Supporting information

Atomic layered metal-organic framework on NiFe LDH for enhanced

electrocatalytic oxygen evolution reaction

Dan Xu,[‡]^a Yingying Gao,[‡]^a Sheng Qian,^a Yu Fan,^a Jingqi Tian^{*a}

^a School of Chemistry and Chemical Engineering, and Institute for Innovative

Materials and Energy, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou

225002, P. R. China

*Corresponding author.

E-mail address: tianjq@yzu.edu.cn (J. Tian)

Fig. S1. (a) SEM image, (b, c) TEM image, (d) SAED image, (e-g) HRTEM images, (h) STEM image and elemental mappings of NiFe LDH nanosheets.

Fig. S2. (a) SEM image, (b, c) TEM image, (d) SAED image, (e-g) HRTEM images, (h) STEM image and elemental mappings of NiFe LDH@MOF-1.

Fig. S3. (a) SEM image, (b, c) TEM image, (d) SAED image, (e-g) HRTEM images, (h) STEM image and elemental mappings of NiFe LDH@MOF-2.

Fig. S4. SEM image of NiFe LDH@MOF-1 obtained at different coordination reaction period. (a) 6 h, (b) 8 h, (c) 10 h, and (d) 12 h.

Fig. S5. SEM image of NiFe LDH@MOF-2 obtained at different coordination reaction period. (a) 6 h, (b) 8 h, (c) 10 h, and (d) 12 h.

Fig. S6. SEM image of NiFe LDH@MOF-3 obtained at different coordination reaction period. (a) 6 h, (b) 8 h, (c) 10 h, and (d) 12 h.

Fig. S7. EDX spectrum of NiFe LDH.

Fig. S8. EDX spectrum of NiFe LDH@MOF-1.

Fig. S9. EDX spectrum of NiFe LDH@MOF-2.

Fig. S10. EDX spectrum of NiFe LDH@MOF-3.

Fig. S11. High-resolution XPS spectra of the NiFe LDH (a) Survey spectrum, (b) Ni 2p, (c) Fe 2p, (d) O 1s, (e) C 1s.

Fig. S12. High-resolution XPS spectra of the NiFe LDH@MOF-1 (a) Survey spectrum, (b) Ni 2p, (c) Fe 2p, (d) O 1s, (e) C 1s.

Fig. S13. High-resolution XPS spectra of the NiFe LDH@MOF-2 (a) Survey spectrum, (b) Ni 2p, (c) Fe 2p, (d) C 1s, (e) O 1s, (f) N 1s.

Fig. S14. High-resolution XPS spectra of the NiFe LDH@MOF-3 (a) Survey spectrum, (b) Ni 2p, (c) Fe 2p, (d) C 1s, (e) O 1s, (f) N 1s.

Fig. S15. FT-IR spectra of (a) NiFe LDH@MOF-1, (b) NiFe LDH@MOF-2, (c) NiFe LDH@MOF-3.

 Table S1. Comparison of the OER performance of our NiFe LDH@MOF with other advanced electrocatalysts

Catalyst	Electrolyte	Current density (j,mA cm ⁻²)	Overpotential (mV vs.RHE)	References		
NiFe LDH@MOF-1	1М КОН	100	266	this work		
NiFe LDH@MOF-2	1M KOH	100	252	this work		
NiFe LDH@MOF-3	1М КОН	100	242	this work		
5-cycle NiFe LDH	1М КОН	50	259	Electrochim. Acta, 389 (2021) 138523.		
S-NiFe LDH exch 0.005M (NH ₄) ₂ SO ₄	1М КОН	50	288	Chem. Eng. J. 426 (2021) 130873.		

