
E (V vs SCE)

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode,
0.1 V/S, II (0.3 mmol), "BusNOACc (0.3 mmol), MeCN (6 mL).
5.1.4. Cathodic reduction: Blank-1 + H,O

0.0

-0.5

104 — Blank-1 + H,0

-1.5 4

I (mA)

-2.0 4

-2.5 4

-3.0 4

2 -1 ' 0
E (V vs SCE)

1
A
&

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode,

0.1 V/S, H,O(0.1 ml), "BusNOACc (0.3 mmol), MeCN (6 mL).



5.1.5. Cathodic reduction of I and H,O

-0.5 -
0.0—-
0.5—-
10

1.5 1

(mA)

2.0

2.5

3.0

3.5+

E(V vs SCE)

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode,
0.1 V/S, 1 (0.3 mmol), H,O(0.1 ml), "BusNOAc (0.3 mmol), MeCN (6 mL).
5.1.6. Cathodic reduction of I/H,O/I and H,O

0. N\
14
<
E
2 .
—1
——H,0
o I +H,0
4 T T T T T T
-3 -2 -1 0
E(V vs SCE)



5.1.7. Cathodic reduction of I/H,0.

04
-1
<
‘E’-z | Methyl benzoate
- Methyl 4-methylbenzoate
——H,0
-3 4
-4 T T T T T
-4 -3 2 1 0
E (V vs SCE)
5.1.8. Anodic oxidation: MeCN + "BuyNPF¢ (Blank-2)
1.0
| ——"Bu,NPF; + MeCN|
0.8
0.6
<
S
= 0.4+
0.2
0.0 —
T T T T T T T T T
0 1 2 3 4

E (V vs SCE)

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode,

0.1 V/S, "BuyNPFg (0.3 mmol), MeCN (6 mL).
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5.1.9. Anodic oxidation: 4-MeO,CPhCH,0H (1a) + Blank-2

10 —— 4-MeO,CPhCH,0H (2a) + Blank-2

0.8

0.6

I (mA)

0.4 1

0.2

0.0 s

-0.2

0 T 2 3 4
E (V vs SCE)

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode,
0.1 V/S, 1 (0.3 mmol), "BuyNPF¢ (0.3 mmol), MeCN (6 mL).
5.1.10. Anodic oxidation: 4-MeO,CPhCH,0OH (1a) + "BulLi (0.5 eq) + Blank-2

-0.5 ‘

added "BuLi (0.5 eq) to 1a in Blank-2

-0.4

-0.3

(mA)

-0.2 1

-0.1

0.0

0.1 T T T T T

E(V vs SCE)

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode,

0.1 V/S, 1 (0.3 mmol), "BuLi (0.15 mmol), "BuyNPFg (0.3 mmol), MeCN (6 mL).
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5.1.11. Anodic oxidation: "BuyNOAc¢ + MeCN

1.6

"Bu,NOAC + MeCN

1.4
1.2
1.0

0.8

I (mA)

0.6
0.4

0.2

0.0

-0.2 T T T T T
0 1 2

E (V vs SCE)

w
N -

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode,
0.1 V/S, "BuyNOAc (0.3 mmol), MeCN (6 mL).
5.1.12. Anodic oxidation: "BuyNOH + H,0 + MeCN

2.5~
"Bu,NOH + H,0 + MeCN
2.0 1
1.5 1
<
(S
= 1.0
0.5
0.0
T T T T T T T
0 1 2 3 4
E (V vs SCE)

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode,

0.1 V/S, "BuyNOH (40% in H,O, 0.3 mmol), MeCN (6 mL).
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5.1.13. Anodic oxidation: H,O + Blank-2

3.0+
] [——H,0 + Blank-2

0 1 2 3
E (V vs SCE)

g

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode,
0.1 V/S, H,O (1 mL), "BuyNPF¢ (0.3 mmol), MeCN (6 mL).
5.1.14. Anodic oxidation: 4-MePhCH,0H (2b) + Blank-2

2.0 -
—4-MePhCH,OH + Blank-2
1.5 -
< 1.0
£
0.5
0.0
T T T T T T T
0 1 2 3 4
E (V vs SCE)

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode,

0.1 V/S, 2b (0.3 mmol), "BuyNPFg (0.3 mmol), MeCN (6 mL).
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5.1.15. Anodic oxidation: 4-MePhCH,OH (2b) + “BuLi (0.5 eq) + Blank-2

07

0.6 1
-0.5
0.4

-0.3 4

I(mA)

-0.2 +
-0.1 1

0.0

0.1

2
E(V vs SCE)

-
w -

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode, 0.1
V/S, 2b (0.3 mmol), "BuLi (0.15 mmol), "BuyNPF; (0.3 mmol), MeCN (6 mL).
5.1.16. Anodic oxidation: Me,S + Blank-2

5 -
— Me,S + Blank-2
4 4
3 4
<
£
24
14
0 4
T T T T T T T T
0 1 2 3 4
E (V vs SCE)

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode,

0.1 V/S, Me,S (0.6 mmol), "BuyNPF¢ (0.3 mmol), MeCN (6 mL).
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5.1.17. Anodic oxidation of 4-MeO,CPhCH,0OH (1a) and it’s Li* salt.

1.0

1a in Blank ("Bu,;NPF4 + MeCN)
added "BuLi (0.5 eq)

-0.8 1

-0.6 4

=-0.4 1

-0.2 4

0.0 4

0.2 T T T T T T T T T

E(V vs SCE)

5.1.18. Anodic oxidation of 4-MePhCH,OH (2b) and it’s Li" salt.

{ = 2b in Blank (nBu4NPF6 + MeCN)
added "BulLi (0.5 eq)

01 T T T T T

w
SN

0 1 2
E(V vs SCE)

25



5.1.19. Anodic oxidation of 4-MeOQ,CPhCH,0OH (1a) and reagents

3.0

25 Blank("Bu,NPFg + MeCN)
1a + Blank

204 "Buy,NOAc + MeCN

"Bu,;NOH + H,0O + MeCN
——H,0 + Blank

<154
E
1.0
0.5
0.0
0 v 2 3 4
E (V vs SCE)

5.1.20 Anodic oxidation of 4-MePhCH,OH (2b) and Me,S.

5 4
Blank ("Bu,NPFg + MeCN)
44 ——2b + Blank
| ——H,0 + Blank
3. Me,S + Blank
<
S
24
14
0
T T T T T
0 1 2 3 4
E (V vs SCE)
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5.1.21 Cathodic reduction of Dimethyl terephthalate (I) and H,O in LiPF¢ + MeCN.

-0.5
0.0
0.5 Blank (LiPF4 in MeCN)
—_ = | in blank
< ——H,0 in blank
£ 0l I + H,0 in blank
1.5
2.0 1
T T T T T
-4 -3 2 -1 0

E(V vs SCE)

CV condition: glassy carbon working electrode, Pt wire counter electrode, SCE reference electrode,
0.1 V/S, I (0.3 mmol), LiPF4 (0.3 mmol), H,O (1 ml), MeCN (6 mL).
5.2. Deuteration reaction with MeCN-d; as solvent.
(0] D D
o~ CF(+)ICF(-), 10 mA, cc OH
_0 "BuyNOAc, H,0, MeCN-d; O

o o}
71% (0% D)

To a 10 mL two-necked heart-shaped flask was charged with the dimethyl terephthalate (I, 0.3 mmol),
n-BuyNOAc (90.4 mg, 0.3 mmol, 1.0 equiv), H,O (1 ml), MeCN-d; (6 ml) and a magnetic stir bar. The
equipment was same as in General procedure A. The mixture was stirred under room temperature and
10 mA constant current electrolysis, and reacted until the substrate disappears. The reaction mixture was
concentrated under the reduced pressure. The residue was purified by flash chromatography (PE/EtOAc
= 4/1) to yield product with 0% deuteration in 71% yield (35.1 mg). 'H NMR (400 MHz, chloroform-d)
68.00 (d,J=7.9 Hz, 2H), 7.41 (d, J=7.9 Hz, 2H), 4.74 (s, 2H), 3.90 (s, 3H), 2.46 (s, 1H).
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Figure S7. H NMR of the product in the deuteration reaction with ACN-dj; as solvent

5.3. Confirmation of byproduct structures

0]

OH —0 OH
o~ CF(+) 1 CF(-), cc \H/©/\ Q
e) + O
O ~
- "Bu,NOAc, H,O, MeCN o O
0 HO o—

(e}
| 1a B

To a 100 mL glass beaker was charged with the dimethyl terephthalate (I, 1.94 g, 10 mmol), "BusNOAc
(1.21 g, 4 mmol, 0.4 equiv), H,O (1.8 ml, 100 mmol, 10 equiv), MeCN (80 ml) and a magnetic stir bar.
The bottle was equipped with a plastic cap, through which carbon felts (4 cm x 4 cm x 0.5 cm) as anode
and cathode were installed. Two electrodes were attached to a titanium wire and separated with a Teflon
film. A Teflon wire tied around two electrodes. The whole cell was an undivided cell. The mixture was
stirred under room temperature and 100 mA constant current electrolysis, and reacted for 16 h. The
reaction mixture was concentrated under the reduced pressure, and purified by flash chromatography
(PE/EtOAc = 1/1) to afford the desired byproduct B as a white solid with 13% yield (210 mg, two
isomers, ratio 5/8). Byproduct B has two steric isomers. Isomer B-1: 'H NMR (400 MHz, DMSO-dy) &
7.85 (d, J = 8.0 Hz, 4H), 7.37 (d, J = 8.0 Hz, 4H), 5.53 (s, 2H), 4.73 — 4.65 (m, 2H), 3.84 (s, 6H). 13C
NMR (101 MHz, DMSO-dg) 6 166.7, 148.9, 128.8, 128.6, 128.1, 76.9, 52.4. Isomer B-2: 'H NMR (400
MHz, DMSO-dy) 6 7.78 (d, J = 8.0 Hz, 4H), 7.25 (d, J= 8.1 Hz, 4H), 5.63 (s, 2H), 4.77 (d, /= 3.2 Hz,
2H), 3.82 (s, 6H). *CNMR (101 MHz, DMSO-d;) 6 166.7, 148.1, 128.6, 128.5, 127.8,77.1, 52.4. HRMS
m/z (ESI) called for C;sH;s0¢Na* (M + Na) * 353.1001, found 353.0997.
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5.4. Benzaldehyde as substrate in standard condition.

