1	SUPPLEMENTARY INFORMATION
2	Acid catalyst screening for hydrolysis of post-consumer PET
3	waste and exploration of acidolysis
4	Patrícia Pereira ^a , Phillip E. Savage ^a , Christian W. Pester ^{a, b}
5 6	^a Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, United States
7 8	^b Department of Chemistry and Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

9

10 Figure S1. Peak deconvolution for weak, medium, and strong acid sites from NH_3 -TDP of HZSM-5,

11 H β , and HY.

12

Table S1. TPD peak temperatures and areas corresponding to weak, medium, and strong acid
 sites by deconvolution of NH₃-TPD experimental data for the zeolite catalysts.

	Т (°С)			Peak area (a.u.)		
	Weak	Medium	Strong	Weak	Medium	Strong
	acid	acid	acid	acid	acid	acid
HZSM-5	90	139	285	2.43	5.59	4.66
Нβ	79	136	265	3.38	5.57	2.91
HY	99	222	572	3.08	4.64	0.67

Results in	Catalyst	T (°C)	<i>pH</i> at room	Catalyst	Water
Figure	,	(-7	temperature	loading	loading (mL)
	Nono	200	(-)	0.0 mg	3.29
1	None	270	(-)	0.0 mg	2.92
		200	(-)	65.7 mg	3.29
	пт, пzэім-э, пр	270	(-)	58.3 mg	2.92
		200	0.63	0.0250 mL	2.07
		200	1.37	0.0039 mL	2.07
	Sulfuric Acid	200	1.50	0.0027 mL	2.07
	Sulfuric Aciu	200	1.55	0.0023 mL	2.07
		200	1.60	0.0020 mL	2.07
		200	1.83	0.0010 mL	2.07
		200	0.70	0.3400 mL	2.07
		200	1.40	0.0500 mL	2.07
		200	1.50	0.0400 mL	2.07
2	IL	200	1.60	0.0300 mL	2.07
S4		200	2.10	0.0100 mL	2.07
S7		200	2.70	0.0020 mL	2.07
		200	2.90	0.0013 mL	2.07
	IL-SO₃H	200	1.20	1580 mg	2.07
		200	1.38	840 mg	2.07
		200	1.86	160 mg	2.07
		200	2.42	20.0 mg	2.07
		200	2.91	4.0 mg	2.07
	Nitric Acid	200	0.71	0.2000 mL	2.07
		200	1.42	0.0620 mL	3.29
		200	2.01	0.0100 mL	2.07
		200	2.59	0.0800 mL	2.07
	Propanoic acid	200	2.21	0.5000 mL	2.07
		200	1.94	1.5000 mL	2.07
		200	2.10	74.3 mg	2.07
	Glycolic acid	200	1.68	472.7 mg	2.07
2		200	1.52	945.8 mg	2.07
5 (10		200	2.75	0.0160 mL	2.07
\$12		200	2.62	0.0280 mL	2.07
515	Acetic acid	200	2.50	0.0600 mL	2.07
		200	1.94	1.0000 mL	2.07
		200	1.89	1.3600 mL	2.07
		200	1.84	1.9600 mL	2.07
	Benzoic acid	200	(-)	65.8 mg	3.29
		200	(-)	501.1 mg	2.07

16	Table S2.	Catalyst and	water	loadings	for PET	hydrolysis	experiments.
----	-----------	--------------	-------	----------	---------	------------	--------------

Results in	Catalyst	τι°c	<i>pH</i> at room	Catalyst	Water loading
Figure	Catalyst	/()	temperature	loading	(mL)
		200	(-)	1004 mg	2.07
		200	(-)	1808 mg	2.07
		200	(-)	4.8 mg	2.07
	4 604	200	(-)	30.8 mg	2.07
		200	(-)	311.6 mg	2.07
		200	(-)	107.2 mg	2.07
		200	(-)	16.6 mg	2.07
		200	(-)	24.8 mg	2.07
	ТРА	200	(-)	65.8 mg	3.29
		200	(-)	40.6 mg	2.07
		200	(-)	275.4 mg	3.29
		200	(-)	7.7 mg	2.07
	Stearic acid	200	(-)	160.7 mg	2.07
		200	(-)	512.5 mg	2.07
		200	(-)	1323 mg	2.07
		200	5.01	89.3 mg	2.07
		200	5.09	55.7 mg	2.07
	Znl ₂	200	5.11	43.0 mg	2.07
		200	5.14	36.0 mg	2.07
4	4	200	5.27	25.0 mg	2.07
		200	4.9	1050 mg	2.07
	750	200	5.47	60.0 mg	2.07
	211304	200	5.52	40.0 mg	2.07
		200	5.53	60.0 mg	3.29
	4-FBA	200	(-)	0.0314 g	3.60
	ТРА	200	(-)	0.0417 g	3.60
Table S5	Propanoic acid	200	(-)	0.08 mL	3.60
	Acetic acid	200	(-)	0.08 mL	3.60
	Benzoic acid	200	(-)	0.0736 g	3.60