NiFe- LDH@OMC/CC	1М КОН	100 296		Appl. Surf. Sci. 565 (2021) 150533.		
NiFe- LDH@NCP+CB(PV P 0.3)	1M KOH	10	193	Int. J. Hydrog. Energy, 47 (2022) 19609–19618.		
NiFe- LDH/rGO@NF	1M KOH	50	277	Int. J. Hydrog. Energy, 47 (2022) 8786–8798.		
NiFe LDH-PANI	1М КОН	100	270	J. Alloys Compd. 901 (20220 163510.		
Ni _X Fe _{1-X} S	1М КОН	10	122	Appl. Catal. B, 297 (2021) 120453.		
Co-CH@NiFe- LDH/NF	1М КОН	20 188		Appl. Catal. B, 304 (2022) 120937.		
NiFe LDH/GQDs	1M KOH	10	189	Ultrason Sonochem 76 (2021) 105664.		
NiFe LDH/GF	1М КОН	50	214	Chem. Eng. J. 422 (2021) 130123.		
NiFe LDH/FeOOH	1M KOH+0.5M NaCl	100	286.2	Nano Energy, 84 (2021) 105932.		
NiFe LDH@NiFe	1M KOH	10	201	Inorg. Chem. 60 (2021) 12703– 12708.		
NiFeOP	1M KOH	10	310	Inorg. Chem. 60 (2021) 17371– 17378.		
NiFe LDH/NF-36h	1M KOH	20	231	ACS Appl. Mater. Interfaces, 4 (2021) 9022–9031.		
V-NiFe LDH	1М КОН	10	195	ACS Sustain. Chem. Eng. 9 (2021) 9436– 9443.		
Co@NiFe-LDH	1М КОН	10	253	CrystEngComm, 24 (2022) 1573–1581.		
CoFe@NiFe-200/NF	1М КОН	10	190	RSC Adv. 11 (2021) 37624–37630.		
v-NiFe LDH	1М КОН	50	260	J. Mater. Chem. A 9 (2021) 23697– 23702.		

Ni ^{vac} Fe ^{vac} -LDH	1M KOH	100	363	J. Mater. Chem. A 10 (2022) 5244– 5254.		
NiFe-LDH@Mo- NiS ₂ -NiS/NF	1M KOH	50	261	Appl. Catal. B 253 (2019) 131–139.		
NiFe-LDH@Ni- MOF/NF	1M KOH	100	248	Nano Energy 81 (2021) 105606.		
FeNi LDH/MOF	1M KOH	100	272	Angewandte Chemie. 133 (2021) 24817–24824.		
NiFe LDH@SnO2/NF	1М КОН	1М КОН 10 234		Mater. Today Energy 23 (2022) 100906.		
NiMoP@NiFe-LDH	1М КОН	150	299	Mater. Res. Lett. 10 (2022) 88–96.		
Ni ₅ P4/Ni2P/NiFe LDH	1M KOH	100	243	J. Mater. Chem. A 6 (2018) 13619– 13623.		
10-NiFe LDH/CNTs	1М КОН	10	234	Appl Clay Sci 216 (2022) 106360.		
NiFe LDH@ITO	1M KOH	10	240	ACS Sustain. Chem. Eng. 9 (2021) 9436– 9443.		
Co ₉ S ₈ @NiFe LDH	1M KOH	10	220	J. Mater. Chem. A 9 (2021) 23697– 23702.		

Electrochemical calculation

A general mechanism for the OER on oxides in alkaline solution can be summarized as follow $^{1}\,$:

 $(1)M+OH \rightarrow M-OH_{ads}+e$

 $\textcircled{2}M\text{-}OH_{ads}\text{+}OH^{\text{-}} \rightarrow M\text{-}O_{ads}\text{+}H_2O\text{+}e^{\text{-}}$

 $\textcircled{3}M-O_{ads}+M-O_{ads} \rightarrow 2M+O_2$

 $\textcircled{4}M\text{-}OH_{ads}\text{+}2OH\text{-}\rightarrow M\text{-}OOH_{ads}\text{+}H_2O\text{+}e\text{-}$

 $\textcircled{5}M\text{-}OOH_{ads}\text{+}OH\text{-}\rightarrow M\text{+}O_2\text{+}H_2O\text{+}e\text{-}$

3 has a smaller thermodynamic barrier than the 45 process, so 123 is thermodynamically more favorable.