o CF(+) I CF(-), cc O\N/©/\OH . —0 Q OH o
-
-0 "BuyNOAc, H,0, MeCN 9 O
0 HO o—

(0]
A 1a B

A added in one batch, 2.5 h, 25% 1a, 42% B
A added via pump in 3 h, 31% 1a, 48% B

Method A: To a 10 mL two-necked heart-shaped flask was charged with methyl 4-formylbenzoate (A,
39.3 mg, 0.3 mmol), "BuyNOAc (90.4 mg, 0.3 mmol, 1.0 equiv), H,O (1 ml), MeCN (6 ml) and a
magnetic stir bar. The equipment was same as General procedure A. The mixture stirred under room
temperature and 10 mA constant current electrolysis, and reacted until the substrate disappears (2.5 h).
The reaction mixture was concentrated under the reduced pressure. '"H NMR analysis of the crude
reaction mixture showed 25% desired product 1a and 42% byproduct B.

Method B: To a 10 mL two-necked heart-shaped flask was charged with "BusNOAc (90.4 mg, 0.3
mmol), H,O (1 ml), MeCN (5 ml) and a magnetic stir bar. The equipment was same as in General
procedure A. The mixture was stirred under room temperature and 10 mA constant current electrolysis.
Methyl 4-formylbenzoate (A, 39.3 mg, 0.3 mmol) in MeCN (1 mL) was injected into the mixture by a
pump in 3 h. The reaction mixture was concentrated under the reduced pressure. 'H NMR spectroscopic

analysis of the crude reaction mixture showed 31% desired product 1a and 48% byproduct B.

OH
/@Ao GF(+) | GF(-), rAP, 8.0V Vyp, 2 Hz /@/\OH o O
.
Ph MesS, "BusNPFg, HoO, MeCN, 1t ph i O Ph

E 2j F

E added in one batch, 1 h, 38% 2j,40% F
E added via pump in 3 h, 93% 2j, 7% F

Method A: To a 10 mL two-necked heart-shaped flask was charged with [1,1'-biphenyl]-4-
carbaldehyde (E, 0.3 mmol), Me,S (55.8 mg, 0.9 mmol, 3.0 equiv), "BuyNPF¢ (116.2 mg, 0.3 mmol, 1.0
equiv), HO (1 mL), MeCN (6 ml) and a magnetic stir bar. The equipment was same as is General
procedure B. The mixture was stirred under room temperature and 9.0 V V,,, of rAP (detected by
oscilloscope, set 0.9 V on signal generator, peak to peak, 0.45 V from the offset, alternating frequency:
2 Hz, the current was around 60 mA) and reacted until the substrate disappears (1h). The reaction mixture
was concentrated under the reduced pressure. '"H NMR spectroscopic analysis of the crude reaction
mixture with mesitylene as an internal standard found 38% desired product 2j and 40% byproduct F.

Method B: To a 10 mL two-necked heart-shaped flask was charged with Me,S (55.8 mg, 0.9 mmol,
3.0 equiv), "BusNPF¢ (116.2 mg, 0.3 mmol, 1.0 equiv), H,O (1 mL), MeCN (5 ml) and a magnetic stir
bar. The equipment was same as in General procedure B. The mixture was stirred under room
temperature and 9.0 V V,, of rAP (detected by oscilloscope, set 0.9 V on signal generator, peak to peak,
0.45 V from the offset, alternating frequency: 2 Hz, the current was around 60 mA). The [1,1'-biphenyl]-
4-carbaldehyde (E, 0.3 mmol) in MeCN (2 mL) was injected into the mixture by a pump in 3 h. The
reaction mixture was concentrated under the reduced pressure. 'H NMR spectroscopic analysis of the
crude reaction mixture with mesitylene as an internal standard found 93% desired product 2j and 7%

byproduct F.
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5.5. Electron paramagnetic resonance (EPR) experiments.

e

0 (lj OH P
““OH N
o) o)
0~ CF(+)ICF(), 10 mA, cc DMPO
o and - o and
- "BuyNOAc, H,0, MeCN, rt, 2h. OH
0 OH 0
1 ) N
o o)
o)
_/o D ] e H

radical intermediate
To a 10 mL two-necked heart-shaped flask was charged with the dimethyl terephthalate (I, 0.3 mmol),
"BuyNOAc¢ (90.4 mg, 0.3 mmol, 1.0 equiv), H,O (1 ml), MeCN (6 ml). The equipment was same as in
General procedure A. The mixture was stirred under room temperature and 10 mA constant current
electrolysis and reacted for 2 hours. The 100 uL of the reaction mixture was sampled quickly and injected
to 17 mg 5, 5-dimethyl-1-pyrroline N-Oxide (DMPO) in a small tube and analyzed by EPR. (Control

experiment without dimethyl terephthalate (I)).

Exp. Exp.
W B
3450 3500 3550 3450 3500 3550
Field (Gauss) Field (Gauss)

Figure S8. EPR spectra.
Left: with dimethyl terephthalate (I); Right: without dimethyl terephthalate (I)
Component 1: g =2.003, Ay=15.03G, Ay =23.21G
Component 2: g = 2.003, Axy=15.20G, A= 19.16G
Component 3: g =2.003, Ay=15.32G, Ayg = 20.34G
Component 4: g =2.003, Ay=13.39G, A= 13.39G

Components 3 and 4 both exist in two spectrums, we proposed that these radical signals belong

to species J (Component 3) and K (Component 4) which formed from H* and OH®* trapped by
DMPO.

%;
I T
Z?;l
@)

Q I

o« O-
o
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Component 1 and 2, we proposed that these radical signals belong to species C and D, but can’t
assign exactly.

5.6. Free radical trapping experiments.

o W CF(+) | CF(-), 15 mA, cc
+
0 "BusNOAG, H,0(10 eq), MeCN, it~ ©

_0

0 1 20 equiv.

To a 10 mL two-necked heart-shaped flask was charged with the dimethyl terephthalate (I, 0.3 mmol),
"BuyNOAc (90.4 mg, 0.3 mmol, 1.0 equiv), H,O (54 mg, 3 mmol, 10 equiv), 4,4-dimethylpent-1-ene
(589 mg, 6 mmol, 20 equiv), MeCN (6 ml). The equipment was same as in General procedure A. The
mixture was stirred under room temperature and 15 mA constant current electrolysis and reacted for 5
hours. The reaction mixture was concentrated under the reduced pressure. The residue was purified by
flash chromatography (PE/EtOAc = 10/1) to afford methyl 4-(5,5-dimethylhexanoyl)benzoate as a
colorless oil in 4% yield (3.1 mg). '"H NMR (400 MHz, chloroform-d) & 7.96 (d, J = 8.4 Hz, 2H), 7.25
(d, J=8.4 Hz, 2H), 3.91 (s, 3H), 2.71 — 2.58 (m, 2H), 2.50 (t, /= 7.1 Hz, 2H), 1.97 — 1.84 (m, 2H), 1.12
(s, 9H). 3C NMR (151 MHz, chloroform-d) 6 215.7, 167.2, 147.4, 129.7, 128.5, 127.8, 52.1, 35.4, 35.1,
29.7,26.4, 24.9. HRMS m/z (ESI) called for C,4H»;05" (M + H)* 263.1647, found 263.1645.

5.7. Electrochemical reduction of phenyl 4-cyanobenzoate to detect reductive products.

0 /@ CF(+) | CF(-), 45V, C.V. /@/\OH /@
O +
/©)J\ "BuyNOAc, H,O, MeCN, rt, 17 h NC HO
NC

1e detected by GC

To a 10 mL two-necked heart-shaped flask was charged with phenyl 4-cyanobenzoate (66.9 mg, 0.3
mmol), "BuyNOAc (90.4 mg, 0.3 mmol, 1.0 equiv), H,O (1 ml), MeCN (6 ml) and a magnetic stir bar.
The equipment was same as in General procedure A. The mixture was stirred under room temperature
and 4.5 V constant voltage electrolysis and reacted until the substrates disappear (17 h). The reaction
mixture was concentrated under the reduced pressure. "H NMR spectroscopic analysis of the crude
reaction mixture with mesitylene as an internal standard found 54% desired product 1e. GC analysis of

the crude reaction mixture found that phenol is another product.

