Supplementary Information

Efficient Photocatalytic CO₂ Reduction Coupled with Selective Styrene Oxidation over Modified g-C₃N₄/BiOBr Composite with High Atom Economy

Peng Bai,^{*a,b*} Yicheng Zhao,^{*a,b**} Yongdan Li^{*c*}

^aState Key Laboratory of Chemical Engineering (Tianjin University), Tianjin Key Laboratory of Applied Catalysis

Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China

^bCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China

^cDepartment of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, FI-00076 Aalto, Finland

*Email: zhaoyicheng@tju.edu.cn

Fig. S1 XRD patterns of the samples.

Fig. S2 SEM images of (a) CN, (b) NCN, (c) BiOBr and (d) BiOBr-NCN-S.

Fig. S3 (a) XPS survey spectra of the samples. (b) N/C molar ratio on the surface of CN and NCN based on the XPS results.

Fig. S4 FTIR spectra of the samples.

The strong sharp peak at 810 cm⁻¹ corresponds to the vibration of triazine units of CN. The pronounced absorption in 1230-1640 cm⁻¹ is attributed to the stretching vibration of CN heterocycles including sp² C=N stretching vibrations and out-of-plane bending modes of sp³ C-N bonds. The broad band in 3050-3300 cm⁻¹ is related to residual N-H components. Compared with CN, a stronger band at 3050-3300 cm⁻¹ of NCN indicates more uncondensed amino groups, demonstrating that the carbocyclic structure of CN is partially destroyed after the modification with NH4Cl. Moreover, a new weak absorption peak at about 3450 cm⁻¹ is found in the result of BiOBr-NCN-S, which is ascribed to the O-H bond of hydroxyl groups adsorbed on the oxygen vacancies, indicating that more oxygen vacancies are formed on the surface of BiOBr-NCN-S.

Fig. S5 UV-vis absorption spectra of the samples.

Fig. S6 EPR spectra for the detection of oxygen defects in BiOBr and BiOBr-NCN-S. The characteristic peaks at g = 2.03 are assigned to the oxygen defects.

Fig. S7 High-resolution XPS spectra of (a) Bi 4f and (b) Br 3d of various photocatalysts.

Fig. S8 (a) GC analysis results of styrene oxidation products. Only benzaldehyde (BD) and styrene oxide (SO) products are generated in the liquid phase. (b, c) GC-MS analysis results of BD and SO products. (d) GC analysis results of CO₂ reduction products.

Fig. S9 Photocatalytic redox performance of the catalysts with various BiOBr contents.

Fig. S10 GC-MS analysis results of oxidation products.

Fig. S11 XRD patterns of the BiOBr-NCN-S sample before and after reaction.

Fig. S12 FTIR spectra of the BiOBr-NCN-S sample before and after reaction.

Fig. S13 XPS survey spectra of the BiOBr-NCN-S sample before and after reaction.

Fig. S14 (a) The plots of (Ahv)^{1/2} versus photon energy for NCN and BiOBr. Mott-schottky plots of (b) BiOBr and (c) NCN under different frequencies. (d) Schematic band structure evolution of BiOBr-NCN-S composite.

Fig. S15 Photocurrent responses of different samples.

Fig. S16 EIS curves of different samples.

Fig. S17 UV-vis absorption of the catalysts with various BiOBr contents.

Fig. S18 Photocurrent responses of the catalysts with various BiOBr contents.

Fig. S19 EIS curves of the catalysts with various BiOBr contents.

Fig. S20 N₂ adsorption isotherms of CN, NCN and BiOBr-NCN-S.

Fig. S21 Time-yield plots of the BD and C_2H_4 over BiOBr-NCN-S.

C	А	Atomic ratio		
Sample –	Ν	С	Н	of N/C
CN	49.5	32.5	18.0	1.52
NCN	48.8	32.3	18.9	1.51

 Table S1. The results of elemental analysis.

Catalyst	photosensitizer	Sacrificial agent	Reducing reagent	CO yield (µmol g ⁻¹ h ⁻¹)	CO selectivity	AQE	Ref.
BiOBr-NCN-S	None	None	SE	802	96.2%	1.26%	This work
BiOBr-NCN-S	None	None	H ₂ O	59	90.2%	0.21%	This work
Cu-SAEB ^a	None	None	H ₂ O	236	>99.0%	1.49%	1
Cu ₂ S@R _{OH} - NiCo ₂ O ₃ DSNBs ^b	[Ru(bpy)3]Cl2	TEOA	H ₂ O	7067	72.0%	1.01%	2
MAF-34-CoRu ^c	None	None	H ₂ O	11	100.0%	0.015%	3
Cu/CN-0.25	None	None	H_2O	11	59.3%	1.32%	4
3DOM CdSQD/NC ^d	bipyridine/CoCl	None	$\mathbf{B}\mathbf{A}^{f}$	5210	89.6%	2.9%	5
	2						
Pt/C/CdS@ZnIn ₂ S ₄ /CoO _x	None	None	H ₂ O	329	88.6%	0.34%	6
In@Mo ₂ C-d ^e	None	TEA	H ₂ O	234	97.3%	7.2%	7
Co-Bi ₃ O ₄ Br-1	None	None	H ₂ O	107.1	99.4%	0.91%	8

Table S2. Representative summary of photocatalytic CO₂ reduction to CO.

