Supplementary information

Eco-friendly conversion between n- and p-type carbon nanotubes based on rationally

functionalized lignin biopolymers

Yoohyeon Choi^{†a,b}, Ngoc Tuan Tran^{†c,d}, Doojoon Jang^a, Minju Park^a, Chun-Jae Yoo^{c,d}, Jin Young Kim^b,

Hyunjoo Lee*c,d and Heesuk Kim*a,d

^{*a*}Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea. E-mail: heesukkim@kist.re.kr

^bDepartment of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.

^cClean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea. E-mail: hjlee@kist.re.kr

^dDivision of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.

† These authors contributed equally to this work.

Fig. S1. ¹H NMR of (a) orgnosolv lignin and (b) phenolated lignin. The increase in Ar-H indicates the phenyl group's attachment to the lignin backbone structure.

Fig. S2. ³¹P NMR of (a) orgnosolv lignin and (b) phenolated lignin, (c) aminated lignin, and (d) fluorinated lignin.

Signal assignment:

The peak at 144.5 ppm is an internal standard (10 mg/mL cyclohexanol).

The peaks in ³¹P NMR are assigned as following: aliphatic hydroxyl (149.0 to 145.0 ppm), syringyl hydroxyl and 5-substituted ring hydroxyl (144.0 to 140.5 ppm), guaiacyl hydroxyl (140.5 to 138.0 ppm), p-hydroxyl-phenyl and newly attached phenol (138.0 to 136.0 ppm), and carboxyl OH (135.0 – 133.0 ppm).

Fig. S3. ¹³C NMR of (a) organosolv lignin, (b) phenolated lignin, (c) aminated lignin, and (d) fluorinated lignin.

Fig. S4. Photographs showing the solubility of four lignin solutions (OL, PL, FL, and AL) at low concentration (1 mg/mL) and high concentrations (100 mg/mL) (a) right after solution preparation and (b) after 15 mins.

Wavenumber (cm ⁻¹)	Peak assignment ¹⁻³
3373	O-H stretching
2965	C-H stretching (aliphatic)
2830	C-H stretching (aliphatic)
1733	C=O stretching (unsaturated)
1609	Aromatic skeletal vibration
1457	C-H deformation (aliphatic)
1426	O-H bending (primary alcohol)
1384	C-H deformation (aliphatic)
1287	C-O-C (alkyl aryl ether), C-O of guaiacyl ring
1253	C-N stretching peak (amine)
1218	C-C, C-O, C=O stretch in Guaiacyl ring
1185	C-F stretching
1162	C-O (alkyl aryl ester)
1129	C-F stretching
1114	Aromatic C-H (Guaiacyl ring)
1031	Aromatic C-H (Guaiacyl ring)
1017	C-F stretching
910	Aromatic C-H bending (1,2,4-trisubstituted)
843	Aromatic C-H bending (1,2,4-trisubstituted)
832	Aromatic C-H bending (disubstituted or tetrasubstituted)
756	Aromatic C-H bending (1,2-disubstituted)
700	Aromatic C-H bending (bezene derivative)

Fig. S5. FT-IR peak assignment of (a) organosolv lignin, (b) phenolated lignin, (c) aminated lignin, and (d) fluorinated lignin.

Fig. S6. ¹³C NMR spectra of (a) phenolated lignin and (b) aminated lignin.

Fig. S7. ¹H NMR analyses of (a) organosolv lignin, (b) phenolated lignin, (c) aminated lignin, and (d) fluorinated lignin

mmol/g	Al-OH	5- Substituted	Guaiacyl	o/p-phenol	-COOH	Total
Organosolv	1.46	1.68	1.46	1.16	0.18	5.77
lıgnın						
Phenolated	0.06	1.31	1.29	4.24	0.00	6.00
lignin	0.00					0.90
Aminated	0.00	00 2.55	0.33	0.95	0.00	2.84
lignin	0.00					5.04
Fluorinated	0.00	0.00	0.00	0.00	0.00	0.00
lignin	0.00	0.00	0.00	0.00	0.00	0.00

Table S1. Hydroxyl contents in lignin samples

	Lignin	Pre-treatment method	Elemental analysis (Weight %)		
			C	Н	N
X. Du et al ⁴	LignioBoost lignin	Phenolation	-	-	4.88
G. Jiao et al ⁵	Biorefinery technical lignin	Phenolation	64.34	7.00	5.44
This research	OrganoSolv Lignin	Phenolation	68.81	8.63	6.19

 Table S2. Comparison of nitrogen content in various aminated-lignin materials

Fig. S8. GPC analyses of organosolv lignin (OL), phenolated lignin (PL), and (d) fluorinated lignin (FL).

Fig. S9. Atomic percent of AL-(left) and FL-(right) doped DWCNT films analyzed by XPS.

Fig. S10. Comparison of the Seebeck coefficients achieved in this work to those of fossil fuelbased organic dopants including carbazole and TCNQ as *p*-dopants, and PEI and dppp as *n*dopants.

References

- L. Yang, X. Wang, Y. Cui, Y. Tian, H. Chen and Z. Wang, *Polym. Adv. Technol.*, 2014, 25, 1089–1098.
- C. G. Boeriu, D. Bravo, R. J. A. Gosselink and J. E. G. Van Dam, *Ind. Crops Prod.*, 2004, 20, 205–218.
- S. Bhagia, J. Ďurkovič, R. Lagaňa, M. Kardošová, F. Kačík, A. Cernescu, P. Schäfer, C. G.
 Yoo and A. J. Ragauskas, *ACS Sustain. Chem. Eng.*, 2022, 10, 3016–3026.
- 4 X. Du, J. Li and M. E. Lindström, *Ind. Crops Prod.*, 2014, **52**, 729–735.
- 5 G. J. Jiao, P. Peng, S. L. Sun, Z. C. Geng and D. She, *Int. J. Biol. Macromol.*, 2019, **127**, 544–554.