FID1 A, Front Signal (ZL\ZL 20230505 19-651-16\ZL-07-140-PhOH-2.0)

e

=) [
o ¥
it i
I
o@
15.901

Figure S9. Standard sample of phenol
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FID1 A, Front Signel (ZL\ZL 2023-05-05 19-51-16\ZL-07-140-0-2.0)
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Figure S10. Sample of reaction mixture with 104 as substrate

5.8. Oxygen detection.
(0}

OMe CF(+) | CF(-), cc, 13.3 mA/cm® OH
+ 0
MeO "Bu,NOAC, H,0, MeCN, it M€O 2

@) o (detected by
! 1a an O, detector)

The experimental facility was set up as following picture (Fig. S11). To a 15 mL Schlenk bottle was
charged with dimethyl terephthalate (116 mg, 0.6 mmol), "BusNOAc (90.4 mg, 0.3 mmol, 0.5 equiv),
H,0 (1.5 ml), MeCN (9 ml) and a magnetic stir bar. The bottle was equipped with a rubber stopper,
through which carbon felts (1.5 cm x 2 cm x 0.5 cm) as anode and cathode were installed. Two electrodes
were attached to a titanium wire and separated with a Teflon film. A Teflon wire tied around two
electrodes. The whole cell was an undivided cell. Ar flow was introduced to the anode carbon felt through
a long needle. The Schlenk bottle was connected with an O, detector (AS8901) by rubber hose. The
system was flushed by Ar flow for 30 mins (make sure the Ar flow is constant) until the oxygen detector
showed a steady value at about 2.5. The mixture was stirred under room temperature and 20 mA constant
current electrolysis and reacted for 4.5 h. During the reaction, the electricity turned on for 1 h then turned
off for 10 min, circularly. The oxygen content was detected every 10 minutes (electricity on) / 2 min
(electricity off). After the reaction was complete, the mixture was concentrated under the reduced
pressure. "H NMR spectroscopic analysis of the crude reaction mixture with mesitylene as an internal

standard found the NMR yield was 83%.

TR "l o

Figure S11. The experimental facility. Left: electricity off; Right: electricity on
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The oxygen content / time:

electricity Time (min) O, cont. (vol%) electricity Time (min) O, cont. (vol%)
10 2.5 168 2.4
off
off 20 2.5 170 23
30 2.5 180 9.9
40 10.0 190 9.6
50 11.4 200 10.1
on
60 11.3 210 11.1
on
70 11.2 220 10.8
80 10.9 230 11.5
90 10.3 232 6.8
92 2.7 234 3.6
94 2.5 off 236 3.7
off 96 2.5 238 3.6
98 2.4 240 3.6
100 23 250 9.3
110 10.6 260 10.7
120 10.2 270 11.5
on
130 11.0 280 11.5
on
140 11.0 290 12.6
150 11.5 300 12.5
160 12.4 302 7.7
162 43 304 5.7
off
off 164 2.8 306 4.8
166 2.5 308 5.1
[ lelectricity on
14 o [ electricity off
j : o
—~12

=4
o
]

oxygen conc. (vol%
[=2] oo
|

q H

}.

N
]

: I . : T T I . I x
50 100 150 200 250 300
Time (min)

=

Figure S12. Oxygen detection
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5.9. Observation of DMSO during the rAP reaction.
During entry 1 (Table 2), we observed the formation of DMSO.

34 o |[@ =
R
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Figure S13. The GCMS spectra of entry 1 (Table 2)

5.10. Experiments for kinetic study without / with tertiary butanol (‘BuOH).
0

o~ CF(+) I CF(-), 10 mA, cc OH

0 "Bu,NOAc, H,0, MeCN, rt 0

o} : with or without ‘BuOH o 1a

To two same 10 mL two-necked heart-shaped flask was charged with the dimethyl terephthalate (1,
0.3 mmol), "BusNOAc (90.4 mg, 0.3 mmol, 1.0 equiv), H,O (1 ml), MeCN (6 ml), adiponitrile (34.1 pL,
0.3 mmol, as an internal standard) and without or with 200 pL. ‘BuOH (7 equiv), respectively. The
equipment was same as in General procedure A. The mixture was stirred under room temperature and

10 mA constant current electrolysis. A 50 pL of reaction mixture was taken and analyzed by GC every

30 minutes.

120 - —=— | (without ‘BuOH)

—e— 1a (without ‘BUOH)
—— | (with 'BUOH)
—— 1a (with ‘BUOH)

100

80

60

Concentration (%)

40

20
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Figure S14. Experiments for kinetic study of I without / with tertiary butanol.
0]

o __ GF(*) I GF(). rAP, 9.0V Vpy, 2Hz /©/\OH
Me,S, "BusNPFg, H,0, MeCN, rt Ph

2j

Ph
1] with or without ‘BuOH

To two same 10 mL two-necked heart-shaped flask was charged with methyl 4-phenylbenzoate (II1,
0.3 mmol), Me,S (55.8 mg, 0.9 mmol, 3.0 equiv), "BuyNPF; (116.2 mg, 0.3 mmol, 1.0 equiv), H,O (1
ml), MeCN (6 ml), adiponitrile (34.1 puL, 0.3 mmol, as an internal standard) and without / with 200 puL
‘BuOH (7 equiv), respectively. The equipment was same as in General procedure B. The mixture was
stirred under room temperature and 9.0 V V,,, of rAP (detected by oscilloscope, set 0.9 V on signal

generator, peak to peak, 0.45 V from the offset, alternating frequency: 2 Hz). A 50 pL of reaction mixture

was taken and analyzed by GC every 10 minutes.

140

4

120
R 100 4 ’\/_fw/o\“
X
S 80+
% 60 —=— Il (without ‘BuOH)
3 —— 2j (without 'BuOH)
é 40 —— DMSO (without ‘BuOH)

—— Il (with 'BuOH)
2j (with ‘BuOH)
DMSO (without ‘BuOH)

T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200
Time (min)

Figure S15. Experiments for kinetic study of III without / with tertiary butanol
5.11. Experiments with Et;N.

O
OMe CF(+) 1 CF(-), cc, 10 mA OH
MeO "Bu,NOAG, H,0, MeCN, rt MeO
0] J 0] 1a
conv. yield
Et3N (6 eq) instead of H,O 5h 98% 11%
EtsN (6 eq) + Pivalic acid (6 eq) 8h 100% 70%

instead of H,O
To a 10 mL two-necked heart-shaped flask was charged with the dimethyl terephthalate (I, 0.3 mmol),
"BuyNOACc (90.4 mg, 0.3 mmol, 1.0 equiv), Et;N (181.8 mg, 1.8 mmol, 6.0 equiv), pivalic acid (183.8
mg, 1.8 mmol, 6.0 equiv) or not, MeCN (6 ml). The equipment was same as in General procedure A.
The mixture was stirred under room temperature and 10 mA constant current electrolysis until the
reaction were complete. The yield was measured by '"H NMR analysis of crude reaction mixture with
mesitylene as an internal standard.
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0]

GF(+) | GF(-), AP, 2Hz, 9.0V V,p OH
OMe
Mezs, nBU4NPF6, H20, MeCN, rt, 2h

] 2b
conv. yield
Et3N (6 eq) instead of Me,S 100% 3%
Et;N (6 eq) + Pivalic acid (6 eq) 100% 81%

instead of Me,S

To a 10 mL two-necked heart-shaped flask was charged with methyl 4-methylbenzoate (II, 0.3 mmol),
Et;N (181.8 mg, 1.8 mmol, 6.0 equiv), pivalic acid (183.8 mg, 1.8 mmol, 6.0 equiv) or not, "BusNPF,
(116.2 mg, 0.3 mmol, 1.0 equiv), H,O (1 ml), MeCN (6 ml) and a magnetic stir bar. The equipment was
same as in General procedure B. The mixture was stirred under room temperature and 9.0 V V},, of
rAP (detected by oscilloscope, set 0.9 V on signal generator, peak to peak, 0.45 V from the offset,
alternating frequency: 2 Hz, the current was around 60 mA), and reacted until substrates disappear (about
2 hours). The reaction mixture was concentrated under the reduced pressure. The yield was measured by
'TH NMR analysis of crude reaction mixture with mesitylene as an internal standard.
5.12. Stability experiment of 4-methylbenzyl alcohol (2b).

"AP 0% decomposed,
2Hz, 9.0V V,, 100% 2b remained.

Q/\OH GF(+) | GF(-), rt, 10 h
Me,S, "BusNPFg, H,0, MeCN
2b
DC

. 97% decomposed,
CV.45V 3% 2b remained, messy.

To a 10 mL two-necked heart-shaped flask was charged with 4-methylbenzyl alcohol (2b, 0.3 mmol),
Me,S (55.8 mg, 0.9 mmol, 3.0 equiv), "BusNPF¢ (116.2 mg, 0.3 mmol, 1.0 equiv), H,O (1 ml), MeCN
(6 ml) and a magnetic stir bar. The equipment was same as in General procedure B. For DC condition,
the mixture was stirred under room temperature and 4.5 V constant voltage electrolysis for 10 hours. For
rAP condition, the mixture was stirred under room temperature and 9.0 V V,, of rAP (detected by
oscilloscope, set 0.9 V on signal generator, peak to peak, 0.45 V from the offset, alternating frequency:
2 Hz) for 10 hours. The yield was measured by 'H NMR analysis of crude reaction mixture with
mesitylene as an internal standard.

5.13. Measured the conversion of methyl 4-methylbenzoate (II) in a short time.

o]
P GF(+) | GF(-), rt
o OH
Me,S, "BusNPFg, H,O, MeCN
]
2b
2Hz, 9.0V Vp,
rAP 25h 90% conversion,75% 2b .
DC C'\2/'5455 v 23% conversion,1% 2b .
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To a 10 mL two-necked heart-shaped flask was charged with methyl 4-methylbenzoate (II, 0.3 mmol),
Me,S (55.8 mg, 0.9 mmol, 3.0 equiv), "BusNPFs (116.2 mg, 0.3 mmol, 1.0 equiv), H,O (1 ml), MeCN
(6 ml) and a magnetic stir bar. The equipment was same as in General procedure B. For DC condition,
the mixture was stirred under room temperature and 4.5 V constant voltage electrolysis for 2.5 hours. For
rAP condition, the mixture was stirred under room temperature and 9.0 V V,, of rAP (detected by
oscilloscope, set 0.9 V on signal generator, peak to peak, 0.45 V from the offset, alternating frequency:
2 Hz) for 2.5 hours. The result was measured by '"H NMR analysis of crude reaction mixture with
mesitylene as an internal standard.