Table S2 (cont.). Catalyst and water loadings for PET hydrolysis experiments.

19 Table S3. Zeolite properties as supplied by Zeolyst International.

	SiO ₂ /Al ₂ O ₃	Pore size, Å	Surface area, m ² /g
HZSM-5	50	5	425
Нβ	25	5-7	680
HY	5.1	12	925

Figure S2. XRD patterns for HY zeolite, fresh after calcination (HY new), after hydrothermal exposure at 270 °C for 30 min (HY exposed), after one use for PET hydrolysis at 270 °C for 30 min (HY used once), and after two uses during PET hydrolysis at 270 °C for 30 min without

25 recalcination (HY used twice).

26

27 Figure S3. TPA yield after PET hydrolysis with HY in its first use (HY used once) and second use

28 (HY used twice).

- 30 Figure S4. Effect of pH on yields of undissolved solids and byproducts for PET hydrolysis (200 °C,
- 31 2 h, 1/10 mass ratio PET/water) with a) sulfuric acid and b) nitric acid.

Figure S5. Dissolved solids from hydrolysis of PET. From left to right: Nitric acid at *pH* = 2.6 and

35 0.7, sulfuric acid at *pH* = 1.55, 1.4, and 0.6 (all *pH* values were measured at room temperature).

Figure S6. HPLC chromatograms of dissolved solids from hydrolysis of PET with sulfuric acid at 38 pH = 1.6, and nitric acid at pH = 1.4 at 200 °C for 2 h.

41 Table S4. Number- and weight-average molecular weights (M_n , M_W) and degree of

42 polymerization (DP) of undissolved solids from PET hydrolysis experiments at 200 $^\circ$ C for 2 h as

Catalyst	рН	<i>M</i> _n PET (g/mol)	<i>M</i> _w PET (g/mol)	DP
	2.5	1645	1756	8.6
Acetic acid	2.6	1373	1434	7.1
	2.8	(-)	(-)	(-)
Benzoic acid	(-)	1194	1227	6.2
	1.4	1568	1670	8.2
	1.5	1437	1500	7.5
	1.6	1562	1652	8.1
16	2.1	1372	1454	7.1
	2.7	1529	1621	8
	2.9	1313	1331	6.8
	2.9	1655	1775	8.6
	2.4	(-)	(-)	(-)
12-50311	1.9	1596	1714	8.3
	1.4	1592	1592	8.3
	0.7	1359	1419	7.1
Nitric acid	1.4	1476	1506	7.7
	2.0	1514	1638	7.9
	0.7	1508	1599	7.9
	1.4	1624	1725	8.5
Sulfuric acid	1.5	1547	1668	8.1
	1.6	1686	1777	8.8
	1.6	1639	1757	8.5
	1.8	1295	1343	6.7

43 determined by MALDI-ToF MS analysis. Bottle-grade PET has M_n of 24,000-36,000 g/mol.¹

44

46 Figure S7. Effect of *pH* on yields of undissolved solids and byproducts for PET hydrolysis (200 °C,
47 2 h, 1/10 mass ratio PET/water) with a) IL and b) IL-SO₃H.

49 Figure S8. HPLC chromatograms of 4-formylbenzoic acid (4-FBA) before and after hydrothermal

50 treatment at 200 °C for 2 h.

51

52 Table S5. TPA yield (Y_{TPA}) from PET hydrolysis experiments at 200 °C for 2 h and 1.6 MPa or \approx

53 35 MPa.

