Supplementary Information

Interaction between copper and nickel species for electro-oxidation of 2,5-Bis(hydroxymethyl)furan

Peiyuan Liu,^{‡a,b}, Liyuan Huai,^{‡a} Bin Zhu,^{a,b} Yang Zhong,^{a,b} Jian Zhang,^{a,b,c,*} Chunlin Chen^{a,b,c,*}

^{a.} Ningbo 315201, China Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China. E-mail: jzhang@nimte.ac.cn, chenchunlin@nimte.ac.cn

^{b.} University of the Chinese Academy of Sciences, Beijing 100049, China.

^{c.} Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo 315201, China.

Figure S1. The standard curves of (a) BHMF, (b) HMF, (c) HMFCA, (d) FFCA, (e) FDCA.

Figure S2. The corresponding current density of $Ni_xCu_{(10-x)}$ at 1.45 V, 1.50 V and 1.55 V in (a) 1 M KOH or (b) 1 M KOH with 10 mM BHMF.

Figure S3. (a) The magnified XRD patterns of Cu, Ni and Ni_7Cu_3 for more detail. (b) The Raman spectra of Cu-CF, Ni-CF and Ni_7Cu_3 -CF at the high wavenumber side.

Figure S4. (a, b) The SEM images of Ni-CF and Cu-CF. (c) The elemental mapping of Ni₇Cu₃-CF.

Figure S5. (a) The N₂ adsorption-desorption curve and (b) pore size distribution of Ni₇Cu₃.

Table S1. The elemental ratio in Ni₇Cu₃-CF.

Figure S6. The HPLC analysis of solutions electrolyzed at different potentials of (a) 1.43 V, (b) 1.46 V, (c) 1.52 V and (d) 1.55 V vs. RHE. The reactions were carried out with 3-electrode systems in 1 M KOH added with 10 mM BHMF. The black curve was carbon balance.

Charge (C)

Figure S7. The characterization of the used Ni₇Cu₃-CF: (a) SEM image. (b) XRD pattern.

Figure S8. XPS of (a) Cu 2p, (b) Ni 2p and (c) O 1s of the used Ni_7Cu_3 -CF.

Figure S9. (a) The successive electrolysis at Ni-CF and (b) The SEM image of Ni-CF after 9th electrolysis.

Figure S10. The SEM image of the Ni₇Cu₃-CF catalyst after 9th electrolysis.

Figure S11. The Bode plots in (a) 1 M KOH, (b) 1 M KOH with 10 mM BHMF on Cu-CF. (c) The CVs of Ni_7Cu_3 -CF in 1M KOH. (d) The CVs of Ni_7Cu_3 -CF in 1M KOH added with 10 mM BHMF.

Figure S12. The In-situ Raman of Cu-CF under (a) LSV in 1 M KOH, (b) LSV in 1 M KOH added with 10 mM BHMF, (c) The chronopotentiometry test at 4 mA cm⁻² in 1 M KOH along with adding 10 mM, 20 mM BHMF. The scan rates of LSVs were 5 mV s⁻¹.

Table S2. Comparison of the catalytic performance in the oxidation of BHMF to FDCA.						
Catalysts	С внмғ	Conditions	Potential	Conv	Yiel	Ref.
			/ voltage		d	
				(%)	(%)	
Ni ₇ Cu ₃ -CF	10 mM	RT	1.49 V vs. RHE	100	99.8	this work
CoOOH/Ni	10 mM	RT	1.6 V	100	90.2	1
NiCo/CF	10 mM	RT	1.4 V vs. RHE	100	95.4	2
Co ₃ O ₄ /CF	10 mM	RT	1.65 V	100	95.8	3
Pt/Pb	50 mM	RT	1 V vs. RHE	100	7	4
Pd/o-CNT	20 mM	RT, 100 mL/min O ₂	-	100	93	5
Au _m Pd _n /N-BN _x C	~9.8 mM	100 °C, 2.0 MPa	-	100	95.8	6
		0 ₂				
Au ₁ Pd ₁ /pBNC-	-	100 °C, 2.0 MPa	-	94.3	35.6	7
30 %HNO ₃		0 ₂				
Ru-Acr(ⁱ PR)	250 mM	160 °C	-	-	81	8

C_{BHMF}: the concentration of BHMF; RT: room temperature; Conv.: the conversion of BHMF

References

- 1 B. Zhu, C. L. Chen, L. Y. Huai, Z. Q. Zhou, L. Wang and J. Zhang, *Appl. Catal. B*, 2021, **297**, 120396.
- 2 J. Liu, B. Zhu, Y. Zhong, S. L. Fan, L. Y. Huai, H. L. Hu, Y. Yang, J. Zhang and C. L. Chen, *Chem. Eng. J.*, 2023, **472**, 144877.
- 3 C. L. Chen, Z. Q. Zhou, J. Liu, B. Zhu, H. L. Hu, Y. Yang, G. X. Chen, M. R. Gao and J. Zhang, *Appl. Catal. B*, 2022, **307**, 121209.
- 4 K. B. Kokoh and E. T. Belgsir, *Tetrahedron Lett.*, 2002, **43**, 229.
- 5 Z. Y. Li, L. Y. Huai, P. P. Hao, X. Zhao, Y. Z. Wang, B. S. Zhang, C. L. Chen and J. Zhang, *Chin. J. Catal.*, 2022, **43**, 793.
- 6 Y. R. Liu, Y. Chen, W. Guan, Y. Cao, F. Wang and Y. L. Zhang, *Catalysts*, 2023, 13, 435.
- 7 W. Guan, Y. L. Zhang, C. H. Yan, Y. Chen, Y. A. Wei, Y. Cao, F. Wang and P. W. Huo, *ChemSusChem*, 2022, 15, e202201041.
- 8 S. Kar, Q. Q. Zhou, Y. Ben-David and D. Milstein, J. Am. Chem. Soc., 2022, 144, 1288.