5.14. The H, gas evolution reaction.
During the reactions on section 5.13, we observed a lot of H, gas evolution from the cathode under

DC condition, while no H, gas evolution under rAP condition

Gas
evolution

evolution

rAP.mp4 DC.mp4

5.15. Other Li+ salt as electrolyte with dimethyl terephthalate (I).
(0]

OMe CF(+) I CF(-), cc, 10 mA OH

M
MeO "Bu,NOAGC, H,0, MeCN, rt, 5h €0

0] I O

A. LiClO, as electrolyte, 87% SM remained, 13% 1a. b
B. LiPF6(1 eq) + "BusNOAC as electrolyte, 29% SM remained, 35% 1a.

To a 10 mL two-necked heart-shaped flask was charged with the dimethyl terephthalate (I, 0.3 mmol),
electrolyte (0.3 mmol, 1.0 equiv), HO (1 ml), MeCN (6 ml). The equipment was same as in General
procedure A. The mixture was stirred under room temperature and 10 mA constant current electrolysis
for 5 h. The yield was measured by '"H NMR analysis of crude reaction mixture with mesitylene as an

internal standard.
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6. Unsuccessful substrates
The following substrates were unsuccessful under standard reaction conditions. Yields were

determined by HNMR analysis with mesitylene as an internal standard.

For DC:
O O
/©)‘\ /©)J\ /&O NJ\O/
\\ \\ NG NN
R= OPh or OMe or OEt or ND, major de-F 22% ND, major de-CN ND, messy
NHC3H7 or NHPh
ND, major de-SO,R
Q (0}
~
(0] o) o~
HO., {
7 0]
OH
ND, messy ND, messy
For rAP:
0 Ox O o) o l\\l o~
OO (6]
O ? <;\l o
28% ND, messy 23% 21% 17%
O
- 0 /
o s>/z< | N O
. Ol 0K
'Tj N 4 o—
ND, messy ND, messy ND, messy
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7. Analytic data of products
Methyl 4-(hydroxymethyl)benzoate (1a)!
oy General procedure A, reacted for 5 h (6.25 F/mol), white solid. 'H NMR yield
_0O 83%, isolated yield 78%. '"H NMR (400 MHz, chloroform-d) & 8.02 (d, J= 8.0
o Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 4.76 (s, 2H), 3.91 (s, 3H), 1.93 (s, 1H). 1°C
NMR (101 MHz, chloroform-d) 6 167.0, 146.0, 129.9, 129.4, 126.5, 64.7, 52.1.
Isobenzofuran-1(3H)-one (1b)?
o General procedure A, reacted for 13 h (16.25 F/mol), white solid. 'H NMR yield 87%,
isolated yield 75%. '"H NMR (400 MHz, chloroform-d) § 7.93 (d, J = 7.6 Hz, 1H), 7.69
(td, J=17.5, 1.0 Hz, 1H), 7.54 (t, J= 7.5 Hz, 1H), 7.50 (dt, J = 7.6, 1.0 Hz, 1H), 5.33 (s,
2H). 13C NMR (101 MHz, chloroform-d) 6 171.1, 146.5, 134.0, 129.0, 125.8, 122.1, 69.6.
4-(Hydroxymethyl)benzonitrile (1c/1d/1e)!
General procedure A, with methyl 4-cyanobenzoate, 3.5 V constant voltage,
/©/\OH reacted for 8.5 h (7 F/mol), white solid. '"H NMR yield 87%, isolated yield 72%.
NC "H NMR (400 MHz, chloroform-d) § 7.64 (d, J = 8.0 Hz, 2H), 7.47 (d, J= 8.0 Hz,
2H), 4.77 (s, 2H), 2.05 (s, 1H). 3C NMR (101 MHz, chloroform-d) 8 146.2, 132.3, 127.0, 118.8, 111.2,
64.2.
General procedure A, with butyl 4-cyanobenzoate, reacted for 5 h (6.25 F/mol). "H NMR yield 66%.
General procedure A, with phenyl 4-cyanobenzoatewith and 4.5 V constant voltage, reacted for 17 h
(17.75 F/mol). 'H NMR yield 54%.
5-(Hydroxymethyl)isobenzofuran-1(3H)-one (1f)?
General procedure A, with 3.5 V constant voltage, reacted for 7 h (5.63 F/mol),
Om/\OH white solid. '"H NMR 72%, isolated yield 65%. 'H NMR (400 MHz,
o chloroform-d) 8 7.88 (d, J = 7.9 Hz, 1H), 7.54 (s, 1H), 7.50 (d, J= 7.9 Hz, 1H),
5.30 (s, 2H), 4.86 (s, 2H). 3C NMR (101 MHz, chloroform-d) 4 170.9, 147.9, 147.2, 127.4, 125.8, 124.9,
119.8, 69.6, 64.5.
Diethyl (4-(hydroxymethyl)phenyl)phosphonate (1g)*
General procedure A, with ethyl 4-(diethoxyphosphoryl)benzoate and
0 /©/\OH TolzN (0.2 equiv), 15 mA constant current, reacted for 14 h (26.25 F/mol),

Eto/\\P\OEt colourless oil. 'H NMR yield 73%, isolated yield 65%. 'H NMR (400 MHz,

chloroform-d) 8 7.68 (dd, J = 13.2, 8.1 Hz, 2H), 7.41 (dd, J = 8.1, 4.0 Hz, 2H),

470 (s, 2H), 4.17 — 3.91 (m, 4H), 3.63 (s, 1H), 1.27 (t, J = 7.0 Hz, 6H). 3C NMR (101 MHz,

chloroform-d) 8 146.4 (d, J=3.2 Hz), 131.8 (d, J= 10.3 Hz), 126.6 (d, J = 189.8 Hz), 126.5 (d, J= 15.4

Hz), 64.2 (d, J= 1.3 Hz), 62.2 (d, J = 5.5 Hz), 16.3 (d, J = 6.5 Hz).3'P NMR (162 MHz, chloroform-d)

6 19.14.

Diphenyl (4-(hydroxymethyl)phenyl)phosphonate (1h)

on General procedure A, reacted for 7 h (8.75 F/mol), colourless oil. "H NMR

P/©/\ yield 88%, isolated yield 66%. 'H NMR (400 MHz, chloroform-d) & 7.88

PhO™ Yopn (ddd, J = 13.8, 8.0, 1.7 Hz, 2H), 7.45 (dd, J = 8.0, 4.5 Hz, 2H), 7.33 — 7.25

(m, 4H), 7.24 — 7.11 (m, 6H), 4.70 (s, 2H), 3.07 (s, 1H). 3C NMR (101 MHz, chloroform-d) 8 150.3 (d,
39
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J=7.7Hz), 147.1 (d,J = 3.4 Hz), 132.4 (d, J= 10.9 Hz), 129.8, 126.6 (d, J= 16.2 Hz), 125.2 (d, J= 1.3
Hz), 125.2 (d, J = 194.7 Hz), 120.6 (d, J = 4.5 Hz), 64.2. 3'P NMR (162 MHz, chloroform-d) 5 11.94.
HRMS m/z (ESI) called for C;sH,;04PNa* (M + Na) * 363.0762, found 363.0760.

(4-(hydroxymethyl)phenyl)diphenylphosphine oxide (1i)5
oH General procedure A, with Tol;N (0.2 equiv), reacted for 6 h (7.5 F/mol),
ph/P\/©/\ white solid. '"H NMR yield 30%, isolated yield 25%. 'H NMR (400 MHz,
Ph Chloroform-d) § 7.65 — 7.57 (m, 4H), 7.56 — 7.47 (m, 4H), 7.48 — 7.40 (m, 4H),
7.38 (dd, J=8.2, 2.7 Hz, 2H), 4.72 (s, 2H), 3.66 (s, 1H). 3C NMR (101 MHz, Chloroform-d) & 146.4 (d,
J=2.9 Hz), 132.3(d, J= 104.7 Hz), 132.1, 132.1 (d, J= 7.1 Hz), 132.0, 130.4 (d, J= 106.0 Hz), 128.5
(d, J=11.9 Hz), 126.6 (d, /= 12.5 Hz), 64.12.3'P NMR (162 MHz, Chloroform-d) & 29.88.
(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanol (1j)¢
General procedure A, with Tol;N (0.2 equiv), reacted for 16 h (20 F/mol),
/©/\OH yellow solid. '"H NMR yield 38%, isolated yield 35%. 'H NMR (400 MHz,
B
(0]

@)

A\

O
chloroform-d) & 7.83 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 4.73 (s,