Catalyst	Pressure 1	L.6 MPa	Pressure \approx 35 MPa		
Catalyst	mol_{cat}/g_{PET}	Ү_{ТРА} (%)	mol_{cat}/g_{PET}	Ү_{ТРА} (%)	
4-FBA	0.0010	15 ± 8	0.0011	11 ± 2	
ТРА	0.0012	17 ± 2	0.0012	20 ± 9	
Propanoic acid	0.0052	4 ± 3	0.0053	4 ± 2	
Acetic acid	0.0051	16 ± 5	0.0067	26 ± 4	
Bonzoic acid	0.0016	32 ± 2	0.0012	35 ±	
Delizoit aciu	0.0010			10	

54

56 **Figure S9.** Effect of TPA loading on PET hydrolysis (200 °C, 1/10 mass ratio PET/Water).

Figure S11. HPLC chromatograms of DMSO-soluble products from PET hydrolysis experiments 61 62 (200 °C, 2 h, 1/10 mass ratio PET/water) with terephthalic acid, 4-formyl benzoic acid, acetic 63 acid, or sulfuric acid and HPLC chromatogram of a standard solution of isophthalic acid. Apart 64 from the solvent and TPA peak (observed at 6.6 min), all samples showed an additional peak at 7.6 min, and some exhibited a peak at 8.1 min. The peak around 7.6 min was most likely i-TPA. 65 Commercial bottle-grade PET contains 1.5% isophthalic acid (i-TPA) as a comonomer. Although 66 mono(2-hydroxyethyl) terephthalic acid (MHET) is also a potential byproduct,² it eluted at 7.7 67 min, and this peak was not observed in the samples. 68

hydrolysis without catalyst and with acetic acid (200 °C, 2 h, 1/10 mass ratio PET/water. a) SIM at 165 m/z confirms the identities of TPA and isophthalic acid (i-TPA) with retention times of 6.6

74 min and 7.6 min, respectively, and b) SIM at 253 m/z indicates the potential presence of bis(2-

75 hydroxyethyl) terephthalate, a byproduct arising from the esterification of TPA with ethylene

76 glycol.

77

- 78 Figure S13. Effect of stearic acid loading on yields of undissolved solids and byproducts from PET
- 79 hydrolysis (200 °C, 2 h, 1/10 mass ratio PET/water).

80

81 Figure S14. Effect of CO_2 loading on average TPA yield from PET hydrolysis (200 °C, 2 h, 1/10

82 mass ratio PET/water). Thermodynamic calculations^{3–5} indicate the pH changed from about 3.7

83 to 3.3 for 0.1 to 0.54 g CO₂ added. Without CO₂ the pH is 5.4 at 200 °C.

85 Figure S15. Influence of acid catalysts loading on the TPA yield from PET hydrolysis (200 °C, 2 h,

86 1/10 mass ratio PET/water). The dashed line represents the TPA yield average without catalyst,

87 and the shaded area the standard deviation.

88

89 Figure S16. HPLC chromatogram of DMSO-solubles from PET acetolysis at 0.8 $g_{PET}/g_{acetic acid}$ (200

 $90~^\circ\text{C},$ 2 h) shows peaks in addition to TPA. These are byproducts.

- 93 Figure S17. ¹H NMR analysis of DMSO-solubles from PET acetolysis (200 °C, 2 h, 0.2 g PET). a) full
- 94 spectrum, and b) expanded view of aromatic proton region. Both panels show peaks arising from
- 95 products other than TPA (*i.e.*, byproducts).

Figure S18. Dissolved solids in DMSO from PET acidolysis. From left to right: g PET / g acetic acid
= 0.1, 0.2, 0.5, and 0.8.

99 References

- 1001J. Scheirs and T. E. Long, Modern Polyesters: Chemistry and Technology of Polyesters and101Copolyesters, John Wiley & Sons, Ltd, 2003.
- H. P. Austin, M. D. Allen, B. S. Donohoe, N. A. Rorrer, F. L. Kearns, R. L. Silveira, B. C.
 Pollard, G. Dominick, R. Duman, K. El Omari, V. Mykhaylyk, A. Wagner, W. E. Michener,
 A. Amore, M. S. Skaf, M. F. Crowley, A. W. Thorne, C. W. Johnson, H. Lee Woodcock, J. E.
 McGeehan and G. T. Beckham, *Proc Natl Acad Sci U S A*, 2018, **115**, E4350–E4357.
- 106 3 S. E. Hunter and P. E. Savage, *Ind. Eng. Chem. Res*, 2003, **42**, 290–294.
- 107 4 S. E. Hunter and P. E. Savage, *Chem Eng Sci*, 2004, **59**, 4903–4909.
- 108 5 S. E. Hunter and P. E. Savage, *AIChE Journal*, 2008, **54**, 516–528.