Calculation of the Turnover Frequency²:

 $\frac{Number of \ total \ oxygen \ turnovers}{cm2} of \ genmetric \ area} \\ TOF= \frac{Number \ of \ active \ sites}{cm2} \ of \ geometric \ area}$

The total number of oxygen turnovers per current density :

No. of
$$O_2 = (per cm^2) (1000mA) (96485.3C) (1 mol of 02) (4 mol of e) (4 mol of$$

$$\frac{6.022 \times 1023 \ 02 \ molecules}{1 \ mol \ of \ 02})$$

$$= 1.56 \times 10^{15} \ \frac{02 \ s - 1}{cm2} \ per \frac{mA}{cm2}$$

Using the assumption that either Ni or Fe acts as active site, the active sites per surface area :

 $\frac{2 \text{ atoms unit cell} - 1}{\text{Active sites per ECSA} = (\frac{182.94\text{ Å unit cell} - 1}{12})^{2/3}}$

Finally, the plot of current densities is converted into a TOF plot :

$$(1.56 \times 1015 \frac{O2 \ s - 1}{cm^2} per \frac{mA}{cm^2})|j|$$

 $TOF=(active sites per surface area) \times ECSA$

$$(1.56 \times 1015 \frac{O2 \ s - 1}{cm2} per \frac{mA}{cm2})|j|$$

= (4.93 × 1014 atoms per ECSA) × ECSA

Fig. S16. LSV curves of NiFe LDH@MOF-1, NiFe LDH@MOF-2 and NiFe LDH@MOF-3 at different reaction period.

Fig. S17. Cyclic voltammetry at potential range without faradaic ion adsorption and desorption process for (a) NiFe LDH, (b) NiFe LDH@MOF-1, (c) NiFe LDH@MOF-2 and (d) NiFe LDH@MOF-3.

Fig. S18. Comparison of the electrochemical active surface area (ECSA) of NiFe LDH and NiFe LDH@MOFs.

Fig. S19. TOF as a function the overpotential for NiFe LDH, NiFe LDH@MOF-1, NiFe LDH@MOF-2 and NiFe LDH@MOF-3.

Fig. S20. The long-term stability of NiFe LDH.

Fig. S21. Stability test for NiFe LDH@MOF-3 electrode at constant current density of 100 mA cm⁻² in 1M KOH at 25 °C.

Fig. S22 (a) SEM image, (b) TEM image, (c) STEM image and elemental mappings, (d) Survey spectrum, (e) Ni 2p, (f) Fe 2p, (g) N 1s, (h) O 1s spectra of NiFe LDH@MOF-3 after OER test.

[Quantitative Result] NiFe LDH			Compo	ound m	/m%	StdErr	El m	1/m%	StdErr			
Analyte	Result	Proc-Calc Li	ine Net Ir	nt. BG Int.					-	·		
NiO Fe2O3	81.9059 % 18.0941 %	QuantFP QuantFP	NiKa 615 FeKa 20	.237 2.711 5.771 1.65	1 51	NiO Fe2O3	63.12 35.74	0.24 0.35	Ni Fe	49.60 24.99	0.19 0.25	NiFe MOF-1
Compo	ound m/m%	StdErr	El m	n/m%	StdErr	Compo	ound m	/m%	StdErr	El m	1/m%	StdErr
NiO Fe2O3	61.59 0.24 38.37 0.2	 4 Ni 24 Fe	48.40 26.83	0.19 0.17 0.17	NiFe @MOF-2	NiO Fe2O3	63.08 36.78	0.24 0.28	- Ni Fe	49.57 25.73	0.19 0.20	NiFe @MOF-3

Fig. S23. WDXRF data of NiFe LDH, EDXRF data of NiFe LDH@MOF-1, NiFe LDH@MOF-2 and NiFe LDH@MOF-3.

Fig. S24. The PDOS of (a) NiFe LDH, (b) NiFe LDH@MOF-1, (c) NiFe LDH@MOF-2, and (d) NiFe LDH@MOF-3.

Fig. S25. Calibration of SCE reference electrode to RHE (1.0 M KOH).

Calibration of SCE reference electrode with respect to reversible hydrogen electrode (RHE) with a scan rate of 1 mV/s in H_2 saturated 1.0 M KOH electrolyte. The measured value of 1.067 V is closed to the calculated value of 1.068 V.

References:

- [1] F. Song, M. M. Busch, B. Lassalle-Kaiser, C. S. Hsu, E. Petkucheva, M. Bensimon,H. Chen, C. Corminboeuf, and X. Hu, ACS Cent. Sci., 2019, 5, 558–568.
- [2] Y. Luo, Y. Wu, D. Wu, C. Huang, D. Xiao, H. Chen, S. Zheng, P. Chu, ACS Appl. Mater. Interfaces, 2020, 12, 42850–42858.