>§f 2H), 2.07 (s, 1H), 1.37 (s, 12H). 3C NMR (101 MHz, chloroform-d) & 144.0,
135.1, 126.1, 83.8, 65.2, 24.9. "B NMR (128 MHz, chloroform-d) & 30.05.
4-(hydroxymethyl)benzoic acid (1k)’
General procedure A, reacted for 9 h (11.25 F/mol), white solid. IH NMR
HO\"/©/\OH yield 36%, isolated yield 32%. 1H NMR (400 MHz, DMSO-d6) 6 12.83 (s,
1H), 7.91 (d, J = 8.0 Hz, 2H), 7.44 (d, ] = 8.0 Hz, 2H), 5.35 (s, 1H), 4.58 (s,
© 2H). 13C NMR (101 MHz, DMSO-d6) ¢ 167.8, 148.3, 129.7, 129.6, 126.6,
62.90.
Methyl 6-(hydroxymethyl)-2-naphthoate (11)%
General procedure A, with Tol;N (0.2 equiv), reacted for 8 h (10 F/mol),
| OH white solid. "H NMR yield 68%, isolated yield 54%. 'H NMR (400 MHz,
© chloroform-d) 8 8.57 (s, 1H), 8.04 (dd, J=8.6, 1.7 Hz, 1H), 7.92 (d, /= 8.6
© Hz, 1H), 7.88 — 7.81 (m, 2H), 7.52 (dd, J = 8.4, 1.7 Hz, 1H), 4.88 (s, 2H),
3.98 (s, 3H), 2.08 (s, 1H). 3C NMR (101 MHz, chloroform-d)  167.3, 141.0, 135.5, 131.9, 130.9, 129.7,
128.1, 127.3, 125.8, 125.6, 125.0, 65.2, 52.3.
4-(hydroxymethyl)-3-methylbenzonitrile (1m)°
General procedure A, with 7.5 mA constant current, reacted for 11 h (10.3
/@i\OH F/mol), white solid. 'H NMR yield 70%, isolated yield 57%. 'H NMR (400 MHz,
NC chloroform-d) 8 7.57 — 7.48 (m, 2H), 7.42 (d, J= 1.6 Hz, 1H), 4.74 (s, 2H), 2.32
(s, 3H), 2.03 (s, 1H). 3C NMR (101 MHz, chloroform-d) § 144.2, 136.7, 133.3, 130.0, 127.1, 119.1,
110.9, 62.5, 18.4.
4-(hydroxymethyl)-2-methylbenzonitrile (1n)°
General procedure A, with 3.5 V constant voltage, reacted for 12 h (8 F/mol),
/@/\OH colourless oil. 'TH NMR yield 70%, isolated yield 54%. 'H NMR (400 MHz,
NC chloroform-d) & 7.57 (d, J = 8.0 Hz, 1H), 7.33 (s, 1H), 7.26 (d, J = 8.0 Hz, 1H),
4.73 (s, 2H), 2.54 (s, 3H), 2.16 (s, 1H). 3C NMR (101 MHz, chloroform-d) & 146.0, 142.2, 132.7, 128.2,
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1243, 118.2, 111.5, 64.3, 20.5.

4-(Hydroxymethyl)-2-methoxybenzonitrile (10)'°

General procedure A, reacted for 5 h (6.25 F/mol), white solid. "H NMR yield

NG 65%, isolated yield 60%. '"H NMR (400 MHz, chloroform-d) 6 7.47 (d, J=7.9 Hz,
0 1H), 7.02 (s, 1H), 6.94 (d, J= 7.9 Hz, 1H), 4.73 (s, 2H), 3.91 (s, 3H), 2.52 (s, 1H).

BC NMR (101 MHz, chloroform-d) 3 161.6, 148.7, 133.7, 118.5, 116.7, 109.1, 100.2, 64.2, 56.1.

OH

2-(But-3-en-1-yloxy)-4-(hydroxymethyl)benzonitrile (1p)
General procedure A, reacted for 5 h (6.25 F/mol), colourless oil. 'H NMR yield
Qﬁ OH (8%, isolated yield 56%. 'H NMR (400 MHz, chloroform-d) & 7.48 (d, J = 7.8 Hz,
1H), 7.01 (d, J = 1.3 Hz, 1H), 6.94 (dd, J = 7.8, 1.3 Hz, 1H), 5.91 (ddt, J = 17.1,
10.2, 6.8 Hz, 1H), 5.30 — 5.02 (m, 2H), 4.73 (s, 2H), 4.11 (t, J = 6.7 Hz, 2H), 2.66
~2.55 (m, 2H), 2.29 (s, 1H). '3C NMR (101 MHz, chloroform-d) 5 160.9, 148.4, 133.7, 133.6, 118.5,
117.8, 116.5, 110.0, 100.7, 68.3, 64.3, 33.3. HRMS m/z (ESI) called for C;;,H;3NO,Na* (M + Na) *
226.0844, found 226.0843.

NC
O ~FA

4-(Hydroxymethyl)-2-(prop-2-yn-1-yloxy)benzonitrile (1q)
oH General procedure A, reacted for 5 h (6.25 F/mol), white solid. Melting point:
79 — 81 °C. 'H NMR yield 53%, isolated yield 48%. 'H NMR (400 MHz,
O.__ = chloroform-d) & 7.53 (d, J= 7.9 Hz, 1H), 7.18 (s, 1H), 7.02 (d, J = 7.9 Hz, 1H),
4.83 (d, J=2.3 Hz, 2H), 4.76 (s, 2H), 2.57 (s, 1H), 2.19 (s, 1H). *C NMR (101 MHz, chloroform-d) &
159.4, 148.4, 133.9, 119.4, 116.3, 110.6, 101.1, 77.2, 76.9, 64.3, 56.5. HRMS m/z (ESI) called for
C11HgNO,;Na* (M + Na)* 210.0531, found 210.0528.

NC

2-((5-Cyanopentyl)oxy)-4-(hydroxymethyl)benzonitrile (1r)
General procedure A, reacted for 5 h (6.25 F/mol), colourless oil. 'H
OH NMR vyield 50%, isolated yield 45%. '"H NMR (400 MHz, chloroform-d) &
NC 7.48 (d, J=7.8 Hz, 1H), 7.00 (s, 1H), 6.94 (d, J="7.8 Hz, 1H), 4.71 (s, 2H),
OO 4.09 (t, J=6.1 Hz, 2H), 2.39 (t, /= 6.9 Hz, 2H), 1.93 — 1.83 (m, 2H), 1.81
—1.72 (m, 2H), 1.73 — 1.61 (m, 2H). 3C NMR (101 MHz, chloroform-d) 4 160.9, 148.6, 133.7, 119.7,
118.6,116.6,110.0, 100.5, 68.6, 64.2, 28.1, 25.3,25.0, 17.1. HRMS m/z (ES]I) called for C,4H;(N,O,Na*
(M + Na)* 227.1109, found 227.1108.
2-(2-Fluoroethoxy)-4-(hydroxymethyl)benzonitrile (1s)
General procedure A, reacted for 5 h (6.25 F/mol), white solid. Melting point:
Q/\OH 87 — 89 °C. '"H NMR yicld 67%, isolated yield 60%. 'H NMR (400 MHz,
NC 5 chloroform-d) & 7.54 (d, J= 7.9 Hz, 1H), 7.06 (s, 1H), 7.00 (d, J= 7.9 Hz, 1H),
~F 4.95-4.85 (m, 1H), 4.78 —4.74 (m, 1H), 4.76 (s, 2H), 4.45 —4.37 (m, 1H), 4.37 -
4.29 (m, 1H), 2.03 (s, IH).*CNMR (101 MHz, chloroform-d) 6 160.4, 148.4,133.9,119.1,116.2, 110.3,
101.1, 81.5 (d, J=172.0 Hz), 68.2 (d, J=21.2 Hz), 64.3. °’F NMR (376 MHz, chloroform-d) & —223.5.
HRMS nmy/z (ESI) called for C;oH;,FNO,Na" (M + Na)* 218.0593, found 218.0590.
Methyl 4-(2-(2-cyano-5-(hydroxymethyl)phenoxy)ethyl)benzoate (1t)

OH General procedure A, reacted for 5 h (6.25 F/mol), white solid.
NC Melting point: 117 — 119 °C. 'H NMR yield 44%, isolated yield 39%. 'H
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NMR (600 MHz, chloroform-d) 6 7.97 (d, J= 7.9 Hz, 2H), 7.46 (d, J= 7.9 Hz, 1H), 7.39 (d, /= 7.9 Hz,
2H), 6.98(s, 1H), 6.92 (d, J= 7.9 Hz, 1H), 4.71(s, 2H), 4.26 (t, J = 6.5 Hz, 2H), 3.89(s, 3H), 3.18 (1, J =
6.5 Hz, 2H), 2.49(s, 1H). 3C NMR (151 MHz, chloroform-d) 8 167.1, 160.7, 148.6, 143.2, 133.7, 129.9,
129.4, 128.6, 118.7 116.5, 109.8, 100.5, 69.1, 64.2, 52.1, 35.6. HRMS m/z (ESI) called for
CisH17NO4Na* (M + Na)* 334.1055, found 334.1052.

Pyridin-2-ylmethanol (1u)!

N OH General procedure A, with 3.3 V constant voltage, reacted for 14 h (6.5 F/mol),
@\l/\ colourless oil. 'H NMR yield 47%, isolated yield 40%. '"H NMR (400 MHz, chloroform-
d)88.51 (d,J=5.0 Hz, 1H), 7.67 (td, J="7.8, 1.7 Hz, 1H), 7.28 (d, J= 7.8 Hz, 1H), 7.22 — 7.13 (m, 1H),
4.74 (s, 2H), 4.61 (s, 1H). 3C NMR (101 MHz, chloroform-d) 6 159.4, 148.4, 136.9, 122.4, 120.8, 64.3.
Pyridin-4-ylmethanol (1v)!

General procedure A, with 7.5 mA constant current, reacted for 16 h (15 F/mol),
white solid. '"H NMR vyield 65%, isolated yield 51%. 'H NMR (400 MHz,
chloroform-d) & 8.44 (d, J = 5.1 Hz, 2H), 7.30 (d, J = 5.1 Hz, 2H), 4.80 (s, 1H), 4.73
(s, 2H). BC NMR (101 MHz, chloroform-d) 8 151.4, 149.1, 121.3, 62.9.