^{*a*} Cu-SAEB: N-Cu₁-S single-atom electron bridge. ^{*b*} Cu₂S@ R_{OH} -NiCo₂O₃ DSNBs: double-shelled nanoboxes, with an outer shell of hydroxy-rich nickel cobaltite nanosheets and an inner shell of Cu₂S. ^{*c*} MAF-34-CoRu: [Co₃Ru₄(ip)₁₂]Cl₂. ^{*d*} 3DOM CdSQD/NC: 3D ordered macroporous N-doped carbon (NC) supported CdS quantum dots. ^{*e*} d: annealed in H₂/Ar (5%) at 600 °C for 3 h. ^{*f*} Benzylamine. CO selectivity (%) = 2n(CO)/[2n(CO) + 8n(CH₄) + 2n(H₂)].

Catalyst	Solvent	Substrate	Oxidation product(s) (Yield(s) / µmol g ⁻¹ h ⁻¹)	Reduction product(s) (Yield(s) / µmol g ⁻¹ h ⁻¹)	Ref.
BiOBr-NCN-S	Acetonitrile			CO CH4	This work
			(684) (139)	(802) (8)	
g-CN/POM/[Re] ^a	Acetonitrile	\bigcirc	\bigcirc \bigcirc	СО	9
			(12) (11)	(21)	
Ag-TiO ₂	Acetonitrile	ОН	0	CH ₃ OH	10
			(33)	(9)	
Cu ₂ O/Cu	Acetonitrile	ОН		со нсоон	11
			(117)	(0.7) (3)	
Cu ₂ O-RGO/BiVO ₄ ^b	Acetonitrile	ОН		НСООН	12
			(9)	(3)	
FAPbBr ₃ /Bi ₂ WO ₆ ^c	Trifluorotoluene	ОН		СО	13
			(250)	(170)	
CTAB-ZnIn ₂ S4 ^d	Acetonitrile	ОН	(211)	СО	14
			(469)	(38)	

Table S3. Representative summary of photocatalytic CO₂ reduction coupled with organic selective oxidation.

Catalyst	Solvent	Substrate	Oxidation product(s) (Yield(s) / µmol g ⁻¹ h ⁻¹)	Reduction product(s) (Yield(s) / µmol g ⁻¹ h ⁻¹)	Ref.
Cu/TiO ₂	Acetonitrile	NH ₂		CH ₃ OH	15
			(1120)	(84)	
		C U	C_2H_4	СО	
Pd/TiO ₂	gas phase C ₂	C_2H_6	(230)	(120)	16

(Table S3, Continued)

^a g-CN/POM/[Re]: g-C₃N₄/H₃PW₁₂O₄₀/Re₂(bipyNNH₂bipy)(CO)₆Cl₂. ^b RGO: Reduced graphene oxide. ^c FAPbBr₃: Formamidinium

lead bromide. ^d CTAB: Cetyl trimethyl ammonium bromide.

Ovidant	Solvent	Catalyst	Yield (µmol g ⁻¹ h ⁻¹)				Pef	
Oxidant	Solvent	Catalyst	BD	SO	СО	CH ₄	1001.	
CO_2	Acetonitrile	BiOBr-NCN-S	684	139	802	8	This work	
O_2	Acetonitrile	UiO-66-NH2@MIL-101(Fe)	225	-	-	-	17	
H_2O_2	Acetonitrile	PAN/Ag NPs/g-C ₃ N ₄ NFs ^a	980	1838	-	-	18	
O_2	n-Hexane	CsPbBr ₃ /Cs ₄ PbBr ₆	1098	-	-	-	19	
O_2	Tetrahydrofuran	$Au/TiO_2 + RuCl_3 \cdot xH_2O$	-	813	-	-	20	
O_2	Acetonitrile + H ₂ O	BBT^b	430	-	-	-	21	
Air	N,N-dimethylformamide	BiC ₃ N ₃ S ₃	274	1251	-	-	22	

 Table S4. Representative summary of photocatalytic styrene oxidation.

^a PAN/Ag NPs/g-C₃N₄ NFs: Polyacrylonitrile/Ag nanoparticles/g-C₃N₄ nanofibers. ^b BBT: triethynylbenzene benzothiodiazole.

