Environmentally-friendly preparation of natural hollow carbon sphere derived from biomass puffball for in-situ upgrading of lignin-derived vanillin

Changzhou Chen^{a*}, Xialin Ji^a, Yongzhi Xiong^a, Jianchun Jiang^{a,b*}

 ^a Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
^b Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China

*Corresponding authors. *E-mail address:* chenchangzhou@hqu.edu.cn (C. Chen), jiangjc@icifp.cn (J. Jiang)

Catalyst characterization: N₂ adsorption-desorption isotherms of Ni_xCu_y/BC catalysts were carried out at -196 °C using a Micromeritics ASAP 2460 apparatus to obtain the parameter of surface area, pore volume and pore size distribution. Powder X-ray diffraction (XRD) patterns of Ni_xCu_y/BC catalysts were carried out on a Rigaku Smart Lab SE using Ni filtered Cu K α radiation ($\lambda = 1.5406$ Å) with a scan speed of 10° min⁻¹ and a scan range of 30-80° at 30 kV and 15 mA. Raman spectroscopy was carried out to study the degree of graphitization by a WITec alpha300R using a laser excitation wavelength of 532 nm. Scanning electron microscopy (SEM) was investigating by employing a ZEISS Gemini SEM 300. high-resolution transmission electron microscopy (HRTEM) images of the Ni_xCu_y/BC catalysts were studied by a FEI Talos F200S. X-ray photoelectron spectroscopy (XPS) was performed to study the Al-K α as the photon source. H₂-temperature programmed reduction (H₂-TPR) and NH₃-temperature programmed desorption (NH₃-TPD) were studied on a Micromeritics

Auto Chem II 2920.

The density functional theory (DFT) was calculated by the first principle and Perdew Burke ernzerhof (PBE) formula. The plane-wave basis set was used to expand the smooth part of the wave functions with a cutoff kinetic energy of 450 eV. The sufficiently large vacuum region of 18 Å was employed to make sure the periodic images were separated. The convergence criterion of the electronic self-consistent loop was 10^{-5} eV and the atomic structures were optimized until the residual forces were below 0.03 eV Å⁻¹.

Fig. S1 (a-b) SEM and HRTEM images of puffball-based biochar.

Fig. S2 HRTEM images of all Ni_xCu_y/BC catalyst.

Fig. S3 (a-b) SEM images and XRD patterns of spent $\rm Ni_{10}Cu_5/BC$ catalyst.

Catalysts	Solvents	Reaction conditions			Conv.	Sel.	
		H_2 (MPa)	T (°C)	<i>t</i> (h)	(%)	(%)	Ket.
Ni ₂ P/HY	ethanol	2	220	5	99	100	[1]
HD-Ni/N-CMS	H ₂ O	2	150	10	100	99	[2]
Cu-PMO	Methanol	4	180	18	100	90	[3]
Ni/SiO ₂ -ZrO ₂	octane	5	300	16	100	54	[4]
Ni-MFC-700	methanol	2	200	10	100	96.5	[5]
Co@NP-700	H ₂ O	0.5	180	4	95.7	100	[6]
Ni/ZrP	isopropanol	2	220	0.5	97.25	88.39	[7]
CoNi/Al ₂ O ₃	isopropanol	1	200	1	100	99.2	[8]
Ni/ZrP	isopropanol	0.5	180	1	100	87.8	[9]
Cu-Ni/CeO ₂ -SiO ₂	H ₂ O	2.5	150	12	96	90.6	[10]
Ni/biochar	ethanol	3	170	2	79.3	80.4	[11]
Ni/T-Nb ₂ O ₅	H ₂ O/ethanol	1	180	1	96.1	79.2	[12]
Cu-Ni/CZ-B	H ₂ O	2.5	160	12	96.0	90.2	[13]
Ni ₁₀ Cu ₅ /BC	isopropanol	/	240	4	~100	88.12	This work

Table S1 Conversion of VAN over different none-noble catalysts.

Catalysts	Metal content ^a (wt%)				
Catalysts	Ni	Cu			
Fresh Ni ₁₀ Cu ₅ /BC	9.8	5.12			
Spent Ni ₁₀ Cu ₅ /BC	8.2	4.31			

Table S2 Metal content of $Ni_{10}Cu_5/BC$ before and after VAN hydrodeoxygenation.

^a Determined by ICP-OES.

Table S3 Control experiment with VAL as raw material.

Reaction condition: 20mg Ni_{10}Cu_5/BC catalyst, 2.0 MPa N2, 4 h, 240 °C, isopropanol.

[1] Y. Geng, M. Lang, G. Li, W. Yin, Z. Yang and H. Li, *Catal. Lett.*, 2022, 153, 911-920.

[2] R. Fan, Z. Hu, C. Chen, X. Zhu, H. Zhang, Y. Zhang, H. Zhao and G. Wang, *Chem. Commun.*, 2020, 56, 6696-6699.

[3] L. Petitjean, R. Gagne, E. Beach, D. Xiao and P. Anastas, *Green. Chem.*, 2016, **18**, 150-156.

[4] X. Zhang, W. Tang, Q. Zhang, T. Wang and L. Ma, *Energy Procedia.*, 2017, 105, 518-523.

[5] X. Tong, P. Guo, S. Liao, S. Xue and H. Zhang, *Green. Chem.*, 2019, 21, 5828-5840.

[6] H. Yang, R. Nie, W. Xia, X. Yu, D. Jin, X. Lu, D. Zhou and Q. Xia, *Green. Chem.*, 2017, 19, 5714-5722.

[7] J. Gao, Y. Cao, G. Luo, J. Fan, J.H. Clark and S. Zhang, *Chem. Eng. J.*, 2022, 448, 137723.

[8] M. Liu, J. Zhang, L. Zheng, G. Fan, L. Yang and F. Li, ACS Sustainable Chem. Eng., 2020, 8, 6075-6089.

[9] J. Gao, Y. Cao, G. Luo, J. Fan, J. Clark and S. Zhang, *Chem. Eng. J.*, 2022, **448**, 137723.

[10] D. Mukherjee, R. Singuru, P. Venkataswamy, D. Damma and B.M. Reddy, ACS Omega, 2019, 4, 4770-4778.

[11] Y. Wang, Y. Shao, L. Zhang, S. Zhang, Y. Wang, J. Xiang, S. Hu, G. Hu and X. Hu, *Fuel*, 2021, **293**, 120426.

[12] Z. Zhang, H. Xu and H. Li, Fuel, 2022, 324, 124400.

[13] R. Singuru, J. Lee, K. Dhanalaxmi, B.M. Reddy, K. An and J. Mondal, *ChemistrySelect*, 2018, **3**, 6174-6185.