Phenylmethanol (2a)!

|y OH
N~

General procedure B, reacted for 3.5 h, colourless oil. "H NMR yield 65%, isolated
©/\OH yield 63%. '"H NMR (400 MHz, chloroform-d) 6 7.44 —7.19 (m, 5H), 4.69 (s, 2H), 1.88
(s, IH). BC NMR (101 MHz, chloroform-d) 3 140.9, 128.6, 127.7, 127.0, 65.4.
p-Tolylmethanol (2b/2¢/2d)!
oH General procedure B, with methyl 4-methylbenzoat, reacted for 10 h, white solid.
/©/\ "H NMR yield 90%, isolated yield 86%. 'H NMR (400 MHz, chloroform-d) § 7.26
(d, J=8.0 Hz, 2H), 7.18 (d, /= 8.0 Hz, 2H), 4.65 (s, 2H), 2.36 (s, 3H), 1.64 (s, 1H).
3C NMR (101 MHz, chloroform-d) & 137.9, 137.4, 129.3, 127.1, 65.3, 21.2.
General procedure B, with butyl 4-methylbenzoate, reacted for 3 h. '"H NMR yield 74%.
General procedure B, with phenyl 4-methylbenzoate, reacted for 22 h. 'H NMR yield 66%.
m-Tolylmethanol (2¢)!"
General procedure B, reacted for 3.5 h, colourless oil. '"H NMR yield 79%,
OH isolated yield 65%. 'H NMR (400 MHz, chloroform-d) & 7.23 (d, J = 7.4 Hz, 1H),
7.19 — 7.05 (m, 3H), 4.63 (s, 2H), 2.35 (s, 3H), 1.86 (s, 1H). 3C NMR (101 MHz,
chloroform-d) 6 140.8, 138.3, 128.5, 128.4, 127.8, 124.1, 65.4, 21 .4.
o-Tolylmethanol (2f)!
General procedure B, reacted for 3.5 h, colourless oil. "H NMR yield 78%, isolated
yield 68%. '"H NMR (400 MHz, chloroform-d) 4 7.37 — 7.34 (m, 1H), 7.25 — 7.16 (m,
3H), 4.70 (s, 2H), 2.36 (s, 3H), 1.64 (s, 1H). 3C NMR (101 MHz, chloroform-d) &
138.7,136.1, 130.4, 127.8, 127.6, 126.1, 63.6, 18.7.
(3,5-Dimethylphenyl)methanol (2g)'?

.

OH

General procedure B, reacted for 3.5 h, colourless oil. 'H NMR yield 84%, isolated
yield 82%. 'H NMR (400 MHz, chloroform-d) & 6.99 (s, 2H), 6.95 (s, 1H), 4.62 (s,

2H), 2.33 (s, 6H), 1.78 (s, 1H). *C NMR (101 MHz, chloroform-d) & 140.8, 138.2,
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129.3, 124.9, 65.4,21.3.
Mesitylmethanol (2h)'3
General procedure B, with trimethyl borate (0.2 equiv), reacted for 17 h, white
/@i\ OH  solid. 'TH NMR yield 68%, isolated yield 61%. 'H NMR (400 MHz, chloroform-d) &
6.88 (s, 2H), 4.71 (s, 2H), 2.40 (s, 6H), 2.28 (s, 3H), 1.29 (s, 1H). *C NMR (101
MHz, chloroform-d) & 137.7, 137.3, 133.7, 129.2, 59.2, 21.0, 19.4.
(4-(tert-Butyl)phenyl)methanol (2i)'3
General procedure B, reacted for 9 h, colourless oil. 'H NMR yield 76%,
/©/\OH isolated yield 73%. 'H NMR (400 MHz, chloroform-d) & 7.41 (d, J = 8.4 Hz,
‘Bu 2H), 7.31 (d, J= 8.4 Hz, 2H), 4.66 (s, 2H), 1.80 (s, 1H), 1.34 (s, 9H). 3C NMR
(101 MHz, chloroform-d) 6 150.7, 138.0, 126.9, 125.5, 65.2, 34.6, 31.3.
[1, 1'-Biphenyl]-4-ylmethanol (2j)!
General procedure B, reacted for 9 h, white solid. "H NMR yield 91%, isolated
/©/\OH yield 90%. '"H NMR (400 MHz, chloroform-d) 8 7.61 (d, J= 8.0 Hz, 4H), 7.46 (t,J
Ph =7.9 Hz, 4H), 7.41 — 7.28 (m, 1H), 4.74 (s, 2H), 1.92 (s, 1H). *C NMR (101 MHz,
chloroform-d) & 140.8, 140.7, 139.9, 128.8, 127.5, 127.4, 127.1, 65.1.
(4-(Trimethylsilyl)phenyl)methanol (2k)'4
OH General procedure B, reacted for 3 h, colourless oil. 'H NMR yield 81%,
\Si/©/\ isolated yield 74%. '"H NMR (400 MHz, chloroform-d) 6 7.54 (d, /= 8.0 Hz, 2H),
a 7.36 (d, J = 8.0 Hz, 2H), 4.68 (s, 2H), 2.01 (s, 1H), 0.28 (s, 9H). 13C NMR (101
MHz, chloroform-d) & 142.5, 141.0, 134.7, 127.5, 66.4, 0.0.
(4-Methoxyphenyl)methanol (21)!
OH General procedure B, reacted for 10 h, colourless oil. 'H NMR yield 65%,
~o /©/\ isolated yield 64%. 'H NMR (400 MHz, chloroform-d) 8 7.29 (d, J= 8.6 Hz, 2H),
6.89 (d, J = 8.6 Hz, 2H), 4.61 (s, 2H), 3.81 (s, 3H), 1.74 (s, 1H). 3C NMR (101
MHz, chloroform-d) 8 159.2, 133.1, 128.7, 114.0, 65.1, 55.3.
(3,5-dimethoxyphenyl)methanol (2m)'s
MeO OH General procedure B, reacted for 3.5 h, white solid. '"H NMR yield 32%,
\©/\ isolated yield 29%.'"H NMR (400 MHz, Chloroform-d) 6 6.52 (d, /= 2.3 Hz, 2H),
OMe 6.39 (d, J=2.3 Hz, 1H), 4.63 (s, 2H), 3.79 (s, 6H), 1.89 — 1.80 (s, 1H). 3C NMR
(101 MHz, chloroform-d) 8 161.0, 143.4, 104.6, 99.7, 65.4, 55.4.
(4-Phenoxyphenyl)methanol (2n)'¢
OH General procedure B, reacted for 10 h, white solid. 'H NMR yield 91%,
PhO /©/\ isolated yield 84%. '"H NMR (400 MHz, chloroform-d) & 7.38 — 7.30 (m, 4H),
7.14 = 7.09 (m, 1H), 7.04 — 6.98 (m, 4H), 4.65 (s, 2H), 2.06 (s, 1H). 3C NMR
(101 MHz, chloroform-d) 8 157.2, 156.8, 135.8, 129.8, 128.7, 123.3, 119.0, 118.9, 64.9.
(4-(Benzyloxy)phenyl)methanol (20)'¢

yield 59%. '"H NMR (600 MHz, chloroform-d) 8 7.44 (d, J= 7.5 Hz, 2H), 7.40 (t,
J=17.5Hz,2H), 7.34 (t, /J=7.5 Hz, 1H), 7.29 (d, /= 8.2 Hz, 2H), 6.98 (d, /= 8.2
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/©/\OH General procedure B, reacted forl7 h, white solid. "H NMR yield 66%, isolated
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Hz, 2H), 5.08 (s, 2H), 4.61(s, 2H), 1.78(s, 1H). 3C NMR (151 MHz, chloroform-d) § 158.4, 137.0, 133.4,
128.7, 128.6, 128.0, 127.5, 115.0, 70.1, 65.0.
4-(Hydroxymethyl)phenyl butyrate (2p)’
o OH General procedure B, reacted for 3 h, colourless oil. "H NMR yield 72%,
o /©/\ isolated yield 69%. '"H NMR (600 MHz, chloroform-d) § 7.34 (d, J= 8.2 Hz,
2H), 7.05 (d, J = 8.2 Hz, 2H), 4.63(s, 2H), 2.53 (1, J = 7.4 Hz, 2H), 2.14(s,
1H), 1.78 (q, J = 7.4 Hz, 2H), 1.04 (t, J = 7.4 Hz, 3H). 3C NMR (151 MHz, chloroform-d) & 172.4,
150.1, 138.5, 128.1, 121.7, 64.7, 36.2, 18.5, 13.7.
(4-(Methylthio)phenyl)methanol (2q)!
OH General procedure B, reacted for 3 h, colourless oil. '"H NMR yield 62%,
\S/©/\ isolated yield 54%. "H NMR (600 MHz, chloroform-d) & 7.26 (q,J= 8.0 Hz, 4H),
4.63(s, 2H), 2.48(s, 3H), 1.86(s, 1H). 3C NMR (151 MHz, chloroform-d) &
137.8, 137.8, 127.7, 126.8, 64.9, 16.0.
N-(4-(Hydroxymethyl)phenyl)acetamide (2r)'8
OH General procedure B, reacted for 10 h, white solid. '"H NMR yield 56%,
ACHN /©/\ isolated yield 51%. '"H NMR (600 MHz, methanol-d,) 6 7.53 (d, J = 8.2 Hz,
2H), 7.31 (d, J = 8.2 Hz, 2H), 4.57(s, 2H), 2.13(s, 3H). 3C NMR (151 MHz,
methanol-d,) 6 170.2, 137.7, 137.1, 127.2, 119.7, 63.5, 22.4.
(4-(1H-Imidazol-1-yl)phenyl)methanol (2s)"°

isolated yield 38%. 'H NMR (400 MHz, chloroform-d) & 7.76 (t, J = 1.2 Hz,
—/ 1H), 7.49 (d, J= 8.4 Hz, 2H), 7.35 (d, /= 8.4 Hz, 2H), 7.26 (s, 1H), 7.17 (t,J =
1.2 Hz, 1H), 4.76 (s, 2H), 3.12 (s, 1H). 13C NMR (101 MHz, chloroform-d) & 140.2, 136.4, 135.6, 130.2,
128.4,121.5,118.3, 64.2.
Thiophen-2-ylmethanol (2t)!