Substrate	Produc	ets	Yields (µmol g ⁻¹)			
Α	В	С	В	С	CO	CH ₄
\bigcirc			6636	1356	7658	81
			7080	1618	8374	83
		$\mathbf{x}^{\mathbf{A}}$	4020	1120	4982	38
$\langle \rangle$			5454	1266	6484	61
			8088	1932	9564	112
CL	CI		4308	858	4956	69
CI		CI CI	5094	1048	5882	63
CI			6090	1232	6984	84

Table S5. The photocatalytic selective oxidation of different aromatic olefins coupled with CO_2 reduction over BiOBr-NCN-S catalyst ^{*a*}.

^{*a*} Reaction condition: 0.1 mmol substrate, 5 mg BiOBr-NCN-S catalyst, in 5 mL acetonitrile, CO₂ atmosphere (0.1 MPa), 6 h, 25 °C, under Xe lamp irradiation.

References

- 1 G. Wang, Y. Wu, Z. Li, Z. Lou, Q. Chen, Y. Li, D. Wang, and J. Mao, *Angew. Chem. Int. Ed.*, 2023, **62**, e2022184.
- 2 L. Li, X. Dai, D. Chen, Y. Zeng, Y. Hu, and X. Lou, Angew. Chem. Int. Ed., 2022, 61, e2022058.
- 3 N. Huang, J. Shen, X. Zhang, P. Liao, J. Zhang, and X. Chen, J. Am. Chem. Soc., 2022, 144, 8676-8682.
- 4 J. Wang, T. Heil, B. Zhu, C. Tung, J. Yu, H. Chen, M. Antonietti, and S. Cao, ACS Nano, 2020, 14, 8584-8593.
- 5 F. Wang, T. Hou, X. Zhao, W. Yao, R. Fang, K. Shen, and Y. Li, *Adv. Mater.*, 2021, **33**, 2102690.
- 6 X. Zhang, P. Wang, X. Lv, X. Niu, X. Lin, S. Zhong, D. Wang, H. Lin, J. Chen, and S. Bai, ACS Catal., 2022, 12, 2569-2580.
- 7 S. Gong, Y. Niu, X. Teng, X. Liu, M. Xu, C. Xu, T. Meyer, and Z. Chen, *Appl. Catal. B Environ.*, 2022, **310**, 121333.
- 8 J. Di, C. Chen, S. Yang, S. Chen, M. Duan, J. Xiong, C. Zhu, R. Long, W. Hao, Z. Chi, H. Chen,
 Y. Weng, J. Xia, L. Song, S. Li, H. Li, and Z. Liu, *Nat. Commun.*, 2019, **10**, 2840.
- 9 H. Yu, E. Haviv, and R. Neumann, Angew. Chem. Int. Ed., 2020, 59, 6219-6223.
- 10 L. Wang, X. Zhang, L. Yang, C. Wang, and H. Wang, *Catal. Sci. Technol.*, 2015, 5, 4800-4805.
- 11 Y. Chen, M. Wang, Y. Ma, Y. Li, J. Cai, and Z. Li, Catal. Sci. Technol., 2018, 8, 2218-2223.
- 12 X. Li, D. Wei, L. Ye, and Z. Li, Inorg. Chem. Commun., 2019, 104, 171-177.
- 13 H. Huang, J. Zhao, Y. Du, C. Zhou, M. Zhang, Z. Wang, Y. Weng, J. Long, J. Hofkens, J. Steele, and M. Roeffaers, ACS Nano, 2020, 14, 16689-16697.
- 14 L. Yuan, Y. Li, Z. Tang, J. Gong, and Y. Xu, J. Catal., 2020, 390, 244-250.
- 15 T. Yang, Q. Yu, and H. Wang, Catal. Lett., 2018, 148, 2382-2390.
- 16 R. Zhang, H. Wang, S. Tang, C. Liu, F. Dong, H. Yue, and B. Liang, ACS Catal., 2018, 8, 9280-9286.
- 17 L. Liu, L. Zhang, F. Wang, K. Qi, H. Zhang, X. Cui, and W. Zheng, Nanoscale, 2019, 11, 7554-7559.
- 18 A. Shah, A. Sharma, V. Sharma, and N. Shimpi, ACS Appl. Nano Mater., 2020, 3, 1922-1933.

- P. Qiu, Q. Wang, Y. Zhao, Y. Dai, Y. Dong, C. Chen, Q. Chen, and Y. Li, *Front. Chem.*, 2020, 8, 130.
- 20 A. Graml, and B. König, ChemPhotoChem, 2021, 5, 362-368.
- 21 C. Ayed, L. Silva, D. Wang and K. Zhang, J. Mater. Chem. A, 2018, 6, 22145-22151.
- 22 Q. Wang, X. Deng, W. Chen, P. Chen, F. Liu, and S. Yin, Fuel, 2021, 302, 121127.