/@/\ oH General procedure B, reacted for 10 h, white solid. '"H NMR yield 44%,
ZaN

S General procedure B, with trimethyl borate (0.2 equiv) and 8.0 V ¥}, of rAP,
@/\OH reacted for 5 h, yellow oil. TH NMR yield 42%, isolated yield 36%. 'H NMR (400
MHz, chloroform-d) 8 7.45 — 7.20 (m, 1H), 7.05 — 6.95 (m, 2H), 4.83 (s, 2H), 1.95 (s,
1H). 3C NMR (101 MHz, chloroform-d) § 144.0, 126.9, 125.6, 125.5, 60.0.
Benzo[b]thiophen-2-ylmethanol (2u)"®

yield 39%. 'H NMR (400 MHz, chloroform-d) & 7.82 (d, J= 7.2 Hz, 1H), 7.73 (dd,
J=17.2,19 Hz, 1H), 7.33 (pd, J = 7.2, 1.4 Hz, 2H), 7.21 (s, 1H), 4.92 (s, 2H), 2.10 (s, 1H). 3*C NMR
(101 MHz, chloroform-d) 5 144.8, 134.0, 139.6, 124.4, 124.3, 123.6, 122.5, 121.5, 60.9.

s General procedure B, reacted for 3 h, white solid. '"H NMR yield 40%, isolated
[ ]: /> \

Furan-2-ylmethanol (2v)!

o General procedure B, reacted for 3 h, colourless oil. 'H NMR yield 28%, isolated

@/\OH yield 25%. '"H NMR (400 MHz, chloroform-d) 6 7.40 (dd, J = 1.8, 0.8 Hz, 1H), 6.34
(dd, J=3.2, 1.8 Hz, 1H), 6.29 (dd, J= 3.2, 0.8 Hz, 1H), 4.59 (s, 2H), 2.12 (s, 1H). 13C

NMR (101 MHz, chloroform-d) 8 154.0, 142.6, 110.4, 107.8, 57.3.
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Benzofuran-2-ylmethanol (2w)2°
General procedure B, reacted for 3 h, colourless oil. "H NMR yield 40%, isolated
@E(}_\ yield 34%. '"H NMR (400 MHz, chloroform-d) & 7.54 (d, J = 8.0 Hz, 1H), 7.46 (d,
OH  J=8.0 Hz, 1H), 7.30 — 7.16 (m, 2H), 6.64 (s, 1H), 4.76 (s, 2H), 2.14 (s, 1H). 13C
NMR (101 MHz, chloroform-d) 6 156.4, 155.1, 128.2, 124.4,122.9, 121.2, 111.3, 104.2, 58.2.
(1-Methyl-1H-imidazol-2-yl)methanol (2x)*!
| General procedure B, reacted for 3.5 h, white solid. '"H NMR yield 70%, isolated yield
@»/\OH 60%. "H NMR (400 MHz, chloroform-d) 4 6.81 (d, /= 1.3 Hz, 1H), 6.77 (d,J= 1.3 Hz,
N 1H), 6.44 (s, 1H), 4.59 (s, 2H), 3.70 (s, 3H). *C NMR (101 MHz, chloroform-d) & 148.2,
126.4,121.4,55.4, 32.8.
2-(hydroxymethyl)phenyl acetate (2y)*?
OAc General procedure B, with alternating frequency: 10 Hz, reacted for 10 h, yellow oil.
OH 'H NMR yield 45%, isolated yield 41%. 'H NMR (400 MHz, chloroform-d) & 7.79 (s,
1H), 7.26 (d, J = 7.6 Hz, 2H), 7.01 — 6.84 (m, 2H), 5.12 (s, 2H), 2.10 (s, 3H). 3C NMR
(101 MHz, chloroform-d) 6 173.7, 155.5, 132.2, 131.2, 121.7, 120.6, 117.8, 63.3, 21.0.
3-(Hydroxymethyl)benzonitrile (2aa)'3
NC General procedure B, reacted for 17 h, colourless oil. 'H NMR yield 55%,
\©/\OH isolated yield 54%. "H NMR (400 MHz, chloroform-d) 6 7.66 (d, J= 1.7 Hz, 1H),
7.63 —7.54 (m, 2H), 7.46 (t,J= 7.7 Hz, 1H), 4.73 (s, 2H), 2.23 (s, 1H). 3.C NMR
(101 MHz, chloroform-d) & 142.3, 131.2, 131.1, 130.2, 129.3, 118.8, 112.5, 64.0.
Methyl 3-(hydroxymethyl)benzoate (2ab)?3
o General procedure B, reacted for 10 h, white solid. 'H NMR yield 54%,
\O)K©/\OH isolated yield 51%. "H NMR (400 MHz, chloroform-d) & 8.03 (s, 1H), 7.96 (d,
J=8.0 Hz, 1H), 7.57 (d,J= 8.0 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 4.75 (s, 2H),
3.91 (s, 3H), 1.98 (s, 1H). '*C NMR (101 MHz, chloroform-d) 6 167.0, 141.2,
131.4, 130.4, 128.8, 128.7, 128.0, 64.8, 52.2.
(4-Fluorophenyl)methanol (2ac)!
General procedure B, reacted for 9 h, colourless oil. "H NMR yield 67%, isolated
/©/\OH yield 52%. '"H NMR (400 MHz, chloroform-d) & 7.27 (dd, J= 8.7, 5.6 Hz, 2H), 7.01
F (t, J= 8.7 Hz, 2H), 4.57 (s, 2H), 2.58 (s, 1H). 13C NMR (101 MHz, chloroform-d)
8 162.3 (d, J=245.2 Hz), 136.6 (d, J= 3.1 Hz), 128.8 (d, J=8.1 Hz), 115.3 (d, /= 21.5 Hz), 64.4. °F
NMR (376 MHz, chloroform-d) 6 —114.9.
(3-Chlorophenyl)methanol (2ad)**
o General procedure B and 8.0 V V), of rAP, reacted for 9 h, colourless oil. 'H
\©/\OH NMR yield 82%, isolated yield 70%. '"H NMR (400 MHz, chloroform-d) & 7.33
(s, 1H), 7.28 — 7.22 (m, 2H), 7.22 — 7.15 (m, 1H), 4.63 (s, 2H), 2.14 (s, 1H). 13C
NMR (101 MHz, chloroform-d) & 142.8, 134.4, 129.8, 127.7, 127.0, 124.9, 64.5.
(4-Chlorophenyl)methanol (2ae)’
General procedure B, reacted for 6 h, white solid. 'H NMR vyield 66%, isolated

/©/\°H yield 60%. 'H NMR (400 MHz, chloroform-d) & 7.26 — 7.17 (m, 4H), 4.58 (s, 2H),
Cl
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1.74 (s, 1H). 3C NMR (101 MHz, chloroform-d) & 139.3, 133.4, 128.7, 128.3, 64.6.
(4-Bromophenyl)methanol (2af)!
General procedure B, and 8.0 V 7, of rAP, reacted for 7 h, white solid. '"H NMR
yield 34%, isolated yield 34%. '"H NMR (400 MHz, chloroform-d) 8 7.47 (d, J =
8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 4.63 (s, 2H), 1.98 (s, 1H). *C NMR (101
MHz, chloroform-d) 6 139.8, 131.6, 128.6, 121.5, 64.6.

Benzo[d][1,3]dioxol-5-ylmethanoll (2ag)?*

O oH General procedure B, reacted for 7 h, white solid. 'H NMR yield 30%, isolated
<O:©/\ yield 29%. '"H NMR (400 MHz, chloroform-d) & 6.87 (s, 1H), 6.84 — 6.75 (m, 2H),
5.95 (s, 2H), 4.57 (d, J = 5.8 Hz, 2H), 1.72 (t, J = 5.8 Hz, 1H). *C NMR (101 MHz, chloroform-d) &
147.8, 147.1, 134.9, 120.5, 108.3, 107.9, 101.0, 65.3.

Methyl 4-(hydroxymethyl-d;)benzoate (3a)

Br

General procedure C, reacted for 4 h (5 F/mol), white solid. Melting point:
oH 51 — 53 °C. Isolated yield 60% (95% D). 'H NMR (400 MHz, chloroform-d) &
0 7.99 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 3.90 (s, 3H), 2.43 (s, 1H). 13C
o) NMR (151 MHz, chloroform-d) § 167.1, 146.0, 129.8, 129.2, 126.5, 64.6 — 63.4
(m), 52.2. HRMS m/z (ESI) called for CoHgD,0O3Na" (M + Na)* 191.0653, found 191.0650.

4-(Hydroxymethyl-d;)benzonitrile (3b)?

D D

D D General procedure C, with 3.5 V constant voltage, reacted for 5 h (5.75 F/mol),
/(j)< OH colourless oil. Isolated yield 58% (96% D). 'H NMR (600 MHz, chloroform-d) &
NG 7.64 (d, J= 7.9 Hz, 2H), 7.48 (d, J = 7.9 Hz, 2H), 2.30 (s, 1H). 3C NMR (151
MHz, chloroform-d) 6 146.2, 132.3, 127.1 (d, J=2.7 Hz), 118.9, 111.1, 64.8 — 62.4 (m).
3-Fluoro-4-(hydroxymethyl- d;)benzonitrile (3¢)*
b b General procedure C, reacted for 4 h (5 F/mol), colourless oil. Isolated yield 70%
/©f< OH " (97% D). 'H NMR (400 MHz, chloroform-d) § 7.64 (t, J = 7.5 Hz, 1H), 7.48 (d, J
NC F = 7.9 Hz, 1H), 7.33 (d, J = 9.4 Hz, 1H), 2.44 (s, 1H). 3C NMR (151 MHz,
chloroform-d) 6 159.5 (d, J =249.8 Hz), 133.9 (d, J= 14.6 Hz), 129.6 (d, /= 5.3 Hz), 128.5 (d, /= 3.9
Hz), 118.8 (d, J = 24.5 Hz), 117.7, 112.4 (d, J = 9.5 Hz), 58.5 — 57.1 (m). "°F NMR (376 MHz,
chloroform-d) 6 —116.4.
(2-Fluorophenyl)methan-d,-ol (3d)*
General procedure D, with 8.0 V ¥}, of rAP, reacted for 3 h, colourless oil. Isolated
yield 70% (97% D). '"H NMR (400 MHz, chloroform-d) 6 7.42 (td, J=17.5, 1.8 Hz, 1H),
O 34 73 (m, 1H), 7.15 (td, J= 7.5, 1.2 Hz, 1H), 7.05 (ddd, J= 10.2, 8.2, 1.2 Hz, 1H),
1.85 (s, 1H). 3C NMR (151 MHz, chloroform-d) & 160.7 (d, J = 246.2 Hz), 129.4 (d, J
=15.9 Hz), 129.4 (d, J=1.5 Hz), 127.7 (d, J = 14.7 Hz), 124.3 (d, J= 3.8 Hz), 115.3 (d, J=21.2 Hz),
59.9 — 57.7 (m). 'F NMR (376 MHz, chloroform-d) 8 —119.9.
(4-Bromophenyl)methan- d,-ol (3¢)?’
D D General procedure D, reacted for 4.5 h, white solid. Isolated yield 28% (97% D).
OH 'HNMR (600 MHz, chloroform-d) & 7.48 (d, J= 8.0 Hz, 2H), 7.24 (d, /= 8.0 Hz,
Br 2H), 1.75 (s, 1H). *C NMR (151 MHz, chloroform-d) § 139.7, 131.7, 128.7, 121.5,
46

D D


javascript:;

65.0 — 62.8 (m).
Phenylmethan-d,-ol (3f)?8
D D General procedure D, with 8.0 V 7, of AP, reacted for 3.5 h, colourless oil. Isolated
©)<OH yield 51% (95% D). 'H NMR (600 MHz, chloroform-d) & 7.52 — 7.03 (m, 5H), 2.63(s,
1H). BC NMR (151 MHz, chloroform-d) & 140.8, 128.6, 127.6, 127.1, 65.1 — 63.9 (m).
p-Tolylmethan-d,-ol (3g)*®
D D General procedure D, reacted for 10 h, white solid. Isolated yield 65% (95% D). 'H
/©)<OH NMR (400 MHz, chloroform-d) & 7.26 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H),
2.36 (s, 3H), 1.62 (s, 1H). 3C NMR (151 MHz, chloroform-d) & 137.8, 137.5, 129.3,
127.2,65.0 — 64.5 (m), 21.2.
(4-Methoxyphenyl)methan- d;-ol (3h)28
D D General procedure D, reacted for 4 h, colourless oil. Isolated yield 88% (92%
/©)<OH D). '"H NMR (400 MHz, chloroform-d) & 7.27 (d, J = 8.6 Hz, 2H), 6.88 (d, J =
MeO 8.6 Hz, 2H), 3.80 (s, 3H), 1.91 (s, 1H). 13C NMR (151 MHz, chloroform-d) &
159.2, 133.1, 128.7, 114.0, 66.4 — 63.4 (m), 55.3.
N-(4-(2-chloroethoxy)-3-(hydroxymethyl-d,)phenyl)acetamide (3i)
DD General procedure D, with LiClO, as electrolyte, reacted for 8 h, yellow
ACHN\©f<OH oil. Isolated yield 35% (96% D). '"H NMR (600 MHz, methanol-d,) & 7.52
o™ (d,7=2.7Hz, 1H), 7.45 (dd,J= 8.5, 2.7 Hz, 1H), 6.89 (d, /= 8.5 Hz, 1H),
4.24 (t,J=5.4 Hz, 2H), 3.86 (t,J= 5.4 Hz, 2H), 2.10 (s, 3H). 13C NMR (151 MHz, methanol-d,) 8 170.1,
152.2,132.0, 130.3, 120.4, 120.2, 111.6, 68.65, 58.0 — 58.2 (m), 42.1, 22.2.
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9. NMR spectra for new substrates and intermediates

Methyl 3-(but-3-en-1-yloxy)-4-cyanobenzoate
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Methyl 4-cyano-3-((5-cyanopentyl)oxy)benzoate
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Methyl 4-cyano-3-(2-fluoroethoxy)benzoate
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Methyl 4-cyano-3-(4-(methoxycarbonyl)phenethoxy)benzoate

. 602G
i 0825 ;
L8
<
zzen e
vz ; 802 o609 — o
9z'e °
& v2'9L
L6E~ #£80°€ Yoss 2
1811 re
e6'c” “erere
£e'y
123 QW =T o )
9e'y 4Hw = m
N
oz =z
- ST 90T =
I it
cestt
° [4:8243 =
©
£8'8ZL ;-
- L8621 A 2
< Vo6 6ll
Zr'L 6.€8L
VL ° BE'SEL s
L = S ZylL — =
wm.h/
162 #2002 | w 2
092~ n“ 20'L [T < k
29'L 02 \\A
v9'L ° 0L — 2
. o ——+00'z [ SZ'09L =
v9'L O 0072 S#'Gal / ®
99'L a 967991 — N O -
992 o © o) —/ Q 2
008 o N “ o O
€0'8 N
= - T s
g : = : :
< S
=

NC

£G°'GE —

55



Methyl 4-(butyryloxy)benzoate
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Methyl 5-acetamido-2-hydroxybenzoate
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Methyl 5-acetamido-2-(2-chloroethoxy)benzoate
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Dimethyl 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate (B)
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10. NMR spectra for products

Methyl 4-(hydroxymethyl)benzoate (1a)
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Isobenzofuran-1(3H)-one (1b)
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4-(Hydroxymethyl)benzonitrile (1c)
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5-(Hydroxymethyl)isobenzofuran-1(3H)-one (1f)
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Diethyl (4-(hydroxymethyl)phenyl)phosphonate (1g)
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Diphenyl (4-(hydroxymethyl)phenyl)phosphonate (1h)
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(4-(hydroxymethyl)phenyl)diphenylphosphine oxide (1i)
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(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanol (1j)
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4-(hydroxymethyl)benzoic acid (1k)
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Methyl 6-(hydroxymethyl)-2-naphthoate (11)
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4-(Hydroxymethyl)-3-methylbenzonitrile (1m)
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4-(Hydroxymethyl)-2-methylbenzonitrile (1n)
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4-(Hydroxymethyl)-2-methoxybenzonitrile (10)
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2-(But-3-en-1-yloxy)-4-(hydroxymethyl)benzonitrile (1p)
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4-(Hydroxymethyl)-2-(prop-2-yn-1-yloxy)benzonitrile (1q)
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2-((5-Cyanopentyl)oxy)-4-(hydroxymethyl)benzonitrile (1r)
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2-(2-Fluoroethoxy)-4-(hydroxymethyl)benzonitrile (1s)
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Methyl 4-(2-(2-cyano-5-(hydroxymethyl)phenoxy)ethyl)benzoate (1t)
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Pyridin-2-ylmethanol (1u)
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Pyridin-4-ylmethanol (1v)
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Phenylmethanol (2a)
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p-Tolylmethanol (2b)
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m-Tolylmethanol (2e)
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o-Tolylmethanol (2f)
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(3,5-Dimethylphenyl)methanol (2g)
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Mesitylmethanol (2h)
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(4-(tert-Butyl)phenyl)methanol (2i)
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[1, 1'-Biphenyl]-4-ylmethanol (2j)
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(4-(Trimethylsilyl)phenyl)methanol (2k)
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(4-Methoxyphenyl)methanol (21)
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(3,5-dimethoxyphenyl)methanol (2m)
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(4-Phenoxyphenyl)methanol (2n)
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(4-(Benzyloxy)phenyl)methanol (20)
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4-(Hydroxymethyl)phenyl butyrate (2p)
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(4-(Methylthio)phenyl)methanol (2q)
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N-(4-(Hydroxymethyl)phenyl)acetamide (2r)
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(4-(1H-Imidazol-1-yl)phenyl)methanol (25)
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Thiophen-2-ylmethanol (2t)
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Benzo[b]thiophen-2-ylmethanol (2u)
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Furan-2-ylmethanol (2v)
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Benzofuran-2-ylmethanol (2w)
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(1-Methyl-1H-imidazol-2-yl)methanol (2x)
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2-(hydroxymethyl)phenyl acetate (2y)
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3-(Hydroxymethyl)benzonitrile (2aa)
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(3-Chlorophenyl)methanol (2ad)
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(4-Chlorophenyl)methanol (2ae)
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(4-Bromophenyl)methanol (2af)
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Benzo|[d][1,3]dioxol-5-ylmethanol (2ag)
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Methyl 4-(hydroxymethyl-d;)benzoate (3a)
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4-(Hydroxymethyl-d;)benzonitrile (3b)
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3-Fluoro-4-(hydroxymethyl-d,)benzonitrile (3¢)
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(4-Bromophenyl)methan-d,-ol (3e)
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Phenylmethan-d;-ol (3f)
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p-Tolylmethan-d>-ol (3g)
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(4-Methoxyphenyl)methan-d;-ol (3h)
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N-(4-(2-chloroethoxy)-3-(hydroxymethyl-d;)phenyl)acetamide (3i)
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